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Principles of Classical Logic

classical logic seeks to model valid reasoning

starting from axioms which are evidently true, we try to infer
valid (true) conclusions

a formula of classical logic is perceived to have a definite truth
value (true or false) no matter whether we can prove it or not
example 1: the statement “+/2 is irrational” is true (and not
hard to prove)

example 2: Fermat's last theorem is true (but was proved only
in 1995, 357 years after it was posed)
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Propositional Logic

Example of an Informal Proof

Here is a possible proof of the statement “1/2 is irrational”
(abbreviated as Q):

Assume \/2 is rational.

Then we can write it as \/2 = g where p and q are
natural numbers without common divisor (except 1).
Then 2 = 5—2, ie. 2-q> = p?. Hence p® is even. But if
the square of a natural number is even, then so is the
number itself, thus p is even, say p = 2r for some natural
number r. This, again, gives g> = 2r?, and by the same
argument g must be even as well, contradicting our
assumption.

Hence \/2 cannot be rational.
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Propositional Logic
Observations

e in the proof we have used (among others) the statement “if
the square of a natural number is even, then so is the number
itself” (abbreviated as P)

e what we have proved is the truth of the implication P — @

e that is, if P is true then so is @Q; but if P is false, our proof is
useless (though P — Q is still true!)

e in fact, P can be shown to be true; hence the conjunction
P A @ is true

o if we let R stand for the statement “+/2 is rational”, then P is
the negation of R (i.e., P expresses that R is false)

e even without any proof, we know that at least one of P and R
must be true; thus, the disjunction PV R is true

e a disjunction does not exclude the possibility that both
disjuncts are true



Propositional Logic

The Approach of Propositional Logic

e propositional logic formalizes reasoning about statements

e propositional letters represent atomic statements without
further structure

e more complex statements can be formed by connectives like
A, V,—, =

e propositional logic is not sufficient to formalize mathematics,
but it provides a good starting point
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Propositional Logic

The Language of Propositional Logic

e formulas express true or false propositions over an alphabet
RO of propositional letters

o the set PF of propositional formulas is defined inductively:

©) is a formula, called atomic

e every constant from R
proposition
o if ¢, are formulas then
e p A is aformula
e Vi is a formula
o © — 1 is aformula
e | is aformula

e additionally, we define

o
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Propositional Logic

Syntactic Conventions

e we use = to denote syntactic equality of formulas

e to save on parentheses, we take < to have the lowest
precedence, followed by —, Vv, A, and —

e thus,a— bV c« c— aVbAcisto be interpreted as
((a— (bVc)) < (c—(aV(bAC))))
e — associates to the right, i.e. a — b —cisa— (b— ¢)

e all the other binary operators associate to the left, i.e.
aNbAcis(anb)Ac



Propositional Logic
Subformulas

We define the set of subformulas Sub(y) for a formula ¢ by
structural induction on .

e if © is atomic or ¢ = L, then

Sub(p) = {»}
e if pis of the form ¥ A, 9V 4, or ¥ — 1), then
Sub(p) = Sub(?¥) U Sub(¢) U {¢}

Note that Sub(¥) and Sub(v) are known by induction
hypothesis.

We can now define the set of propositional letters occurring in a
formula PL(¢) := Sub(p) N R(©),



Propositional Logic

Motivation: Truth Value Semantics

e in propositional logic, we do not care what specific statements
the propositional letters stand for

e so we cannot know, e.g., whether p is true

e but for some formulas, it seems clear that they are true, e.g.
pV-oporp—p

e idea: for a formula to be true means that it is true no matter
if the propositional letters express true or false statements



Propositional Logic

Truth Value Semantics

Interpreting propositional formulas over B = {T,F}:

e a propositional interpretation /: R(®) — B classifies
propositional letters as true (those mapped to T) or false
(those mapped to F)

e given an interpretation /, we can assign a truth value [¢]; to
every formula ¢:

1. for a € RO, [a]; = I(a)

)T it el =T =[],
2. [e Ay = {F otherwise
_ )T it el =Tor [¢]; =T,
3. Je vl = {F otherwise
_ [T i [els = T implies [¢]; = T,
4. Jo— ol = {F if [y =T and [¢]; =F
5 [L]i=F
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Propositional Logic

