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Yesterday

Remember yesterday?

• classical logic: reasoning about truth of formulas

• propositional logic: atomic sentences, composed by

connectives

• validity and satis�ability can be decided by truth tables

• formulas can be normalized: NNF, DNF, canonical DNF

• number of connectives can be reduced: functionally complete

set

• �rst order logic: can reason about individuals

• validity and satis�ability are undecidable, but can be checked

by semantic de�nitions

• formulas can be normalized: PNF (but also NNF, DNF)
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Principles of Intuitionistic Logic

Intuitionistic logic advocates a di�erent understanding of what logic

is about.

• mathematics is about solving concrete problems
• �nd x , y , z ∈ N such that x2 + y2 = z2

• given one root of ax2 + bx + c = 0, �nd the other
• assuming that π is rational, prove that e is rational, too

• logic abstracts away from concrete problems

• investigates how complex problems are composed from simpler

ones

• how complex problems can be solved given solutions of their

constituent problems
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Intuitionistic Propositional Logic: The Basics

The language of intuitionistic propositional logic is the same as

classical propositional logic, but the meaning of formulas is di�erent

• propositional letters represent abstract problems

• more complex problems are formed by using the connectives

• solutions of abstract problems are called proofs

• it does not make sense to speak about a formula having a

truth value

• we are only interested in how to prove formulas
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The Brouwer-Heyting-Kolmogorov Interpretation

Proofs of complex formulas are given in terms of the proofs of their

constituents:

• a proof of ϕ ∧ ψ is a proof of ϕ together with a proof of ψ

• a proof of ϕ ∨ ψ is a proof of ϕ or a proof of ψ

• a proof of ϕ→ ψ is a procedure that can be seen to produce a

proof of ψ from a proof of ϕ

• there is no proof of ⊥
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Examples

For three propositional letters a, b, c we can prove

• a → a

Given a proof u of a, we can produce a proof of a, namely u

itself.

• (a ∧ b) → a

Assume we have a proof v of a ∧ b. Then we can extract from

it a proof of a, since it must contain both a proof of a and a

proof of b.

• a → (a ∨ b)

• a → (b → a)

• (a → (b → c)) → (a → b) → (a → c)
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Comparison with Classical Propositional Logic

Comparison of �a formula is true� and �a formula has a proof�:

• in CL, to show that ϕ ∨ ψ is true, we can

1. assume that ϕ is false
2. then show that ψ is true

in the second step, we can use the fact that ϕ is false

• in IL, to give a proof of ϕ ∨ ψ, we must

1. either give a proof of ϕ (no matter whether ψ has one)
2. or give a proof of ψ (no matter whether ϕ has one)

For other connectives, the di�erence is not so marked.
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Comparison: Example

• in CL, a is true if ¬a and vice versa

• in IL, if ¬a has a proof then there can be no proof of a and

vice versa:

Assume we have a proof u of ¬a. Because ¬a ≡ a → ⊥ this

means that u is a procedure that produces a proof of ⊥ given

a proof of a. But there is no proof of ⊥, hence there can be

no proof of a.

Assume that we have a proof v of a. Then there can be no

proof of ¬a. For assume that we had a proof w of ¬a; then w

could produce a proof of ⊥ from v . But this is impossible.
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Comparison: Further Examples

• a ∨ ¬a is true in CL; for assume a is false, then ¬a is true

• a ∨ ¬a does not seem provable in IL

• in CL, if ¬¬a is true then so is a; hence ¬¬a → a is a classical

tautology

• in IL, there does not seem to be a way to get a proof of a from

a proof of ¬¬a
• in CL, ⊥ is never true; in IL, ⊥ never has a proof

• in CL, ⊥ → ϕ is true for any ϕ

• in IL, ⊥ → ϕ is vacuosly provable for any ϕ (ex falso

quodlibet, EFQ)
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Excursus: Why EFQ?

• in many �elds of mathematics, there are contradictory

propositions from which anything is derivable

• for example, if 1 = 0 were true, then
• 2 = 1 + 1 = 0 + 0 = 0, 3 = 1 + 1 + 1 = 0,. . .
• hence: for all n ∈ N, n = 0
• but also: for all r ∈ R, r = r · 1 = r · 0 = 0

Thus, any equality between numbers holds, all functions are

equal!

• in intuitonistic logic, ⊥ abstractly represents such a proposition
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Formalization: First Step

• we want to formalize the process of forming a proof, in

particular a good way to handle assumptions (e.g., naming

them)

• a diagrammatic derivation set out in tree-shape shows how the

proof of a complex formula depends on simpler proofs

• in the course of a derivation, assumptions can temporarily be

made and later discharged (see examples involving implication)

13 / 40



Intuitionistic Propositional Logic Intuitionistic First Order Logic

Example

Here is an informal proof of a ∧ b → b ∧ a:

1. Assume we have a proof of a ∧ b.

2. This proof contains of a proof of a.

3. It also contains a proof of b.

4. So if we take the proof of b and put it together with the proof

of a, we obtain a proof of b ∧ a.

