Yesterday

Remember yesterday?

- classical logic: reasoning about truth of formulas
- propositional logic: atomic sentences, composed by connectives
- validity and satisfiability can be decided by truth tables
- formulas can be normalized: NNF, DNF, canonical DNF
- number of connectives can be reduced: functionally complete set
- first order logic: can reason about individuals
- validity and satisfiability are undecidable, but can be checked by semantic definitions
- formulas can be normalized: PNF (but also NNF, DNF)

Intuitionistic First Order Logic

イロト イポト イヨト イヨト 二日

2/40

Logic Part II: Intuitionistic Logic and Natural Deduction

Max Schäfer

Formosan Summer School on Logic, Language, and Computation 2007

July 2, 2007

Principles of Intuitionistic Logic

Intuitionistic logic advocates a different understanding of what logic is about.

- mathematics is about solving concrete problems
 - find $x, y, z \in \mathbb{N}$ such that $x^2 + y^2 = z^2$
 - given one root of $ax^2 + bx + c = 0$, find the other
 - assuming that π is rational, prove that e is rational, too
- logic abstracts away from concrete problems
- investigates how complex problems are composed from simpler ones
- how complex problems can be solved given solutions of their constituent problems

Intuitionistic First Order Logic

Outline

Intuitionistic Propositional Logic

Intuitionistic First Order Logic

Intuitionistic First Order Logic

Outline

Intuitionistic Propositional Logic

Intuitionistic First Order Logic

Intuitionistic Propositional Logic: The Basics

The language of intuitionistic propositional logic is the same as classical propositional logic, but the meaning of formulas is different

- propositional letters represent abstract problems
- more complex problems are formed by using the connectives
- solutions of abstract problems are called *proofs*
- it does not make sense to speak about a formula having a truth value
- we are only interested in how to prove formulas

The Brouwer-Heyting-Kolmogorov Interpretation

Proofs of complex formulas are given in terms of the proofs of their constituents:

- a proof of $\varphi \wedge \psi$ is a proof of φ together with a proof of ψ
- a proof of $\varphi \lor \psi$ is a proof of φ or a proof of ψ
- a proof of $\varphi\to\psi$ is a procedure that can be seen to produce a proof of ψ from a proof of φ
- there is no proof of \perp

For three propositional letters a, b, c we can prove

• $a \rightarrow a$

Given a proof u of a, we can produce a proof of a, namely u itself.

• $(a \land b) \rightarrow a$

Assume we have a proof v of $a \wedge b$. Then we can extract from it a proof of a, since it must contain both a proof of a and a proof of b.

- $a \rightarrow (a \lor b)$
- $a \rightarrow (b \rightarrow a)$
- $(a \rightarrow (b \rightarrow c)) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$

For three propositional letters a, b, c we can prove

• $a \rightarrow a$

Given a proof u of a, we can produce a proof of a, namely u itself.

• $(a \wedge b) \rightarrow a$

Assume we have a proof v of $a \wedge b$. Then we can extract from it a proof of a, since it must contain both a proof of a and a proof of b.

- $a \rightarrow (a \lor b)$
- $a \rightarrow (b \rightarrow a)$
- $(a \rightarrow (b \rightarrow c)) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$

For three propositional letters a, b, c we can prove

• $a \rightarrow a$

Given a proof u of a, we can produce a proof of a, namely u itself.

- (a ∧ b) → a Assume we have a proof v of a ∧ b. Then we can extract from it a proof of a, since it must contain both a proof of a and a proof of b.
- $a \rightarrow (a \lor b)$
- a
 ightarrow (b
 ightarrow a)
- $(a \rightarrow (b \rightarrow c)) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$

Comparison of "a formula is true" and "a formula has a proof":

- in CL, to show that $\varphi \lor \psi$ is true, we can
 - 1. assume that arphi is false
 - 2. then show that ψ is true

in the second step, we can use the fact that arphi is false

- in IL, to give a proof of $\varphi \lor \psi$, we must
 - 1. either give a proof of φ (no matter whether ψ has one)
 - 2. or give a proof of ψ (no matter whether arphi has one)

For other connectives, the difference is not so marked.

Comparison of "a formula is true" and "a formula has a proof":

- in CL, to show that $\varphi \lor \psi$ is true, we can
 - 1. assume that φ is false
 - 2. then show that ψ is true

in the second step, we can use the fact that φ is false

- in IL, to give a proof of $\varphi \lor \psi$, we must
 - 1. either give a proof of φ (no matter whether ψ has one)
 - 2. or give a proof of ψ (no matter whether φ has one)

For other connectives, the difference is not so marked.