Observations about the Semantics

e for any interpretation /, we have
o [~ =Tiff [¢], =F
o [ < o) =Tiff [o]; = [¥]
e [Tli=T
observe the connection between — and —:
o if [-¢]; =T, then [ — ¥]; = T, no matter what 1 is
e if [¢]; =T, then [ — ¢]; =T, no matter what ¢ is
e [e—=dli=Tiff [FoVvy] =T
we write ¢ = 1) if, for any interpretation /, [¢]; = [¢];; for
example, ¢ — ¥ =~ VY
e “="Is an equivalence relation
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Propositional Logic

Satisfiability and Validity

e if pis true in /, then we write | |= ¢ and say that / satisfies ¢
or that / is a model for

e a formula ¢ is satisfiable if it has a model

e a formula ¢ is valid (or a tautology) if it is satisfied in all
interpretations; we then write = ¢

e for a set I' of formulas, / =T means that / satisfies every
formulain T

e we write [ |= ¢ to mean that any model for I is also a model
for ¢

Note that o = ¢ iff Ep — ¢, and E p iff o = T.



Propositional Logic

Important Equivalences

For propositional letters a, b, ¢, we have:

1. Associativity:
e aN(bAc)=(anb)Ac
e av(bve)=(avb)Vvece
2. Commutativity:
e aANb=bAa
e avb=bvVva
3. Distributivity:
e an(bvc)=(anb)V(anc)
e aV(bAnc)=(aVb)A(aVc)

4. Absorption:
aN(avb) =a=aV(anb)
5. Complement:

e aV—-a=T
e aAN—-a=_1



Propositional Logic

Further Equivalences

The following equivalences follow from those on the previous slide:

1. Idempotency:
aVa=a=aAa

2. Neutrality:
e aVl=a
e aANT =a
3. Boundedness:
e aVvVT =T

e aANLl =1

4. Switching:
[ ] —\T = L
[ ] —|J_ = T

5. De Morgan Laws:
° ﬁ(a\/b):ﬁa/\ﬁb
e ~(anb)=-aVv-b

6. Involution:

g = a
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Propositional Logic

Basic Results

Lemma (Replacement)

Let ¢ be a tautology and a € R(®). If we replace every occurrence
of a in p by a formula 1, then the result is still a tautology.
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of a in p by a formula 1, then the result is still a tautology.

Lemma (Monotonicity)
HTE@andlT CT', then T = .

Lemma (Satisfiability and Validity)
A formula ¢ is satisfiable iff = is not valid.

Lemma (Agreement)
For a formula ¢ and two interpretations I, I such that
h [prip) =k |pLip). we have [], = [¢]-
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Propositional Logic First Order Logic

Decidability of Validity

Theorem (Decidability of Validity)
It is decidable whether a formula ¢ is valid.

Proof: We only need to check all interpretations of PL(¢).
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Propositional Logic First Order Logic

Decidability of Validity

Theorem (Decidability of Validity)
It is decidable whether a formula ¢ is valid.

Proof: We only need to check all interpretations of PL(¢).

Corollary (Decidability of Satisfiability)
It is decidable whether a formula ¢ is satisfiable.

Theorem (NP-completeness of Satisfiability)

It is NP-complete to decide whether a formula o is satisfiable.
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Propositional Logic

Truth Tabling

A truth table for a formula ¢ represents all interpretations / ‘PL(@
and shows whether ¢ is true in /.

p qlpig p qlpVg P qlp—g
F F| F F F| F F F| T
F T| F F T| T F T| T
T F| F T F| T T F| F
T T| T T T| T T T| T

Satisfiability and validity of a formula can be read off its truth table.




Propositional Logic

Truth Tabling: Example

aVbVv-c|-bV-(cva)| (avbV-c)A(=bV—(cV a)

(
T
F
T
F
T
T
F
F

H a9 Mmoo
H oA oA AT T o
H om0 A Mmoo

T I T R RS R

HH-HHAAAaA3mA



Propositional Logic

Negation Normal Form

A formula ¢ is in negation normal form (NNF) if every negation
sign occurs in front of a propositional letter.