5. We have shown how to construct a proof of a ∧ b from a proof

of a ∧ b. This constitutes a proof of a ∧ b → b ∧ a.
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The Example in Natural Deduction

u : a ∧ b

• the derivation is a tree with assumptions at the leaves

• assumptions are labeled (here with �u�)

• the levels correspond to the steps of the informal proof

• derivation steps may discharge assumptions (as in the �nal

step)

• discharged assumptions are enclosed in brackets
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The Calculus NJ of Natural Deduction (Propositional Part)

• the assumption rule: assumptions can be added to the current

node at any time

x : ϕ

• for the connectives, there are introduction and elimination
rules

• the introduction rules specify how to construct proofs
• the elimination rules specify how to extract the information

contained in a proof
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The Rules for Conjunction

Conjunction Introduction:

ϕ ψ
(∧I)

ϕ ∧ ψ

Conjunction Elimination:

ϕ ∧ ψ
(∧El ) ϕ

ϕ ∧ ψ
(∧Er )

ψ
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Example

u : a ∧ (b ∧ c)
(∧El ) a

u : a ∧ (b ∧ c)
(∧Er )

b ∧ c
(∧El )

b
(∧I)

a ∧ b

u : a ∧ (b ∧ c)
(∧Er )

b ∧ c
(∧Er ) c

(∧I)
(a ∧ b) ∧ c
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The Rules for Disjunction

Disjunction Introduction:

ϕ
(∨Il )

ϕ ∨ ψ

ψ
(∨Ir )

ϕ ∨ ψ

Disjunction Elimination:

ϕ ∨ ψ

[v : ϕ]

...
ϑ

[w : ψ]

...
ϑ

(∨Ev,w )
ϑ

All open assumptions from the left subderivation are also

open in the two right subderivations.
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Example

u : a ∨ b

[v : a]
(∨Ir )

b ∨ a

[w : b]
(∨Il )

b ∨ a
(∨Ev,w )

b ∨ a

In the same manner, we can prove (a ∨ b) ∨ c from the assumption

a ∨ (b ∨ c).
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The Rules for Implication

Implication Introduction:

[x : ϕ]

...
ψ

(→Ix )
ϕ→ ψ

Implication Elimination (modus ponens, MP):

ϕ→ ψ ϕ
(→E)

ψ
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Examples

[u : a]
(→Iu) a → a

[w : b]

[v : a]
(→Iw )

b → a
(→Iv )

a → b → a
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The Rules for Falsity

Falsity Introduction:

there is no introduction rule for falsity

Falsity Elimination (EFQ):

⊥
(⊥E) ϕ

Example:

[u : ⊥]
(⊥E) a

(→Iu)
⊥ → a
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Further Examples

[u : p → q] [v : p]
(→E) q [w : ¬q]

(→E)
⊥

(→Iv ) ¬p
(→Iw ) ¬q → ¬p

(→Iu)
(p → q) → (¬q → ¬p)
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Further Examples

[u : (a ∨ b) → c]

[v : a]
(∨Il )

a ∨ b
(→E) c

(→Iv ) a → c

[u : (a ∨ b) → c]

[w : b]
(∨Ir )

a ∨ b
(→E) c

(→Iw )
b → c

(∧I)
(a → c) ∧ (b → c)

(→Iu)
((a ∨ b) → c) → (a → c) ∧ (b → c)
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Derivability and Theorems

• a context Γ is a list of assumptions, i.e. Γ ≡ x1 : ϕ1, . . . , xn : ϕn

• the range of Γ, written |Γ|, is the set of assumption formulas in

Γ, i.e. the ϕi

• we write Γ `NJ ϕ to mean that ϕ can be derived from

assumptions Γ using the rules of NJ

for example, u : p → q, v : ¬q `NJ ¬p
• if Γ is a �nite set of formulas, Γ `NJ ϕ is taken to mean that

there is some context ∆ with |∆| = Γ and ∆ ` ϕ
for example, p → q,¬q `NJ ¬p

• if `NJ ϕ (i.e., ϕ is derivable without assumptions), then ϕ is a

theorem of NJ
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Some Theorems

Theorems:

• (a → (b → c)) → (b → (a → c))

• (a → (b → c)) → (a ∧ b → c)

• (a → a → b) ∧ a → b

Non-Theorems:

• a ∨ ¬a
• ¬¬a → a

• ¬(a ∧ b) → ¬a ∨ ¬b
• (¬b → ¬a) → (a → b)

Theorems:

• ¬¬(a ∨ ¬a)
• a → ¬¬a
• ¬a ∧ ¬b → ¬(a ∨ b)

• (a → b) → (¬b → ¬a)
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Properties of NJ(I)

Theorem (Soundness Theorem)

The system NJ is sound: If `NJ ϕ then |= ϕ, i.e. all theorems are

propositional tautologies.
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Consequences of the Soundness Theorem

Corollary

If Γ `NJ ϕ then Γ |= ϕ.