Comparison of "a formula is true" and "a formula has a proof":

- in CL, to show that $\varphi \lor \psi$ is true, we can
 - 1. assume that arphi is false
 - 2. then show that ψ is true

in the second step, we can use the fact that φ is false

- in IL, to give a proof of $\varphi \lor \psi$, we must
 - 1. either give a proof of φ (no matter whether ψ has one)
 - 2. or give a proof of ψ (no matter whether φ has one)

For other connectives, the difference is not so marked.

Comparison: Example

in CL, a is true if ¬a and vice versa

 in IL, if ¬a has a proof then there can be no proof of a and vice versa:

Assume we have a proof u of $\neg a$. Because $\neg a \equiv a \rightarrow \bot$ this means that u is a procedure that produces a proof of \bot given a proof of a. But there is no proof of \bot , hence there can be no proof of a.

Assume that we have a proof v of a. Then there can be no proof of $\neg a$. For assume that we had a proof w of $\neg a$; then w could produce a proof of \bot from v. But this is impossible.

Comparison: Example

- in CL, *a* is true if ¬*a* and vice versa
- in IL, if ¬a has a proof then there can be no proof of a and vice versa:

Assume we have a proof u of $\neg a$. Because $\neg a \equiv a \rightarrow \bot$ this means that u is a procedure that produces a proof of \bot given a proof of a. But there is no proof of \bot , hence there can be no proof of a.

Assume that we have a proof v of a. Then there can be no proof of $\neg a$. For assume that we had a proof w of $\neg a$; then w could produce a proof of \bot from v. But this is impossible.

- $a \lor \neg a$ is true in CL; for assume a is false, then $\neg a$ is true
- $a \lor \neg a$ does not seem provable in IL
- in CL, if ¬¬a is true then so is a; hence ¬¬a → a is a classical tautology
- in IL, there does not seem to be a way to get a proof of a from a proof of ¬¬¬a
- in CL, \perp is never true; in IL, \perp never has a proof
- in CL, $\bot \to \varphi$ is true for any φ
- in IL, ⊥ → φ is vacuosly provable for any φ (ex falso quodlibet, EFQ)

- $a \lor \neg a$ is true in CL; for assume a is false, then $\neg a$ is true
- $a \lor \neg a$ does not seem provable in IL
- in CL, if ¬¬a is true then so is a; hence ¬¬a → a is a classical tautology
- in IL, there does not seem to be a way to get a proof of a from a proof of ¬¬¬a
- in CL, \perp is never true; in IL, \perp never has a proof
- in CL, $\bot \to \varphi$ is true for any φ
- in IL, ⊥ → φ is vacuosly provable for any φ (ex falso quodlibet, EFQ)

- $a \lor \neg a$ is true in CL; for assume a is false, then $\neg a$ is true
- $a \lor \neg a$ does not seem provable in IL
- in CL, if ¬¬a is true then so is a; hence ¬¬a → a is a classical tautology
- in IL, there does not seem to be a way to get a proof of a from a proof of ¬¬¬a
- in CL, \perp is never true; in IL, \perp never has a proof
- in CL, $\bot \to \varphi$ is true for any φ
- in IL, ⊥ → φ is vacuosly provable for any φ (ex falso quodlibet, EFQ)

- $a \lor \neg a$ is true in CL; for assume a is false, then $\neg a$ is true
- $a \lor \neg a$ does not seem provable in IL
- in CL, if ¬¬a is true then so is a; hence ¬¬a → a is a classical tautology
- in IL, there does not seem to be a way to get a proof of a from a proof of ¬¬¬a
- in CL, \perp is never true; in IL, \perp never has a proof
- in CL, $\bot \to \varphi$ is true for any φ
- in IL, ⊥ → φ is vacuosly provable for any φ (ex falso quodlibet, EFQ)

Excursus: Why EFQ?

- in many fields of mathematics, there are contradictory propositions from which anything is derivable
- for example, if 1 = 0 were true, then
 - 2 = 1 + 1 = 0 + 0 = 0, 3 = 1 + 1 + 1 = 0,...
 - hence: for all $n \in \mathbb{N}$, n = 0
 - but also: for all $r \in \mathbb{R}$, $r = r \cdot 1 = r \cdot 0 = 0$

Thus, any equality between numbers holds, all functions are equal!