Theorem
Every formula is semantically equivalent to a formula in NNF.

Proof.
To bring a formula into NNF, push negations inwards using De
Morgan, and if necessary eliminate double negations by involution:

—(aV-a(=(=bVa)Ac) = —aA-—(=(=bVa)Ac)
—aA-(=bVa)Ac
—aA—-mbA-aNc

= —aAbA-aANc



Propositional Logic

Disjunctive Normal Form

e An atomic formula is also called positive literal, a negated
atom negative literal
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Propositional Logic

Disjunctive Normal Form

e An atomic formula is also called positive literal, a negated
atom negative literal

e A formula ¢ is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals, i.e. p =Dy V-V D,
where n > 1 and for any i € {1,...,n} we have
D; = /,"1 VANV li,m; with m; > 1 and all the /,'J being literals.
As a limiting case, we also consider | to be in DNF.
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Propositional Logic

Disjunctive Normal Form

e An atomic formula is also called positive literal, a negated
atom negative literal

e A formula ¢ is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals, i.e. p =Dy V-V D,
where n > 1 and for any i € {1,...,n} we have
D; = /,"1 VANV li,m; with m; > 1 and all the /,'J being literals.
As a limiting case, we also consider | to be in DNF.

e A formula ¢ is in canonical DNF if it is in DNF, and every
disjunct D; contains every a € PL(p) exactly once. Again, L
is also considered to be in canonical DNF.

Theorem

Every formula is semantically equivalent to a formula in canonical
DNF.



Propositional Logic

Properties of DNF

Examples:
e (aAb)V(bA-c)isin (non-canonical) DNF
e (aAbAc)V(aAbA—c)V(—aAbA-c)isin canonical DNF
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Propositional Logic

Properties of DNF

Examples:
e (aAb)V(bA—c)isin (non-canonical) DNF
[ ]
h h2 h3 b1 k2,2 b3 11 l2 k3
(Ta>A b ATV (A b ATV (SN b AT
Dy D> Ds

is in canonical DNF



Propositional Logic

Properties of DNF

Examples:
e (aAnb)V(bA—c)isin (non-canonical) DNF
e (aAnbAc)V(aNnbA—=c)V(maAbA—c)isin canonical DNF

Dy D> D3

Let © be in DNF and / an interpretation; observe:

e o is true in | if one (or more) of the D; are

e some D; is true in | if | makes its positive literals true and its

negative literals false

e ¢ is unsatisfiable iff it is 1, or every D; contains both a and
—a for some a € PL(p)
this leads to a method to extract a canonical DNF from a
truth table

N
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Propositional Logic

DNF from Truth Table: Example

(avVbV=c)A(=bV (cVa))

contributed disjunct

(
T
F
T
F
T
T
F
F

H 4 34 ma oo
H g mom oo oe
Mmoo oA o

—aA—-bA-c

—aAbA-c

an—bA-c
aN-bAc

Thus, a canonical DNF of (aV bV =¢c) A (=bV =(cV a))is

(mraA=bA-c)V(maANbA-c)V(aA-bA-c)V(aA—bAcC)



Propositional Logic

Expressibility

e every formula can be expressed in terms of =, VV and A, thus
{—,V, A} is a functionally complete set
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Propositional Logic

Expressibility

e every formula can be expressed in terms of =, VV and A, thus
{—,V, A} is a functionally complete set

e but pAg=--(pAg)=-(-pV—g), hence {—,V} suffice

e other functionally complete sets: {—, A}, {—, L}, {—,—}, ...
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Propositional Logic

Expressibility

every formula can be expressed in terms of =, V and A, thus
{—,V, A} is a functionally complete set

but pAg=-=(pAq)=-(-pV —q), hence {—,V} suffice

there are also two operators that are functionally complete by
themselves; anand b := —=(a A b), anorb := —(a V b)

other functionally complete sets: {—, A}, {—, L}, {—,—}, ...

