
Propositional Logic First Order Logic

Logic
Part I: Classical Logic and Its Semantics

Max Schäfer

Formosan Summer School on Logic, Language, and Computation 2007

July 2, 2007

1 / 51



Propositional Logic First Order Logic

Principles of Classical Logic

• classical logic seeks to model valid reasoning

• starting from axioms which are evidently true, we try to infer

valid (true) conclusions

• a formula of classical logic is perceived to have a de�nite truth

value (true or false) no matter whether we can prove it or not

• example 1: the statement �
√
2 is irrational� is true (and not

hard to prove)

• example 2: Fermat's last theorem is true (but was proved only

in 1995, 357 years after it was posed)

2 / 51



Propositional Logic First Order Logic

Outline

Propositional Logic

First Order Logic

3 / 51



Propositional Logic First Order Logic

Outline

Propositional Logic

First Order Logic

4 / 51



Propositional Logic First Order Logic

Example of an Informal Proof

Here is a possible proof of the statement �
√
2 is irrational�

(abbreviated as Q):

Assume
√
2 is rational.

Then we can write it as
√
2 = p

q
where p and q are

natural numbers without common divisor (except 1).

Then 2 = p2

q2
, i.e. 2 · q2 = p2. Hence p2 is even. But if

the square of a natural number is even, then so is the

number itself, thus p is even, say p = 2r for some natural

number r . This, again, gives q2 = 2r2, and by the same

argument q must be even as well, contradicting our

assumption.

Hence
√
2 cannot be rational.

5 / 51



Propositional Logic First Order Logic

Example of an Informal Proof

Here is a possible proof of the statement �
√
2 is irrational�

(abbreviated as Q):

Assume
√
2 is rational.

Then we can write it as
√
2 = p

q
where p and q are

natural numbers without common divisor (except 1).

Then 2 = p2

q2
, i.e. 2 · q2 = p2. Hence p2 is even. But if

the square of a natural number is even, then so is the

number itself, thus p is even, say p = 2r for some natural

number r . This, again, gives q2 = 2r2, and by the same

argument q must be even as well, contradicting our

assumption.

Hence
√
2 cannot be rational.

5 / 51



Propositional Logic First Order Logic

Observations

• in the proof we have used (among others) the statement �if

the square of a natural number is even, then so is the number

itself� (abbreviated as P)

• what we have proved is the truth of the implication P → Q

• that is, if P is true then so is Q; but if P is false, our proof is

useless (though P → Q is still true!)

• in fact, P can be shown to be true; hence the conjunction

P ∧ Q is true

• if we let R stand for the statement �
√
2 is rational�, then P is

the negation of R (i.e., P expresses that R is false)

• even without any proof, we know that at least one of P and R

must be true; thus, the disjunction P ∨ R is true

• a disjunction does not exclude the possibility that both

disjuncts are true

6 / 51



Propositional Logic First Order Logic

The Approach of Propositional Logic

• propositional logic formalizes reasoning about statements

• propositional letters represent atomic statements without

further structure

• more complex statements can be formed by connectives like

∧,∨,→,¬
• propositional logic is not su�cient to formalize mathematics,

but it provides a good starting point

7 / 51



Propositional Logic First Order Logic

The Language of Propositional Logic

• formulas express true or false propositions over an alphabet

R(0) of propositional letters

• the set PF of propositional formulas is de�ned inductively:
• every constant from R(0) is a formula, called atomic

proposition
• if ϕ,ψ are formulas then

• ϕ ∧ ψ is a formula
• ϕ ∨ ψ is a formula
• ϕ→ ψ is a formula

• ⊥ is a formula

• additionally, we de�ne
• ¬ϕ := ϕ→ ⊥
• ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)
• > := ⊥ → ⊥

8 / 51



Propositional Logic First Order Logic

Syntactic Conventions

• we use ≡ to denote syntactic equality of formulas

• to save on parentheses, we take ↔ to have the lowest

precedence, followed by →, ∨, ∧, and ¬
• thus, a→ b ∨ c ↔ c → a ∨ b ∧ c is to be interpreted as

((a→ (b ∨ c)) ↔ (c → (a ∨ (b ∧ c))))

• → associates to the right, i.e. a→ b → c is a→ (b → c)

• all the other binary operators associate to the left, i.e.

a ∧ b ∧ c is (a ∧ b) ∧ c

9 / 51



Propositional Logic First Order Logic

Subformulas

We de�ne the set of subformulas Sub(ϕ) for a formula ϕ by

structural induction on ϕ.

• if ϕ is atomic or ϕ ≡ ⊥, then

Sub(ϕ) = {ϕ}

• if ϕ is of the form ϑ ∧ ψ, ϑ ∨ ψ, or ϑ→ ψ, then

Sub(ϕ) = Sub(ϑ) ∪ Sub(ψ) ∪ {ϕ}

Note that Sub(ϑ) and Sub(ψ) are known by induction

hypothesis.

We can now de�ne the set of propositional letters occurring in a

formula PL(ϕ) := Sub(ϕ) ∩R(0).

10 / 51



Propositional Logic First Order Logic

Motivation: Truth Value Semantics

• in propositional logic, we do not care what speci�c statements

the propositional letters stand for

• so we cannot know, e.g., whether p is true

• but for some formulas, it seems clear that they are true, e.g.

p ∨ ¬p or p → p

• idea: for a formula to be true means that it is true no matter

if the propositional letters express true or false statements

11 / 51



Propositional Logic First Order Logic

Truth Value Semantics

Interpreting propositional formulas over B = {T, F}:
• a propositional interpretation I : R(0) → B classi�es

propositional letters as true (those mapped to T) or false

(those mapped to F)

• given an interpretation I , we can assign a truth value JϕKI to
every formula ϕ:

1. for a ∈ R(0), JaKI = I (a)