• in intuitonistic logic, \perp abstractly represents such a proposition

Formalization: First Step

- we want to formalize the process of forming a proof, in particular a good way to handle *assumptions* (e.g., naming them)
- a diagrammatic *derivation* set out in tree-shape shows how the proof of a complex formula depends on simpler proofs
- in the course of a derivation, assumptions can temporarily be made and later discharged (see examples involving implication)

- 1. Assume we have a proof of $a \wedge b$.
- 2. This proof contains of a proof of a.
- 3. It also contains a proof of b.
- 4. So if we take the proof of b and put it together with the proof of a, we obtain a proof of $b \wedge a$.
- 5. We have shown how to construct a proof of $a \wedge b$ from a proof of $a \wedge b$. This constitutes a proof of $a \wedge b \rightarrow b \wedge a$.

- 1. Assume we have a proof of $a \wedge b$.
- 2. This proof contains of a proof of a.
- 3. It also contains a proof of b.
- 4. So if we take the proof of b and put it together with the proof of a, we obtain a proof of $b \wedge a$.
- 5. We have shown how to construct a proof of $a \wedge b$ from a proof of $a \wedge b$. This constitutes a proof of $a \wedge b \rightarrow b \wedge a$.

- 1. Assume we have a proof of $a \wedge b$.
- 2. This proof contains of a proof of a.
- 3. It also contains a proof of b.
- 4. So if we take the proof of b and put it together with the proof of a, we obtain a proof of $b \wedge a$.
- 5. We have shown how to construct a proof of $a \wedge b$ from a proof of $a \wedge b$. This constitutes a proof of $a \wedge b \rightarrow b \wedge a$.

- 1. Assume we have a proof of $a \wedge b$.
- 2. This proof contains of a proof of a.
- 3. It also contains a proof of b.
- 4. So if we take the proof of b and put it together with the proof of a, we obtain a proof of $b \wedge a$.
- 5. We have shown how to construct a proof of $a \wedge b$ from a proof of $a \wedge b$. This constitutes a proof of $a \wedge b \rightarrow b \wedge a$.

- 1. Assume we have a proof of $a \wedge b$.
- 2. This proof contains of a proof of a.
- 3. It also contains a proof of b.
- 4. So if we take the proof of b and put it together with the proof of a, we obtain a proof of $b \wedge a$.
- 5. We have shown how to construct a proof of $a \wedge b$ from a proof of $a \wedge b$. This constitutes a proof of $a \wedge b \rightarrow b \wedge a$.

$u: a \wedge b$

- the derivation is a tree with assumptions at the leaves
- assumptions are labeled (here with "u")
- the levels correspond to the steps of the informal proof
- derivation steps may *discharge* assumptions (as in the final step)
- discharged assumptions are enclosed in brackets

$\frac{u:a \wedge b}{a}$

- the derivation is a tree with assumptions at the leaves
- assumptions are labeled (here with "u")
- the levels correspond to the steps of the informal proof
- derivation steps may *discharge* assumptions (as in the final step)
- discharged assumptions are enclosed in brackets

$$\frac{\underline{u: a \land b}}{b} \quad \underline{\underline{u: a \land b}}{a}$$

- the derivation is a tree with assumptions at the leaves
- assumptions are labeled (here with "u")
- the levels correspond to the steps of the informal proof
- derivation steps may *discharge* assumptions (as in the final step)
- discharged assumptions are enclosed in brackets

$$\frac{\underline{u:a \land b}}{\underline{b}} \quad \underline{\underline{u:a \land b}}_{a}$$

- the derivation is a tree with assumptions at the leaves
- assumptions are labeled (here with "u")

_

- the levels correspond to the steps of the informal proof
- derivation steps may *discharge* assumptions (as in the final step)
- discharged assumptions are enclosed in brackets

$[u: a \land b]$	$[u: a \land b]$
b	а
$b \wedge a$	
$a \wedge b \rightarrow b \wedge a$	

- the derivation is a tree with assumptions at the leaves
- assumptions are labeled (here with "u")
- the levels correspond to the steps of the informal proof
- derivation steps may *discharge* assumptions (as in the final step)
- discharged assumptions are enclosed in brackets

- the derivation is a tree with assumptions at the leaves
- assumptions are labeled (here with "u")
- the levels correspond to the steps of the informal proof
- derivation steps may *discharge* assumptions (as in the final step)
- discharged assumptions are enclosed in brackets

The Calculus NJ of Natural Deduction (Propositional Part)