N
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Propositional Logic

Boolean Algebras

A Boolean algebra is an algebraic structure B = (B, LJ,11, —,0,1)
where

e Bis a set, LI and I are binary operations on B, and — is a
unary operation on B, 0 and 1 are distinct elements of B

LI and I are associative and commutative

the absorption laws hold:
al(amnb)=a af(alb)=a

LI distributes over ' and vice versa

the complement laws hold:

all—a=1 all—a=20

8

&

iy



Propositional Logic

Examples of Boolean Algebras

the truth value algebra B = (B, vV, A, =, F, T)

2 = ({0,1}, max, min, (x — 1 — x),0,1)

e for any non-empty set X, Px = (P(X),U,n,~, 0, P)
thus, Boolean algebras need not be finite; we cannot
necessarily use truth tables



Propositional Logic First Order Logic

Algebraic Semantics of Classical Propositional Logic

Given a Boolean algebra B and an interpretation /: R(®) — B, we
can assign to every propositional formula ¢ a value [¢]z; in B

forpe V, [pls;=1(p)

. [L]sr =0

e ndlsr = el M [¥]s,
N Vv elsr = lelsr U],
le — ¥ls1 = —l¢ls U]

[

[SA =R O )

28 /51



Propositional Logic

Universality of the Truth Value Algebra

We can generalize satisfaction and validity:
e define / =5 ¢ to mean that [z, =1
e =5 ¢, I =g ¢ are defined analogously

The truth value algebra B is universal:

Theorem
For any formula ¢, we have =g ¢ iff = ¢ for all Boolean Algebras
B.

29 /51
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First Order Logic
Motivation: First Order Logic

in mathematics, we want to express propositions about
individuals, e.g.

For every n, if n > 0 then for all m we have
m-—+n>m.

in the example, the individuals are numbers, ranged over by
variables n, m

we use constants (like 0) and functions (like +, arity 2) to
construct terms

relations (like >, arity 2) can be used to form atomic
propositions about terms

atomic propositions are used to construct more complex
propositions

first order logic (FOL) formalizes such statements in an
abstract setting

31/51



First Order Logic

The Approach of First Order Logic

first order logic formalizes reasoning about statements that
can refer to individuals through individual variables

a fixed set of function symbols acts on the individuals

a fixed set of relation symbols expresses predicates on the
individuals

more complex statements can be formed by connectives like
A,V,—, = and the quantifiers V, 3

first order logic is sufficient to formalize great parts of
mathematics, for example arithmetic (but not analysis)

32/51



First Order Logic

The Language of FOL

a first order signature ¥ = (F,R) describes a language with

e function constants f € F with arity a(f) € N

e relation constants r € R with arity a(r) € N
we write f/n to mean a(f) = n, and F(") .= {f/n | f € F},
same for R(".
terms 7 (X, V) over X and a set V of individual variables are
inductively defined:

e VCT(X,V)

o for f/neF, t,...,t, € T(L,V), also

f(t1,...,tn) € T(X,V)

for a 0-ary constant d, we write d() simply as d

33/51



First Order Logic

Example

Consider the signature ¥ = (F,R) with 7 = {0/0,s/1,+/2} and
R ={~/2,</2,</2}.

e examples for terms over ¥ and V := {x,y} are 0, s(0),

s(s(0)), -1 s(x), +(s(x), ), s(+(x;¥)), -+
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First Order Logic

Example

Consider the signature ¥ = (F,R) with 7 = {0/0,s/1,+/2} and
R ={~/2,</2,</2}.

e examples for terms over ¥ and V := {x,y} are 0, s(0),
s(s(0)), -+, s(x), +(s(x),¥), s(+(x,¥)), - -
e but not 0(0) or +(1)

e +(x,y) is usually written infix as x + y, but this is purely
syntactic sugar



First Order Logic

The Language of FOL (II)

e an atom is of the form r(ty,...,t,), where r/n € R,
ti,...,th € T(X,V); like before we write just r if a(r) =0
e formulas are inductively defined:

e every atom is a formula
o if ¢, 1) are formulas then

e p A is aformula
e v Visa formula
e ¢ — 1 is a formula

e if x €V and ¢ is a formula, then

® Vx.pis a formula
e Jx.pis a formula

e | is a formula

The quantifiers V and 3 have the lowest precedence of all
connectives.