2. Jϕ ∧ ψKI =

{
T if JϕKI = T = JψKI ,
F otherwise

3. Jϕ ∨ ψKI =

{
T if JϕKI = T or JψKI = T,

F otherwise

4. Jϕ→ ψKI =

{
T if JϕKI = T implies JψKI = T,

F if JϕKI = T and JψKI = F

5. J⊥KI = F

12 / 51



Propositional Logic First Order Logic

Observations about the Semantics

• for any interpretation I , we have
• J¬ϕKI = T i� JϕKI = F

• Jϕ↔ ψKI = T i� JϕKI = JψKI
• J>KI = T

• observe the connection between ¬ and →:
• if J¬ϕKI = T, then Jϕ→ ψKI = T, no matter what ψ is
• if JψKI = T, then Jϕ→ ψKI = T, no matter what ϕ is
• Jϕ→ ψKI = T i� J¬ϕ ∨ ψKI = T

• we write ϕ = ψ if, for any interpretation I , JϕKI = JψKI ; for
example, ϕ→ ψ = ¬ϕ ∨ ψ

• �=� is an equivalence relation

13 / 51



Propositional Logic First Order Logic

Satis�ability and Validity

• if ϕ is true in I , then we write I |= ϕ and say that I satis�es ϕ
or that I is a model for ϕ

• a formula ϕ is satis�able if it has a model

• a formula ϕ is valid (or a tautology) if it is satis�ed in all

interpretations; we then write |= ϕ

• for a set Γ of formulas, I |= Γ means that I satis�es every

formula in Γ

• we write Γ |= ϕ to mean that any model for Γ is also a model

for ϕ

Note that ϕ = ψ i� |= ϕ↔ ψ, and |= ϕ i� ϕ = >.

14 / 51



Propositional Logic First Order Logic

Important Equivalences

For propositional letters a, b, c , we have:

1. Associativity:
• a ∧ (b ∧ c) = (a ∧ b) ∧ c
• a ∨ (b ∨ c) = (a ∨ b) ∨ c

2. Commutativity:
• a ∧ b = b ∧ a
• a ∨ b = b ∨ a

3. Distributivity:
• a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
• a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

4. Absorption:

a∧(a∨b) = a = a∨(a∧b)
5. Complement:

• a ∨ ¬a = >
• a ∧ ¬a = ⊥

15 / 51



Propositional Logic First Order Logic

Further Equivalences

The following equivalences follow from those on the previous slide:

1. Idempotency:

a ∨ a = a = a ∧ a

2. Neutrality:
• a ∨ ⊥ = a
• a ∧ > = a

3. Boundedness:
• a ∨ > = >
• a ∧ ⊥ = ⊥

4. Switching:
• ¬> = ⊥
• ¬⊥ = >

5. De Morgan Laws:
• ¬(a ∨ b) = ¬a ∧ ¬b
• ¬(a ∧ b) = ¬a ∨ ¬b

6. Involution:

¬¬a = a

16 / 51



Propositional Logic First Order Logic

Basic Results

Lemma (Replacement)

Let ϕ be a tautology and a ∈ R(0). If we replace every occurrence

of a in ϕ by a formula ψ, then the result is still a tautology.

Lemma (Monotonicity)

If Γ |= ϕ and Γ ⊆ Γ′, then Γ′ |= ϕ.

Lemma (Satis�ability and Validity)

A formula ϕ is satis�able i� ¬ϕ is not valid.

Lemma (Agreement)

For a formula ϕ and two interpretations I1, I2 such that

I1
∣∣
PL(ϕ) = I2

∣∣
PL(ϕ) , we have JϕKI1 = JϕKI2 .

17 / 51



Propositional Logic First Order Logic

Basic Results

Lemma (Replacement)

Let ϕ be a tautology and a ∈ R(0). If we replace every occurrence

of a in ϕ by a formula ψ, then the result is still a tautology.

Lemma (Monotonicity)

If Γ |= ϕ and Γ ⊆ Γ′, then Γ′ |= ϕ.

Lemma (Satis�ability and Validity)

A formula ϕ is satis�able i� ¬ϕ is not valid.

Lemma (Agreement)

For a formula ϕ and two interpretations I1, I2 such that

I1
∣∣
PL(ϕ) = I2

∣∣
PL(ϕ) , we have JϕKI1 = JϕKI2 .

17 / 51



Propositional Logic First Order Logic

Basic Results

Lemma (Replacement)

Let ϕ be a tautology and a ∈ R(0). If we replace every occurrence

of a in ϕ by a formula ψ, then the result is still a tautology.

Lemma (Monotonicity)

If Γ |= ϕ and Γ ⊆ Γ′, then Γ′ |= ϕ.

Lemma (Satis�ability and Validity)

A formula ϕ is satis�able i� ¬ϕ is not valid.

Lemma (Agreement)

For a formula ϕ and two interpretations I1, I2 such that

I1
∣∣
PL(ϕ) = I2

∣∣
PL(ϕ) , we have JϕKI1 = JϕKI2 .

17 / 51



Propositional Logic First Order Logic

Basic Results

Lemma (Replacement)

Let ϕ be a tautology and a ∈ R(0). If we replace every occurrence

of a in ϕ by a formula ψ, then the result is still a tautology.

Lemma (Monotonicity)

If Γ |= ϕ and Γ ⊆ Γ′, then Γ′ |= ϕ.

Lemma (Satis�ability and Validity)

A formula ϕ is satis�able i� ¬ϕ is not valid.

Lemma (Agreement)

For a formula ϕ and two interpretations I1, I2 such that

I1
∣∣
PL(ϕ) = I2

∣∣
PL(ϕ) , we have JϕKI1 = JϕKI2 .

17 / 51



Propositional Logic First Order Logic

Decidability of Validity

Theorem (Decidability of Validity)

It is decidable whether a formula ϕ is valid.

Proof: We only need to check all interpretations of PL(ϕ).

Corollary (Decidability of Satis�ability)

It is decidable whether a formula ϕ is satis�able.

Theorem (NP-completeness of Satis�ability)

It is NP-complete to decide whether a formula ϕ is satis�able.

18 / 51



Propositional Logic First Order Logic

Decidability of Validity

Theorem (Decidability of Validity)

It is decidable whether a formula ϕ is valid.

Proof: We only need to check all interpretations of PL(ϕ).

Corollary (Decidability of Satis�ability)

It is decidable whether a formula ϕ is satis�able.

Theorem (NP-completeness of Satis�ability)

It is NP-complete to decide whether a formula ϕ is satis�able.

18 / 51



Propositional Logic First Order Logic

Decidability of Validity

Theorem (Decidability of Validity)

It is decidable whether a formula ϕ is valid.