• the assumption rule: assumptions can be added to the current node at any time

 $x:\varphi$

- for the connectives, there are introduction and elimination rules
 - the introduction rules specify how to construct proofs
 - the elimination rules specify how to extract the information contained in a proof

Intuitionistic First Order Logic

The Rules for Conjunction

Conjunction Introduction:

$$(\land \mathsf{I}) \frac{\varphi \quad \psi}{\varphi \land \psi}$$

Conjunction Elimination:

$$(\wedge \mathsf{E}_l) = \frac{\varphi \wedge \psi}{\varphi}$$

$$(\wedge \mathsf{E}_r) \frac{\varphi \wedge \psi}{\psi}$$

< □ > < @ > < 言 > < 言 > 三 の < ⊙ 17/40

Intuitionistic First Order Logic

Example

$$(\wedge E_{I}) \xrightarrow{u: a \wedge (b \wedge c)}_{(\wedge I) \xrightarrow{a}} \xrightarrow{(\wedge E_{r}) \frac{u: a \wedge (b \wedge c)}{(\wedge E_{I}) \frac{b \wedge c}{b}}}_{(\wedge E_{r}) \frac{u: a \wedge (b \wedge c)}{(\wedge E_{r}) \frac{d \cdot c}{c}}$$

< □ > < □ > < ≧ > < ≧ > < ≧ > 三 のQ (~ 18/40

Intuitionistic First Order Logic

The Rules for Disjunction

Disjunction Introduction:

$$(\forall I_{r}) \frac{\varphi}{\varphi \lor \psi}$$
$$(\forall I_{r}) \frac{\psi}{\varphi \lor \psi}$$

$$\begin{bmatrix} \mathsf{v} : \varphi \end{bmatrix} \qquad \begin{bmatrix} \mathsf{w} : \psi \end{bmatrix}$$
$$\vdots \qquad \vdots$$
$$(\lor \mathsf{E}^{\mathsf{v},\mathsf{w}}) \xrightarrow{\varphi \lor \psi} \qquad \frac{\vartheta}{\vartheta}$$

All open assumptions from the left subderivation are also open in the two right subderivations.

3

Intuitionistic First Order Logic

Example

$$(\vee \mathsf{E}^{\mathsf{v},\mathsf{w}}) \underbrace{\begin{array}{c} u \colon a \lor b \\ \hline b \lor a \end{array}}_{b \lor a} \underbrace{\begin{array}{c} (\lor \mathsf{I}_r) \frac{[v \colon a]}{b \lor a} \\ b \lor a \end{array}}_{b \lor a} \underbrace{\begin{array}{c} (\lor \mathsf{I}_l) \frac{[w \colon b]}{b \lor a} \\ \hline \end{array}}_{b \lor a}$$

In the same manner, we can prove $(a \lor b) \lor c$ from the assumption $a \lor (b \lor c)$.

Intuitionistic First Order Logic

イロト イポト イヨト イヨト 二日

21/40

The Rules for Implication

Implication Introduction:

 $\begin{bmatrix} \mathbf{x} : \varphi \end{bmatrix}$ \vdots $(\to^{\mathbf{x}}) \quad \frac{\psi}{\varphi \to \psi}$

Implication Elimination (modus ponens, MP):

$$(\rightarrow \mathsf{E}) \frac{\varphi \rightarrow \psi \qquad \varphi}{\psi}$$

Intuitionistic First Order Logic

Examples

$$(\rightarrow)^{u} \underbrace{\left[u: a \right]}{a \rightarrow a}$$

$$[w:b]$$

$$(\rightarrow^{|w|}) \frac{[v:a]}{b \rightarrow a}$$

$$(\rightarrow^{|v|}) \frac{b \rightarrow a}{a \rightarrow b \rightarrow a}$$

<ロト <回ト < 国ト < 国ト < 国ト = 今 Q @ 22/40

Intuitionistic First Order Logic

The Rules for Falsity

Falsity Introduction:

there is no introduction rule for falsity

Falsity Elimination (EFQ):

$$(\perp E) \frac{\perp}{\varphi}$$

Example:

$$(\bot \mathsf{E}) \frac{[u: \bot]}{(\to \mathsf{I}^u)} \frac{a}{\bot \to a}$$

・ロ ・ < 部 ・ < 言 ・ < 言 ・ 三 の へ (* 23 / 40

Intuitionistic First Order Logic

Further Examples

Intuitionistic First Order Logic

Further Examples

$$(\rightarrow \mathsf{E}) \frac{[u: (a \lor b) \to c]}{(\rightarrow \mathsf{I}^{\vee})} \frac{(\lor \mathsf{I}_{I})}{\frac{c}{a \to c}} ((\rightarrow \mathsf{I}_{I})) \frac{(\lor \mathsf{I}_{I})}{(\rightarrow \mathsf{I}^{\vee})} \frac{[v: a]}{a \lor b}}{(\rightarrow \mathsf{E})} ((\rightarrow \mathsf{E})) \frac{[u: (a \lor b) \to c]}{(\rightarrow \mathsf{I}^{\vee})} \frac{(\lor \lor b)}{b \to c}}{(\rightarrow \mathsf{I}^{\vee})} \frac{(a \to c) \land (b \to c)}{((a \lor b) \to c) \to (a \to c) \land (b \to c)}}$$

Derivability and Theorems

- a context Γ is a list of assumptions, i.e. $\Gamma \equiv x_1 \colon \varphi_1, \ldots, x_n \colon \varphi_n$
- the range of $\Gamma,$ written $|\Gamma|,$ is the set of assumption formulas in $\Gamma,$ i.e. the φ_i
- we write Γ ⊢_{NJ} φ to mean that φ can be derived from assumptions Γ using the rules of NJ for example, u: p → q, v: ¬q ⊢_{NJ} ¬p
- if Γ is a finite set of formulas, $\Gamma \vdash_{NJ} \varphi$ is taken to mean that there is some context Δ with $|\Delta| = \Gamma$ and $\Delta \vdash \varphi$ for example, $p \rightarrow q, \neg q \vdash_{NJ} \neg p$
- if $\vdash_{\rm NJ} \varphi$ (i.e., φ is derivable without assumptions), then φ is a *theorem* of NJ

Some Theorems

Theorems:

•
$$(a \rightarrow (b \rightarrow c)) \rightarrow (b \rightarrow (a \rightarrow c))$$

• $(a \rightarrow (b \rightarrow c)) \rightarrow (a \wedge b \rightarrow c)$
• $(a \rightarrow a \rightarrow b) \wedge a \rightarrow b$

Non-Theorems:

- a ∨ ¬a
- $\neg \neg a \rightarrow a$
- $\neg(a \land b) \rightarrow \neg a \lor \neg b$
- $(\neg b \rightarrow \neg a) \rightarrow (a \rightarrow b)$

Theorems:

- $\neg\neg(a \lor \neg a)$
- $a \rightarrow \neg \neg a$
- $\neg a \land \neg b \rightarrow \neg (a \lor b)$
- $(a \rightarrow b) \rightarrow (\neg b \rightarrow \neg a)$

Intuitionistic First Order Logic

Properties of NJ(I)

Theorem (Soundness Theorem)

The system NJ is sound: If $\vdash_{NJ} \varphi$ then $\models \varphi$, i.e. all theorems are propositional tautologies.

Consequences of the Soundness Theorem

Corollary If $\Gamma \vdash_{NJ} \varphi$ then $\Gamma \models \varphi$.

Corollary

The system NJ is consistent, i.e. there is a propositional formula φ such that we do not have $\vdash_{NJ} \varphi$.

Proof: Indeed, take \perp . If we could derive $\vdash_{NJ} \perp$, then by the soundness lemma $\models \perp$. But that is not the case.

Consequences of the Soundness Theorem

Corollary

If $\Gamma \vdash_{NJ} \varphi$ then $\Gamma \models \varphi$.

Corollary

The system NJ is consistent, i.e. there is a propositional formula φ such that we do not have $\vdash_{NJ} \varphi$.

Proof: Indeed, take \perp . If we could derive $\vdash_{NJ} \perp$, then by the soundness lemma $\models \perp$. But that is not the case.

30/40

Properties of NJ(II)

- is natural deduction complete for classical logic, i.e. does $\models \varphi$ imply $\vdash_{NJ} \varphi$?
- no: there are classical tautologies (e.g., a ∨ ¬a) without a proof in natural deduction
- but we obtain a complete inference system for classical logic if we accept assumptions of the form

$$\varphi \vee \neg \varphi$$

as axioms

Intuitionistic First Order Logic

Outline

Intuitionistic Propositional Logic

Intuitionistic First Order Logic

Intuitionistic First Order Logic

- the language of intuitionistic first order logic is the same as with classical logic
- the BHK interpretation can be extended to quantified formulas:
 - a proof of ∀x.φ is a procedure that can be seen to produce a proof of φ for every value of x
 - a proof of ∃x.φ is a value for x together with a proof of φ for this value
- NJ contains introduction and elimination rules for the quantifiers

Comparison of "a formula is true" and "a formula has a proof" (ctd.):

- in CL, to show that $\exists x. \varphi$ is true, we can
 - 1. assume that φ is false for all x
 - 2. then derive a contradiction from this assumption
- in IL, to give a proof of ∃x.φ, we must present a concrete value for x (called a *witness*) and a proof that φ holds for this x

The existential quantifier of intuitionistic logic is *constructive*.