First Order Logic

Example

Taking the signature ¥ and V from before, the following are atoms
(again, we use infix notation):

e XYy
* x < s(x)
e X+ yRy+x



First Order Logic

Example

Taking the signature ¥ and V from before, the following are atoms
(again, we use infix notation):

e XYy
* x < s(x)
e X+ yRy+x

And here are some formulas:
o —(x =~ s(x))
o (x<y) = (s(x) <yVs(x)=y)
e VYn.n>0— (Ym.m < m+ n)



First Order Logic

Free and Bound Variables

an appearance of an individual variable is called bound if it is
within the scope of a quantifier, otherwise it is free

the same variable can appear both free and bound:
(Vx.R(x,z) — (3y-S(y,x))) A T(x)

a formula is called closed when no variable occurs free in it

the names of bound variables only serve to connect them with
their quantifier, one name is as good as another (details later)



First Order Logic

The Set of Free Variables

e definition of the set of free variables:

1.

Noos~wDd

FV(x) = {x}forx eV
f(tr,...,tn)) = Uie{l
I’(tl, ey tn)) = Uie{l

.....

.....
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First Order Logic

The Set of Free Variables

e definition of the set of free variables:
1. FV(x) = {x} for x € V

2. FV(f(tr,- .. tn)) = Ujeqa,. .y FV (1)

3. FV(r(t, ..., ta)) = Uiequ,....ny FV(8)

4. FV(L) =10

5. FV(pAy) =FV(e V) =FV(p — ) = FV(p) UFV(¥)
6. FV(Vx.p) =FV(p) \ {x}

7. FV(3x.p) = FV(p) \ {x}

For example:
o FV(s(x) =0V x~x)={x}
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First Order Logic

The Set of Free Variables

e definition of the set of free variables:
1. FV(x) = {x} for x € V
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5. FV(pAy) =FV(e V) =FV(p — ) = FV(p) UFV(¥)
6. FV(Vx.p) =FV(p) \ {x}

7. FV(3x.p) = FV(p) \ {x}

For example:
o FV(s(x) =0V x~x)={x}
e FV(Vm.3n.m < n) =1
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First Order Logic

The Set of Free Variables

e definition of the set of free variables:

1.

Noos~wDd

FV(x) = {x}forx eV
f(tr,...,tn)) = Uie{l
I’(tl, ey tn)) = Uie{l

.....

.....

For example:
o FV(s(x) =0V x~x)={x}
e FV(Vm.3n.m < n) =1
e FV(3x.x <y)={y}

38 /51



First Order Logic

Substitution in Terms and Formulas

e the operation of substituting a term t for a variable x in a
term s (written [x := t]s) is defined as follows:

t ifx=
1 [x:=tly = "X }_/7
y otherwise

2. [x=t(f(tr,...,ta)) = F([x :=t]t1,..., [x ;= t]ta)
e on formulas, the definition is

1 [x:=t)(r(ts,. .., tn)) = r([x = t]t1, ..., [x = t]ty)
2. [x:=t]lL=1
3. [x :=t](po) = ([x :=t]p) o ([x := t]¥), for o € {A,V, —}

B ey if x=y,
4. [X = t](Qy'SD) B Q)/-([X = t]gﬁ) fxZy y¢& FV(t)’
Qe {v,3}

Note that substitution on formulas is a partial operation.

39 /51



Propositional Logic First Order Logic

Example
o [x:=5(0)](s(x) =0V x = x)=(s(s(0)) = 0V s(0) ~ s(0))

40 /51
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First Order Logic

Example

o [x:=5(0)](s(x) =0V x=~x)=(s(s(0)) =0
o [y:=5s(0)](s(x)r0Vx~x)=(s(x)=0V %x)
o [m:=0](Ym.3n.m < n) = (Vm.3n.m < n)