Proof: We only need to check all interpretations of PL(ϕ).

Corollary (Decidability of Satis�ability)

It is decidable whether a formula ϕ is satis�able.

Theorem (NP-completeness of Satis�ability)

It is NP-complete to decide whether a formula ϕ is satis�able.

18 / 51



Propositional Logic First Order Logic

Truth Tabling

A truth table for a formula ϕ represents all interpretations I
∣∣
PL(ϕ)

and shows whether ϕ is true in I .

p q p ∧ q

F F F

F T F

T F F

T T T

p q p ∨ q

F F F

F T T

T F T

T T T

p q p → q

F F T

F T T

T F F

T T T

Satis�ability and validity of a formula can be read o� its truth table.

19 / 51



Propositional Logic First Order Logic

Truth Tabling: Example

a b c a ∨ b ∨ ¬c ¬b ∨ ¬(c ∨ a) (a ∨ b ∨ ¬c) ∧ (¬b ∨ ¬(c ∨ a))

F F F T T T

F F T F T F

F T F T T T

F T T T F F

T F F T T T

T F T T T T

T T F T F F

T T T T F F

20 / 51



Propositional Logic First Order Logic

Negation Normal Form

A formula ϕ is in negation normal form (NNF) if every negation

sign occurs in front of a propositional letter.

Theorem
Every formula is semantically equivalent to a formula in NNF.

Proof.
To bring a formula into NNF, push negations inwards using De

Morgan, and if necessary eliminate double negations by involution:

¬(a ∨ ¬(¬(¬b ∨ a) ∧ c)) = ¬a ∧ ¬¬(¬(¬b ∨ a) ∧ c)
= ¬a ∧ ¬(¬b ∨ a) ∧ c

= ¬a ∧ ¬¬b ∧ ¬a ∧ c

= ¬a ∧ b ∧ ¬a ∧ c

21 / 51



Propositional Logic First Order Logic

Disjunctive Normal Form

• An atomic formula is also called positive literal, a negated

atom negative literal

• A formula ϕ is in disjunctive normal form (DNF) if it is a

disjunction of conjunctions of literals, i.e. ϕ ≡ D1 ∨ · · · ∨ Dn,

where n ≥ 1 and for any i ∈ {1, . . . , n} we have

Di ≡ li ,1 ∧ . . . ∧ li ,mi
with mi ≥ 1 and all the li ,j being literals.

As a limiting case, we also consider ⊥ to be in DNF.

• A formula ϕ is in canonical DNF if it is in DNF, and every

disjunct Di contains every a ∈ PL(ϕ) exactly once. Again, ⊥
is also considered to be in canonical DNF.

Theorem
Every formula is semantically equivalent to a formula in canonical

DNF.

22 / 51



Propositional Logic First Order Logic

Disjunctive Normal Form

• An atomic formula is also called positive literal, a negated

atom negative literal

• A formula ϕ is in disjunctive normal form (DNF) if it is a

disjunction of conjunctions of literals, i.e. ϕ ≡ D1 ∨ · · · ∨ Dn,

where n ≥ 1 and for any i ∈ {1, . . . , n} we have

Di ≡ li ,1 ∧ . . . ∧ li ,mi
with mi ≥ 1 and all the li ,j being literals.

As a limiting case, we also consider ⊥ to be in DNF.

• A formula ϕ is in canonical DNF if it is in DNF, and every

disjunct Di contains every a ∈ PL(ϕ) exactly once. Again, ⊥
is also considered to be in canonical DNF.

Theorem
Every formula is semantically equivalent to a formula in canonical

DNF.

22 / 51



Propositional Logic First Order Logic

Disjunctive Normal Form

• An atomic formula is also called positive literal, a negated

atom negative literal

• A formula ϕ is in disjunctive normal form (DNF) if it is a

disjunction of conjunctions of literals, i.e. ϕ ≡ D1 ∨ · · · ∨ Dn,

where n ≥ 1 and for any i ∈ {1, . . . , n} we have

Di ≡ li ,1 ∧ . . . ∧ li ,mi
with mi ≥ 1 and all the li ,j being literals.

As a limiting case, we also consider ⊥ to be in DNF.

• A formula ϕ is in canonical DNF if it is in DNF, and every

disjunct Di contains every a ∈ PL(ϕ) exactly once. Again, ⊥
is also considered to be in canonical DNF.

Theorem
Every formula is semantically equivalent to a formula in canonical

DNF.

22 / 51



Propositional Logic First Order Logic

Disjunctive Normal Form

• An atomic formula is also called positive literal, a negated

atom negative literal

• A formula ϕ is in disjunctive normal form (DNF) if it is a

disjunction of conjunctions of literals, i.e. ϕ ≡ D1 ∨ · · · ∨ Dn,

where n ≥ 1 and for any i ∈ {1, . . . , n} we have

Di ≡ li ,1 ∧ . . . ∧ li ,mi
with mi ≥ 1 and all the li ,j being literals.

As a limiting case, we also consider ⊥ to be in DNF.

• A formula ϕ is in canonical DNF if it is in DNF, and every

disjunct Di contains every a ∈ PL(ϕ) exactly once. Again, ⊥
is also considered to be in canonical DNF.

Theorem
Every formula is semantically equivalent to a formula in canonical

DNF.

22 / 51



Propositional Logic First Order Logic

Properties of DNF

Examples:

• (a ∧ b) ∨ (b ∧ ¬c) is in (non-canonical) DNF

• (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬c) is in canonical DNF

23 / 51



Propositional Logic First Order Logic

Properties of DNF

Examples:

• (a ∧ b) ∨ (b ∧ ¬c) is in (non-canonical) DNF

• (a ∧ b ∧ c)︸ ︷︷ ︸
D1

∨ (a ∧ b ∧ ¬c)︸ ︷︷ ︸
D2

∨ (¬a ∧ b ∧ ¬c)︸ ︷︷ ︸
D3

is in canonical DNF

23 / 51



Propositional Logic First Order Logic

Properties of DNF

Examples:

• (a ∧ b) ∨ (b ∧ ¬c) is in (non-canonical) DNF

•

(

l1,1︷︸︸︷
a ∧

l1,2︷︸︸︷
b ∧

l1,3︷︸︸︷
c )︸ ︷︷ ︸

D1

∨ (

l2,1︷︸︸︷
a ∧

l2,2︷︸︸︷
b ∧

l2,3︷︸︸︷
¬c )︸ ︷︷ ︸

D2

∨ (

l3,1︷︸︸︷
¬a ∧

l3,2︷︸︸︷
b ∧

l3,3︷︸︸︷
¬c )︸ ︷︷ ︸

D3

is in canonical DNF

23 / 51



Propositional Logic First Order Logic

Properties of DNF

Examples:

• (a ∧ b) ∨ (b ∧ ¬c) is in (non-canonical) DNF

• (a ∧ b ∧ c)︸ ︷︷ ︸
D1

∨ (a ∧ b ∧ ¬c)︸ ︷︷ ︸
D2

∨ (¬a ∧ b ∧ ¬c)︸ ︷︷ ︸
D3

is in canonical DNF

Let ϕ be in DNF and I an interpretation; observe:

• ϕ is true in I if one (or more) of the Di are

• some Di is true in I if I makes its positive literals true and its

negative literals false

• ϕ is unsatis�able i� it is ⊥, or every Di contains both a and

¬a for some a ∈ PL(ϕ)

• this leads to a method to extract a canonical DNF from a

truth table

23 / 51



Propositional Logic First Order Logic

DNF from Truth Table: Example

a b c (a ∨ b ∨ ¬c) ∧ (¬b ∨ ¬(c ∨ a)) contributed disjunct

F F F T ¬a ∧ ¬b ∧ ¬c
F F T F

F T F T ¬a ∧ b ∧ ¬c
F T T F

T F F T a ∧ ¬b ∧ ¬c
T F T T a ∧ ¬b ∧ c

T T F F

T T T F

Thus, a canonical DNF of (a ∨ b ∨ ¬c) ∧ (¬b ∨ ¬(c ∨ a)) is

(¬a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬c) ∨ (a ∧ ¬b ∧ ¬c) ∨ (a ∧ ¬b ∧ c)

24 / 51



Propositional Logic First Order Logic

Expressibility

• every formula can be expressed in terms of ¬, ∨ and ∧, thus
{¬,∨,∧} is a functionally complete set

• but p ∧ q = ¬¬(p ∧ q) = ¬(¬p ∨ ¬q), hence {¬,∨} su�ce

• other functionally complete sets: {¬,∧}, {→,⊥}, {¬,→}, . . .
• there are also two operators that are functionally complete by

themselves; a nand b := ¬(a ∧ b), a nor b := ¬(a ∨ b)

25 / 51



Propositional Logic First Order Logic

Expressibility

• every formula can be expressed in terms of ¬, ∨ and ∧, thus
{¬,∨,∧} is a functionally complete set

• but p ∧ q = ¬¬(p ∧ q) = ¬(¬p ∨ ¬q), hence {¬,∨} su�ce

• other functionally complete sets: {¬,∧}, {→,⊥}, {¬,→}, . . .
• there are also two operators that are functionally complete by

themselves; a nand b := ¬(a ∧ b), a nor b := ¬(a ∨ b)

25 / 51



Propositional Logic First Order Logic

Expressibility

• every formula can be expressed in terms of ¬, ∨ and ∧, thus
{¬,∨,∧} is a functionally complete set

• but p ∧ q = ¬¬(p ∧ q) = ¬(¬p ∨ ¬q), hence {¬,∨} su�ce

• other functionally complete sets: {¬,∧}, {→,⊥}, {¬,→}, . . .
• there are also two operators that are functionally complete by

themselves; a nand b := ¬(a ∧ b), a nor b := ¬(a ∨ b)

25 / 51



Propositional Logic First Order Logic

Expressibility

• every formula can be expressed in terms of ¬, ∨ and ∧, thus
{¬,∨,∧} is a functionally complete set

• but p ∧ q = ¬¬(p ∧ q) = ¬(¬p ∨ ¬q), hence {¬,∨} su�ce

• other functionally complete sets: {¬,∧}, {→,⊥}, {¬,→}, . . .
• there are also two operators that are functionally complete by

themselves; a nand b := ¬(a ∧ b), a nor b := ¬(a ∨ b)

25 / 51



Propositional Logic First Order Logic

Boolean Algebras

A Boolean algebra is an algebraic structure B = 〈B,t,u,−, 0, 1〉
where

• B is a set, t and u are binary operations on B , and − is a

unary operation on B , 0 and 1 are distinct elements of B

• t and u are associative and commutative

• the absorption laws hold:

a t (a u b) = a a u (a t b) = a

• t distributes over u and vice versa

• the complement laws hold:

a t −a = 1 a u −a = 0

26 / 51



Propositional Logic First Order Logic

Examples of Boolean Algebras

• the truth value algebra B = 〈B,∨,∧,¬, F, T〉
• 2 = 〈{0, 1},max,min, (x 7→ 1− x), 0, 1〉
• for any non-empty set X , PX = 〈P(X ),∪,∩, ·, ∅,P〉
• thus, Boolean algebras need not be �nite; we cannot

necessarily use truth tables

27 / 51



Propositional Logic First Order Logic

Algebraic Semantics of Classical Propositional Logic

Given a Boolean algebra B and an interpretation I : R(0) → B , we

can assign to every propositional formula ϕ a value JϕKB,I in B

1. for p ∈ V , JpKB,I = I (p)

2. J⊥KB,I = 0

3. Jϕ ∧ ψKB,I = JϕKB,I u JψKB,I

4. Jϕ ∨ ψKB,I = JϕKB,I t JψKB,I

5. Jϕ→ ψKB,I = −JϕKB,I t JψKB,I

28 / 51



Propositional Logic First Order Logic

Universality of the Truth Value Algebra

We can generalize satisfaction and validity:

• de�ne I |=B ϕ to mean that JϕKB,I = 1

• |=B ϕ, Γ |=B ϕ are de�ned analogously

The truth value algebra B is universal:

Theorem
For any formula ϕ, we have |=B ϕ i� |=B ϕ for all Boolean Algebras

B.

29 / 51



Propositional Logic First Order Logic

Outline

Propositional Logic

First Order Logic

30 / 51



Propositional Logic First Order Logic

Motivation: First Order Logic

• in mathematics, we want to express propositions about

individuals, e.g.