Rules for the Universal Quantifier

Universal Introduction:

$$(\forall I) \frac{\varphi}{\forall x.\varphi}$$

where x cannot occur free in any open assumption

Universal Elimination:

$$(\forall \mathsf{E}) \ \frac{\forall x.\varphi}{[x := t]\varphi}$$

for any term t

For any φ , we can build the following derivation:

$$(\forall \mathsf{E}) \frac{u : \forall x. \forall y. \varphi}{(\forall \mathsf{E}) \frac{\forall y. \varphi}{\varphi}} \\ (\forall \mathsf{E}) \frac{\varphi}{\forall x. \varphi} \\ (\forall \mathsf{I}) \frac{\forall x. \varphi}{\forall y. \forall x. \varphi}$$

The following attempt to derive $p(x) \rightarrow p(y)$ fails due to the variable condition:

$$(\forall I) \frac{[u: p(x)]}{\forall x. p(x)}$$
$$(\forall E) \frac{\overline{\forall x. p(x)}}{p(y)}$$
$$(\rightarrow I) \frac{p(y)}{p(x) \rightarrow p(y)}$$

<ロ><同><同><同><目><日><日><日><日><日><日><日><日><日><日><日</td>35/40

Rules for the Existential Quantifier

Existential Introduction:

$$(\exists I) \frac{[x := t]\varphi}{\exists x.\varphi}$$

for any term t

Existential Elimination:

$$[u:\varphi]$$
$$(\exists \mathsf{E}^u) \frac{\exists x.\varphi \quad \psi}{\psi}$$

where x cannot occur free in any open assumptions on the right and in ψ

All open assumptions from the left subderivation are also open in the right subderivation.

For any φ , we can build the following derivation:

$$(\exists \mathsf{E}^{v}) \underbrace{\begin{array}{c} (\exists \mathsf{E}^{w}) \\ u \colon \exists x. \exists y. \varphi \end{array}}_{(\exists \mathsf{E}^{w})} \underbrace{\begin{array}{c} [v \colon \exists y. \varphi] \\ (\exists \mathsf{E}^{w}) \end{array}}_{\exists y. \exists x. \varphi} \underbrace{\begin{array}{c} [v \colon \exists y. \varphi] \\ \exists y. \exists x. \varphi \end{array}}_{\exists y. \exists x. \varphi}$$

The following attempt to derive $(\exists x.\varphi) \rightarrow (\forall x.\varphi)$ fails due to the variable condition, if $x \in FV(\varphi)$:

$$(\exists \mathsf{E}^{\mathsf{v}}) \quad \frac{u \colon \exists x . \varphi \quad [v \colon \varphi]}{(\forall \mathsf{I}) \quad \frac{\varphi}{\forall x . \varphi}}$$

・ロ ・ ・ (日 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ つ へ ()
37 / 40

For any φ and ψ where $x \notin FV(\varphi)$, we have

$$\varphi \lor \exists x.\psi \vdash_{\mathrm{NJ}} \exists x.\varphi \lor \psi:$$

イロト イヨト イヨト イヨト

3

39/40

Example

The following attempt to derive $\forall x. \exists y. x < y \vdash_{NJ} \exists y. \forall x. x < y$ fails:

$$(\forall \mathsf{E}) \frac{u : \forall x. \exists y. x < y}{(\exists \mathsf{E}^{v})} \frac{(\forall \mathsf{I}) \frac{[v : x < y]}{\forall x. x < y}}{\exists y. x < y} \xrightarrow{(\exists \mathsf{I}) \frac{[v : x < y]}{\exists y. \forall x. x < y}}{\exists y. \forall x. x < y}$$

Soundness and Completeness of NJ

Theorem (Soundness Theorem)

NJ is sound with respect to the classical semantics.

Theorem (Completeness Theorem)

When extended with axioms of the form $\varphi \vee \neg \varphi$, NJ is complete with respect to the classical semantics.