40 /51



First Order Logic

Example

o [x = s(O)(s() ~ 0 x ~ x) = (s(s(0)) ~ 0
o [y :=5(0)](s(x)=0Vx~r~x)=(s(x)=0V %x)
o [m:=0](Ym.3n.m < n) = (Vm.3n.m < n)

e [y :=x|(Ix.x < y) is not defined



First Order Logic

Example

o [xi= s(0)](s(x) ~ 0V x ~ x) = (s(s(0)) ~ 0
o [y :=5(0)](s(x)=0Vx~r~x)=(s(x)=0V %x)
o [m:=0](Ym.3n.m < n) = (Vm.3n.m < n)

e [y :=x|(Ix.x < y) is not defined

e [n:= m|(Vm.3n.m < n) is not defined



First Order Logic

Alpha Equivalence

e for a quantifier Q € {V,3}, Qx.p alpha reduces to Qy.y if
¢ =[x:=yle
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from ¢ by any number of alpha reductions on subformulas of ¢
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Alpha Equivalence

e for a quantifier Q € {V,3}, Qx.p alpha reduces to Qy.y if
¢ =[x:=yle
e o is called alpha equivalent to v (written ¢ =, 1), if ¢ results
from ¢ by any number of alpha reductions on subformulas of ¢
e Examples:
o (Vx.R(x,x)) =4 (Vy.R(y,y))
o (Vx.3x.5(x)) =4 (Vy.Ix.5(x)) =4 (Vy.32.5(2))
o (Vx.3y.T(x,y)) #a (Vx.3x.T(x,x))

Notice that alpha reduction never changes the names of free
variables.



Motivation: Semantics of FOL

e like in propositional logic, in FOL we do not care what
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Motivation: Semantics of FOL

e like in propositional logic, in FOL we do not care what
functions or relations the symbols in ¥ stand for

e thus, we do not know if Vm.3n.m < n is true

e but some sentences are intuitively true, e.g.

(Vx.=R(x, x))
A (VyVz.R(y,z) — R(z,y))
A (VxNVyNz.R(x,y) NR(y,z) — R(x,z))
—  =(3x.3Jy.R(x,y))
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Motivation: Semantics of FOL

like in propositional logic, in FOL we do not care what
functions or relations the symbols in ¥ stand for

thus, we do not know if Ym.3n.m < n is true

but some sentences are intuitively true, e.g.

(Vx.=R(x, x))
A (VyVz.R(y,z) — R(z,y))
A (VxNVyNz.R(x,y) NR(y,z) — R(x,z))
—  =(3x.3Jy.R(x,y))

how do we evaluate, e.g., Vx.=R(x, x)?
e we need to know the range of x and the interpretation of R on
this range
o then we would like to evaluate —=R(x, x), where x is bound to
any of its possible values
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Motivation: Semantics of FOL

like in propositional logic, in FOL we do not care what
functions or relations the symbols in ¥ stand for

thus, we do not know if Ym.3n.m < n is true

but some sentences are intuitively true, e.g.

(Vx.=R(x, x))
A (VyVz.R(y,z) — R(z,y))
A (VxNVyNz.R(x,y) NR(y,z) — R(x,z))
—  =(3x.3Jy.R(x,y))

how do we evaluate, e.g., Vx.=R(x, x)?
e we need to know the range of x and the interpretation of R on
this range
o then we would like to evaluate —=R(x, x), where x is bound to
any of its possible values
thus, we need to consider not only the interpretation of the
function and relation symbols, but also variable bindings
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Semantics: Structures, Interpretations and Assignments

e a (first order) structure M = (D, ) for a signature ¥ consists
of

e a non-empty set D, the domain
e an interpretation | = ([-]#, [-]r) such that

o forevery f € 7, [f]#: D" — D
o forevery r ¢ R, [r]r: D" — B

e a variable assignment on | is a functiono: V — D
We write o[x := t] for the assignment

t fx=y
—
o(y) otherwise
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First Order Logic

Semantics: Interpreting Terms and Formulas

e interpretation of terms over M and o:
e [X]m.o = o(x)
o [f(tr,. s ta)lmeo = [flx([tilmos - - -5 [tal Mmoo)
e interpretation of formulas:
L4 [[r(tla MR ] tn)]]./\/ho = [[r]]R([[tl]]/\/lp'» MR [[tn]]./\/ha)
o [Llm,o, [ AY]m,o. etc.: as before
T if forallde D, HwHM,U[X::d] =T,

Vx. - =
* rxelm, F otherwise
T if there is d € D with [¢] olxi=d] = T,
Ix. o= o
* Brelm, {F otherwise
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First Order Logic