For every n, if n > 0 then for all m we have

m + n > m.

• in the example, the individuals are numbers, ranged over by

variables n, m

• we use constants (like 0) and functions (like +, arity 2) to

construct terms

• relations (like >, arity 2) can be used to form atomic

propositions about terms

• atomic propositions are used to construct more complex

propositions

• �rst order logic (FOL) formalizes such statements in an

abstract setting

31 / 51



Propositional Logic First Order Logic

The Approach of First Order Logic

• �rst order logic formalizes reasoning about statements that

can refer to individuals through individual variables

• a �xed set of function symbols acts on the individuals

• a �xed set of relation symbols expresses predicates on the

individuals

• more complex statements can be formed by connectives like

∧,∨,→,¬ and the quanti�ers ∀,∃
• �rst order logic is su�cient to formalize great parts of

mathematics, for example arithmetic (but not analysis)

32 / 51



Propositional Logic First Order Logic

The Language of FOL

• a �rst order signature Σ = 〈F ,R〉 describes a language with
• function constants f ∈ F with arity α(f ) ∈ N
• relation constants r ∈ R with arity α(r) ∈ N

• we write f /n to mean α(f ) = n, and F (n) := {f /n | f ∈ F},
same for R(n).

• terms T (Σ,V) over Σ and a set V of individual variables are
inductively de�ned:
• V ⊆ T (Σ,V)
• for f /n ∈ F , t1, . . . , tn ∈ T (Σ,V), also

f (t1, . . . , tn) ∈ T (Σ,V)

• for a 0-ary constant d , we write d() simply as d

33 / 51



Propositional Logic First Order Logic

Example

Consider the signature Σ = 〈F ,R〉 with F = {0/0, s/1,+/2} and

R = {≈/2,≤/2, </2}.

• examples for terms over Σ and V := {x , y} are 0, s(0),
s(s(0)), . . . , s(x), +(s(x), y), s(+(x , y)), . . .

• but not 0(0) or +(1)

• +(x , y) is usually written in�x as x + y , but this is purely

syntactic sugar

34 / 51



Propositional Logic First Order Logic

Example

Consider the signature Σ = 〈F ,R〉 with F = {0/0, s/1,+/2} and

R = {≈/2,≤/2, </2}.

• examples for terms over Σ and V := {x , y} are 0, s(0),
s(s(0)), . . . , s(x), +(s(x), y), s(+(x , y)), . . .

• but not 0(0) or +(1)

• +(x , y) is usually written in�x as x + y , but this is purely

syntactic sugar

34 / 51



Propositional Logic First Order Logic

Example

Consider the signature Σ = 〈F ,R〉 with F = {0/0, s/1,+/2} and

R = {≈/2,≤/2, </2}.

• examples for terms over Σ and V := {x , y} are 0, s(0),
s(s(0)), . . . , s(x), +(s(x), y), s(+(x , y)), . . .

• but not 0(0) or +(1)

• +(x , y) is usually written in�x as x + y , but this is purely

syntactic sugar

34 / 51



Propositional Logic First Order Logic

The Language of FOL (II)

• an atom is of the form r(t1, . . . , tn), where r/n ∈ R,

t1, . . . , tn ∈ T (Σ,V); like before we write just r if α(r) = 0

• formulas are inductively de�ned:
• every atom is a formula
• if ϕ,ψ are formulas then

• ϕ ∧ ψ is a formula
• ϕ ∨ ψ is a formula
• ϕ→ ψ is a formula

• if x ∈ V and ϕ is a formula, then

• ∀x .ϕ is a formula
• ∃x .ϕ is a formula

• ⊥ is a formula

The quanti�ers ∀ and ∃ have the lowest precedence of all

connectives.

35 / 51



Propositional Logic First Order Logic

Example

Taking the signature Σ and V from before, the following are atoms

(again, we use in�x notation):

• x ≈ y

• x < s(x)

• x + y ≈ y + x

And here are some formulas:

• ¬(x ≈ s(x))

• (x < y) → (s(x) < y ∨ s(x) ≈ y)

• ∀n.n > 0→ (∀m.m < m + n)

36 / 51



Propositional Logic First Order Logic

Example

Taking the signature Σ and V from before, the following are atoms

(again, we use in�x notation):

• x ≈ y

• x < s(x)

• x + y ≈ y + x

And here are some formulas:

• ¬(x ≈ s(x))

• (x < y) → (s(x) < y ∨ s(x) ≈ y)

• ∀n.n > 0→ (∀m.m < m + n)

36 / 51



Propositional Logic First Order Logic

Free and Bound Variables

• an appearance of an individual variable is called bound if it is

within the scope of a quanti�er, otherwise it is free

• the same variable can appear both free and bound:

(∀x .R(x , z) → (∃y .S(y , x))) ∧ T (x)

• a formula is called closed when no variable occurs free in it

• the names of bound variables only serve to connect them with

their quanti�er, one name is as good as another (details later)

37 / 51



Propositional Logic First Order Logic

The Set of Free Variables

• de�nition of the set of free variables:

1. FV(x) = {x} for x ∈ V
2. FV(f (t1, . . . , tn)) =

⋃
i∈{1,...,n} FV(ti )

3. FV(r(t1, . . . , tn)) =
⋃

i∈{1,...,n} FV(ti )

4. FV(⊥) = ∅
5. FV(ϕ ∧ ψ) = FV(ϕ ∨ ψ) = FV(ϕ→ ψ) = FV(ϕ) ∪ FV(ψ)
6. FV(∀x .ϕ) = FV(ϕ) \ {x}
7. FV(∃x .ϕ) = FV(ϕ) \ {x}

For example:

• FV(s(x) ≈ 0 ∨ x ≈ x) = {x}
• FV(∀m.∃n.m < n) = ∅
• FV(∃x .x < y) = {y}

38 / 51



Propositional Logic First Order Logic

The Set of Free Variables

• de�nition of the set of free variables:

1. FV(x) = {x} for x ∈ V
2. FV(f (t1, . . . , tn)) =

⋃
i∈{1,...,n} FV(ti )

3. FV(r(t1, . . . , tn)) =
⋃

i∈{1,...,n} FV(ti )