Corollary

The system NJ is consistent, i.e. there is a propositional formula ϕ
such that we do not have `NJ ϕ.
Proof: Indeed, take ⊥. If we could derive `NJ ⊥, then by the

soundness lemma |= ⊥. But that is not the case.
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Properties of NJ(II)

• is natural deduction complete for classical logic, i.e. does |= ϕ
imply `NJ ϕ?

• no: there are classical tautologies (e.g., a ∨ ¬a) without a
proof in natural deduction

• but we obtain a complete inference system for classical logic if

we accept assumptions of the form

ϕ ∨ ¬ϕ

as axioms
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Outline

Intuitionistic Propositional Logic

Intuitionistic First Order Logic
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Intuitionistic First Order Logic

• the language of intuitionistic �rst order logic is the same as

with classical logic

• the BHK interpretation can be extended to quanti�ed
formulas:

• a proof of ∀x .ϕ is a procedure that can be seen to produce a
proof of ϕ for every value of x

• a proof of ∃x .ϕ is a value for x together with a proof of ϕ for
this value

• NJ contains introduction and elimination rules for the

quanti�ers
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Comparison with Classical Propositional Logic

Comparison of �a formula is true� and �a formula has a proof�

(ctd.):

• in CL, to show that ∃x .ϕ is true, we can

1. assume that ϕ is false for all x
2. then derive a contradiction from this assumption

• in IL, to give a proof of ∃x .ϕ, we must present a concrete value

for x (called a witness) and a proof that ϕ holds for this x

The existential quanti�er of intuitionistic logic is constructive.

33 / 40



Intuitionistic Propositional Logic Intuitionistic First Order Logic

Rules for the Universal Quanti�er

Universal Introduction:

ϕ
(∀I)

∀x .ϕ

where x cannot occur free in any open assumption

Universal Elimination:

∀x .ϕ
(∀E)

[x := t]ϕ

for any term t
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Example

For any ϕ, we can build the following derivation:

u : ∀x .∀y .ϕ
(∀E)

∀y .ϕ
(∀E) ϕ
(∀I)

∀x .ϕ
(∀I)

∀y .∀x .ϕ

The following attempt to derive p(x) → p(y) fails due to the

variable condition:

[u : p(x)]
(∀I)

∀x .p(x)
(∀E)

p(y)
(→I)

p(x) → p(y)
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Rules for the Existential Quanti�er
Existential Introduction:

[x := t]ϕ
(∃I)

∃x .ϕ
for any term t

Existential Elimination:

∃x .ϕ

[u : ϕ]

...
ψ

(∃Eu)
ψ

where x cannot occur free in any open assumptions on the

right and in ψ
All open assumptions from the left subderivation are also

open in the right subderivation.
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Example

For any ϕ, we can build the following derivation:

u : ∃x .∃y .ϕ
[v : ∃y .ϕ]

[w : ϕ]
(∃I)

∃x .ϕ
(∃I)

∃y .∃x .ϕ
(∃Ew )

∃y .∃x .ϕ
(∃Ev )

∃y .∃x .ϕ

The following attempt to derive (∃x .ϕ) → (∀x .ϕ) fails due to the

variable condition, if x ∈ FV(ϕ):

u : ∃x .ϕ [v : ϕ]
(∃Ev ) ϕ

(∀I)
∀x .ϕ
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Example

For any ϕ and ψ where x 6∈ FV(ϕ), we have

ϕ ∨ ∃x .ψ `NJ ∃x .ϕ ∨ ψ :

t : ϕ ∨ (∃x .ψ)

[u : ϕ]
(∨Il )

ϕ ∨ ψ
(∃I)

∃x .ϕ ∨ ψ
[v : ∃x .ψ]

[w : ψ]
(∨Ir )

ϕ ∨ ψ
(∃I)

∃x .ϕ ∨ ψ
(∃Ew )

∃x .ϕ ∨ ψ
(∨Eu,v )

∃x .ϕ ∨ ψ
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Example

The following attempt to derive ∀x .∃y .x < y `NJ ∃y .∀x .x < y

fails:

u : ∀x .∃y .x < y
(∀E)

∃y .x < y

[v : x < y ]
(∀I)

∀x .x < y
(∃I)

∃y .∀x .x < y
(∃Ev )

∃y .∀x .x < y
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Soundness and Completeness of NJ

Theorem (Soundness Theorem)

NJ is sound with respect to the classical semantics.

Theorem (Completeness Theorem)

When extended with axioms of the form ϕ ∨ ¬ϕ, NJ is complete

with respect to the classical semantics.
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