Satisfiability and Validity

M, o = ¢ stands for [p|me =T

M = ¢ means that M, o = ¢ for any o; M is called a model
for

we write = ¢ (and call ¢ valid) if M |= ¢ for any structure M

I = ¢ now means that any M and o such that [yJyme =T
for every v €T also gives [¢|mo =T

analogously, ¢ = 1 means that [¢]m,0 = [¥] M0 for any M
and o
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First Order Logic

Example

Consider the structure M = (N, ([-]#, [-]r)) for signature X as
before:

e [0]F=0

o [s)r(n) = n+1

o [+)r(m,n) = m+n

e [~r = {(n,n) | ne N}

e [<]r ={(m,n) | myne N;m < n}
o [<lr ={(m,n) | mneN m< n}
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First Order Logic

Example

Consider the structure M = (N, ([-]#, [-]r)) for signature X as
before:

e [0]F=0

o [s)r(n) = n+1

o [+)r(m,n) = m+n

e [~r = {(n,n) | ne N}

e [<]r ={(m,n) | myne N;m < n}
o [<lr ={(m,n) | mneN m< n}

Then M |=Vn.n >0 — (Ym.m < m+ n).
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First Order Logic

Basic Results

From now on, we fix some signature ¥ and a set ) of variables.

Lemma

Let M be a structure for ¥, ¢ a formula, and o, o' variable
assignments that agree on FV (). Then ¢ is true over M and o
iff it is true over M and o’.
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First Order Logic

Basic Results

From now on, we fix some signature ¥ and a set ) of variables.

Lemma

Let M be a structure for ¥, ¢ a formula, and o, o' variable
assignments that agree on FV (). Then ¢ is true over M and o
iff it is true over M and o’.

Corollary

The interpretation of a closed formula is independent of variable
assignments.

Lemma
Alpha equivalent formulas evaluate to the same truth value.

Hence we usually identify alpha equivalent formulas; substitution is
then always defined.
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First Order Logic

Some Equivalences of FOL

- (Vx.) = =(3x.mp)

- (Vxo A) = (Yx.p) A (Vx.9)

- (Ixp V) = (Ixp) vV (Ix.)

. (VxVy.p) = (Vy.Vx.p)

. (3x.3y.p) = (Fy.Ix.p)

. (3xVy.p) — (Vy.3x.¢), but not vice versa

S OB N

In general we have neither (Vx.o V ¢) = (Vx.p) V (Vx.4)) nor
(Fx.p AY) = (3x.) A (Ix).
However, if x  FV(¢) we have:

1. (Vx.p V) =@V (Vx.1))

2. (Ix.pANY) =@ A (Ix0)
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First Order Logic

Prenex Normal Form

A formula ¢ is in prenex normal form (PNF) if it is of the form
Q1x1 ... Qpxn’, where n >0, Q; € {V,3}, and ¢’ does not
contain quantifiers.

Theorem
For every formula of FOL there is an equivalent one in PNF.

Proof.

Quantifiers can be pulled outwards over negations. For a formula
(Vx.¢) V 1, we can choose x € FV(v) and then rewrite to

Vx.(p V 1); likewise for the other cases. O



First Order Logic

Examples

Vn.n >0 — (Ym.m < n+ m)
Vn.=(n>0)V (Ym.m < n+ m)
Vn¥m.—(n>0)Vm<n+m
VYnVmn>0—m<n+m
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Examples

Vn.n >0 — (Ym.m < n+ m)
Vn.=(n>0)V (Ym.m < n+ m)
Vn¥m.—(n>0)Vm<n+m
VYnVmn>0—m<n+m

((vx-p(x)) V (vx.q(x))) = (vx.p(x) V q(x))
((vx-p(x)) V (Vy-a(y))) — (Vz.p(2) V q(2))
(Vx-Vy.p(x) V q(y)) = (vz.p(2) V q(2))
Ix3y.((p(x) v p(y)) = (V2.p(2) V q(2)))
Ix. Ay Vz.(p(x) V ply) — p(2) V q(2))
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First Order Logic

Undecidability of FOL

Theorem
It is undecidable for a formula @ of FOL whether it is a tautology.

This theorem can be proved, for example, by encoding Post’s
Correspondence Problem in first order logic.
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