4. FV(⊥) = ∅
5. FV(ϕ ∧ ψ) = FV(ϕ ∨ ψ) = FV(ϕ→ ψ) = FV(ϕ) ∪ FV(ψ)
6. FV(∀x .ϕ) = FV(ϕ) \ {x}
7. FV(∃x .ϕ) = FV(ϕ) \ {x}

For example:

• FV(s(x) ≈ 0 ∨ x ≈ x) = {x}
• FV(∀m.∃n.m < n) = ∅
• FV(∃x .x < y) = {y}

38 / 51



Propositional Logic First Order Logic

The Set of Free Variables

• de�nition of the set of free variables:

1. FV(x) = {x} for x ∈ V
2. FV(f (t1, . . . , tn)) =

⋃
i∈{1,...,n} FV(ti )

3. FV(r(t1, . . . , tn)) =
⋃

i∈{1,...,n} FV(ti )

4. FV(⊥) = ∅
5. FV(ϕ ∧ ψ) = FV(ϕ ∨ ψ) = FV(ϕ→ ψ) = FV(ϕ) ∪ FV(ψ)
6. FV(∀x .ϕ) = FV(ϕ) \ {x}
7. FV(∃x .ϕ) = FV(ϕ) \ {x}

For example:

• FV(s(x) ≈ 0 ∨ x ≈ x) = {x}
• FV(∀m.∃n.m < n) = ∅
• FV(∃x .x < y) = {y}

38 / 51



Propositional Logic First Order Logic

The Set of Free Variables

• de�nition of the set of free variables:

1. FV(x) = {x} for x ∈ V
2. FV(f (t1, . . . , tn)) =

⋃
i∈{1,...,n} FV(ti )

3. FV(r(t1, . . . , tn)) =
⋃

i∈{1,...,n} FV(ti )

4. FV(⊥) = ∅
5. FV(ϕ ∧ ψ) = FV(ϕ ∨ ψ) = FV(ϕ→ ψ) = FV(ϕ) ∪ FV(ψ)
6. FV(∀x .ϕ) = FV(ϕ) \ {x}
7. FV(∃x .ϕ) = FV(ϕ) \ {x}

For example:

• FV(s(x) ≈ 0 ∨ x ≈ x) = {x}
• FV(∀m.∃n.m < n) = ∅
• FV(∃x .x < y) = {y}

38 / 51



Propositional Logic First Order Logic

Substitution in Terms and Formulas

• the operation of substituting a term t for a variable x in a
term s (written [x := t]s) is de�ned as follows:

1. [x := t]y =

{
t if x ≡ y ,

y otherwise

2. [x := t](f (t1, . . . , tn)) = f ([x := t]t1, . . . , [x := t]tn)

• on formulas, the de�nition is

1. [x := t](r(t1, . . . , tn)) = r([x := t]t1, . . . , [x := t]tn)
2. [x := t]⊥ = ⊥
3. [x := t](ϕ ◦ ψ) = ([x := t]ϕ) ◦ ([x := t]ψ), for ◦ ∈ {∧,∨,→}

4. [x := t](Qy .ϕ) =

{
Qy .ϕ if x ≡ y ,

Qy .([x := t]ϕ) if x 6≡ y , y 6∈ FV(t)
,

Q ∈ {∀,∃}

Note that substitution on formulas is a partial operation.

39 / 51



Propositional Logic First Order Logic

Example

• [x := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(s(0)) ≈ 0 ∨ s(0) ≈ s(0))

• [y := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(x) ≈ 0 ∨ x ≈ x)

• [m := 0](∀m.∃n.m < n) ≡ (∀m.∃n.m < n)

• [y := x ](∃x .x < y) is not de�ned

• [n := m](∀m.∃n.m < n) is not de�ned

40 / 51



Propositional Logic First Order Logic

Example

• [x := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(s(0)) ≈ 0 ∨ s(0) ≈ s(0))

• [y := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(x) ≈ 0 ∨ x ≈ x)

• [m := 0](∀m.∃n.m < n) ≡ (∀m.∃n.m < n)

• [y := x ](∃x .x < y) is not de�ned

• [n := m](∀m.∃n.m < n) is not de�ned

40 / 51



Propositional Logic First Order Logic

Example

• [x := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(s(0)) ≈ 0 ∨ s(0) ≈ s(0))

• [y := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(x) ≈ 0 ∨ x ≈ x)

• [m := 0](∀m.∃n.m < n) ≡ (∀m.∃n.m < n)

• [y := x ](∃x .x < y) is not de�ned

• [n := m](∀m.∃n.m < n) is not de�ned

40 / 51



Propositional Logic First Order Logic

Example

• [x := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(s(0)) ≈ 0 ∨ s(0) ≈ s(0))

• [y := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(x) ≈ 0 ∨ x ≈ x)

• [m := 0](∀m.∃n.m < n) ≡ (∀m.∃n.m < n)

• [y := x ](∃x .x < y) is not de�ned

• [n := m](∀m.∃n.m < n) is not de�ned

40 / 51



Propositional Logic First Order Logic

Example

• [x := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(s(0)) ≈ 0 ∨ s(0) ≈ s(0))

• [y := s(0)](s(x) ≈ 0 ∨ x ≈ x) ≡ (s(x) ≈ 0 ∨ x ≈ x)

• [m := 0](∀m.∃n.m < n) ≡ (∀m.∃n.m < n)

• [y := x ](∃x .x < y) is not de�ned

• [n := m](∀m.∃n.m < n) is not de�ned

40 / 51



Propositional Logic First Order Logic

Alpha Equivalence

• for a quanti�er Q ∈ {∀,∃}, Qx .ϕ alpha reduces to Qy .ϕ′ if
ϕ′ ≡ [x := y ]ϕ

• ϕ is called alpha equivalent to ψ (written ϕ =α ψ), if ψ results

from ϕ by any number of alpha reductions on subformulas of ϕ

• Examples:
• (∀x .R(x , x)) =α (∀y .R(y , y))
• (∀x .∃x .S(x)) =α (∀y .∃x .S(x)) =α (∀y .∃z .S(z))
• (∀x .∃y .T (x , y)) 6=α (∀x .∃x .T (x , x))

Notice that alpha reduction never changes the names of free

variables.

41 / 51



Propositional Logic First Order Logic

Alpha Equivalence

• for a quanti�er Q ∈ {∀,∃}, Qx .ϕ alpha reduces to Qy .ϕ′ if
ϕ′ ≡ [x := y ]ϕ

• ϕ is called alpha equivalent to ψ (written ϕ =α ψ), if ψ results

from ϕ by any number of alpha reductions on subformulas of ϕ

• Examples:
• (∀x .R(x , x)) =α (∀y .R(y , y))
• (∀x .∃x .S(x)) =α (∀y .∃x .S(x)) =α (∀y .∃z .S(z))
• (∀x .∃y .T (x , y)) 6=α (∀x .∃x .T (x , x))

Notice that alpha reduction never changes the names of free

variables.

41 / 51



Propositional Logic First Order Logic

Alpha Equivalence

• for a quanti�er Q ∈ {∀,∃}, Qx .ϕ alpha reduces to Qy .ϕ′ if
ϕ′ ≡ [x := y ]ϕ

• ϕ is called alpha equivalent to ψ (written ϕ =α ψ), if ψ results

from ϕ by any number of alpha reductions on subformulas of ϕ

• Examples:
• (∀x .R(x , x)) =α (∀y .R(y , y))
• (∀x .∃x .S(x)) =α (∀y .∃x .S(x)) =α (∀y .∃z .S(z))
• (∀x .∃y .T (x , y)) 6=α (∀x .∃x .T (x , x))

Notice that alpha reduction never changes the names of free

variables.

41 / 51



Propositional Logic First Order Logic

Alpha Equivalence

• for a quanti�er Q ∈ {∀,∃}, Qx .ϕ alpha reduces to Qy .ϕ′ if
ϕ′ ≡ [x := y ]ϕ

• ϕ is called alpha equivalent to ψ (written ϕ =α ψ), if ψ results

from ϕ by any number of alpha reductions on subformulas of ϕ

• Examples:
• (∀x .R(x , x)) =α (∀y .R(y , y))
• (∀x .∃x .S(x)) =α (∀y .∃x .S(x)) =α (∀y .∃z .S(z))
• (∀x .∃y .T (x , y)) 6=α (∀x .∃x .T (x , x))

Notice that alpha reduction never changes the names of free

variables.

41 / 51



Propositional Logic First Order Logic

Alpha Equivalence

• for a quanti�er Q ∈ {∀,∃}, Qx .ϕ alpha reduces to Qy .ϕ′ if
ϕ′ ≡ [x := y ]ϕ

• ϕ is called alpha equivalent to ψ (written ϕ =α ψ), if ψ results

from ϕ by any number of alpha reductions on subformulas of ϕ

• Examples:
• (∀x .R(x , x)) =α (∀y .R(y , y))
• (∀x .∃x .S(x)) =α (∀y .∃x .S(x)) =α (∀y .∃z .S(z))
• (∀x .∃y .T (x , y)) 6=α (∀x .∃x .T (x , x))

Notice that alpha reduction never changes the names of free

variables.

41 / 51



Propositional Logic First Order Logic

Motivation: Semantics of FOL

• like in propositional logic, in FOL we do not care what

functions or relations the symbols in Σ stand for

• thus, we do not know if ∀m.∃n.m < n is true

• but some sentences are intuitively true, e.g.

(∀x .¬R(x , x))
∧ (∀y .∀z .R(y , z) → R(z , y))
∧ (∀x .∀y .∀z .R(x , y) ∧ R(y , z) → R(x , z))
→ ¬(∃x .∃y .R(x , y))

• how do we evaluate, e.g., ∀x .¬R(x , x)?
• we need to know the range of x and the interpretation of R on

this range
• then we would like to evaluate ¬R(x , x), where x is bound to

any of its possible values

• thus, we need to consider not only the interpretation of the

function and relation symbols, but also variable bindings

42 / 51



Propositional Logic First Order Logic

Motivation: Semantics of FOL

• like in propositional logic, in FOL we do not care what

functions or relations the symbols in Σ stand for

• thus, we do not know if ∀m.∃n.m < n is true

• but some sentences are intuitively true, e.g.

(∀x .¬R(x , x))
∧ (∀y .∀z .R(y , z) → R(z , y))
∧ (∀x .∀y .∀z .R(x , y) ∧ R(y , z) → R(x , z))
→ ¬(∃x .∃y .R(x , y))

• how do we evaluate, e.g., ∀x .¬R(x , x)?
• we need to know the range of x and the interpretation of R on

this range
• then we would like to evaluate ¬R(x , x), where x is bound to

any of its possible values

• thus, we need to consider not only the interpretation of the

function and relation symbols, but also variable bindings

42 / 51



Propositional Logic First Order Logic

Motivation: Semantics of FOL

• like in propositional logic, in FOL we do not care what

functions or relations the symbols in Σ stand for

• thus, we do not know if ∀m.∃n.m < n is true

• but some sentences are intuitively true, e.g.

(∀x .¬R(x , x))
∧ (∀y .∀z .R(y , z) → R(z , y))
∧ (∀x .∀y .∀z .R(x , y) ∧ R(y , z) → R(x , z))
→ ¬(∃x .∃y .R(x , y))

• how do we evaluate, e.g., ∀x .¬R(x , x)?
• we need to know the range of x and the interpretation of R on

this range
• then we would like to evaluate ¬R(x , x), where x is bound to

any of its possible values

• thus, we need to consider not only the interpretation of the

function and relation symbols, but also variable bindings

42 / 51



Propositional Logic First Order Logic

Motivation: Semantics of FOL

• like in propositional logic, in FOL we do not care what

functions or relations the symbols in Σ stand for

• thus, we do not know if ∀m.∃n.m < n is true

• but some sentences are intuitively true, e.g.

(∀x .¬R(x , x))
∧ (∀y .∀z .R(y , z) → R(z , y))
∧ (∀x .∀y .∀z .R(x , y) ∧ R(y , z) → R(x , z))
→ ¬(∃x .∃y .R(x , y))

• how do we evaluate, e.g., ∀x .¬R(x , x)?
• we need to know the range of x and the interpretation of R on

this range
• then we would like to evaluate ¬R(x , x), where x is bound to

any of its possible values

• thus, we need to consider not only the interpretation of the

function and relation symbols, but also variable bindings

42 / 51



Propositional Logic First Order Logic

Semantics: Structures, Interpretations and Assignments

• a (�rst order) structure M = 〈D, I 〉 for a signature Σ consists
of
• a non-empty set D, the domain
• an interpretation I = 〈J·KF , J·KR〉 such that

• for every f ∈ F (n), Jf KF : Dn → D

• for every r ∈ R(n), JrKR : Dn → B

• a variable assignment on I is a function σ : V → D

We write σ[x := t] for the assignment

y 7→

{
t if x ≡ y

σ(y) otherwise

43 / 51



Propositional Logic First Order Logic

Semantics: Interpreting Terms and Formulas

• interpretation of terms over M and σ:
• JxKM,σ = σ(x)
• Jf (t1, . . . , tn)KM,σ = Jf KF (Jt1KM,σ, . . . , JtnKM,σ)

• interpretation of formulas:
• Jr(t1, . . . , tn)KM,σ = JrKR(Jt1KM,σ, . . . , JtnKM,σ)
• J⊥KM,σ, Jϕ ∧ ψKM,σ, etc.: as before

• J∀x .ϕKM,σ =

{
T if, for all d ∈ D, JϕKM,σ[x :=d ] = T,

F otherwise

• J∃x .ϕKM,σ =

{
T if there is d ∈ D with JϕKM,σ[x :=d ] = T,

F otherwise

44 / 51



Propositional Logic First Order Logic

Satis�ability and Validity

• M, σ |= ϕ stands for JϕKM,σ = T

• M |= ϕ means that M, σ |= ϕ for any σ; M is called a model

for ϕ

• we write |= ϕ (and call ϕ valid) if M |= ϕ for any structure M
• Γ |= ϕ now means that any M and σ such that JγKM,σ = T

for every γ ∈ Γ also gives JϕKM,σ = T

• analogously, ϕ = ψ means that JϕKM,σ = JψKM,σ for any M
and σ

45 / 51



Propositional Logic First Order Logic

Example

Consider the structure M = 〈N, 〈J·KF , J·KR〉〉 for signature Σ as

before:

• J0KF = 0

• JsKF (n) = n + 1

• J+KF (m, n) = m + n

• J≈KR = {(n, n) | n ∈ N}
• J≤KR = {(m, n) | m, n ∈ N,m ≤ n}
• J<KR = {(m, n) | m, n ∈ N,m < n}

Then M |= ∀n.n > 0→ (∀m.m < m + n).

46 / 51



Propositional Logic First Order Logic

Example

Consider the structure M = 〈N, 〈J·KF , J·KR〉〉 for signature Σ as

before:

• J0KF = 0

• JsKF (n) = n + 1

• J+KF (m, n) = m + n

• J≈KR = {(n, n) | n ∈ N}
• J≤KR = {(m, n) | m, n ∈ N,m ≤ n}
• J<KR = {(m, n) | m, n ∈ N,m < n}

Then M |= ∀n.n > 0→ (∀m.m < m + n).

46 / 51



Propositional Logic First Order Logic

Basic Results

From now on, we �x some signature Σ and a set V of variables.

Lemma
Let M be a structure for Σ, ϕ a formula, and σ, σ′ variable
assignments that agree on FV(ϕ). Then ϕ is true over M and σ
i� it is true over M and σ′.

Corollary

The interpretation of a closed formula is independent of variable

assignments.

Lemma
Alpha equivalent formulas evaluate to the same truth value.

Hence we usually identify alpha equivalent formulas; substitution is

then always de�ned.

47 / 51



Propositional Logic First Order Logic

Basic Results

From now on, we �x some signature Σ and a set V of variables.

Lemma
Let M be a structure for Σ, ϕ a formula, and σ, σ′ variable
assignments that agree on FV(ϕ). Then ϕ is true over M and σ
i� it is true over M and σ′.

Corollary

The interpretation of a closed formula is independent of variable

assignments.

Lemma
Alpha equivalent formulas evaluate to the same truth value.

Hence we usually identify alpha equivalent formulas; substitution is

then always de�ned.

47 / 51



Propositional Logic First Order Logic

Basic Results

From now on, we �x some signature Σ and a set V of variables.

Lemma
Let M be a structure for Σ, ϕ a formula, and σ, σ′ variable
assignments that agree on FV(ϕ). Then ϕ is true over M and σ
i� it is true over M and σ′.

Corollary

The interpretation of a closed formula is independent of variable

assignments.

Lemma
Alpha equivalent formulas evaluate to the same truth value.

Hence we usually identify alpha equivalent formulas; substitution is

then always de�ned.

47 / 51



Propositional Logic First Order Logic

Some Equivalences of FOL

1. (∀x .ϕ) = ¬(∃x .¬ϕ)

2. (∀x .ϕ ∧ ψ) = (∀x .ϕ) ∧ (∀x .ψ)

3. (∃x .ϕ ∨ ψ) = (∃x .ϕ) ∨ (∃x .ψ)

4. (∀x .∀y .ϕ) = (∀y .∀x .ϕ)

5. (∃x .∃y .ϕ) = (∃y .∃x .ϕ)

6. (∃x .∀y .ϕ) → (∀y .∃x .ϕ), but not vice versa

In general we have neither (∀x .ϕ ∨ ψ) = (∀x .ϕ) ∨ (∀x .ψ) nor

(∃x .ϕ ∧ ψ) = (∃x .ϕ) ∧ (∃x .ψ).

However, if x 6∈ FV(ϕ) we have:

1. (∀x .ϕ ∨ ψ) = ϕ ∨ (∀x .ψ)

2. (∃x .ϕ ∧ ψ) = ϕ ∧ (∃x .ψ)

48 / 51



Propositional Logic First Order Logic

Prenex Normal Form

A formula ϕ is in prenex normal form (PNF) if it is of the form

Q1x1 . . .Qnxnϕ
′, where n ≥ 0, Qi ∈ {∀,∃}, and ϕ′ does not

contain quanti�ers.

Theorem
For every formula of FOL there is an equivalent one in PNF.

Proof.
Quanti�ers can be pulled outwards over negations. For a formula

(∀x .ϕ) ∨ ψ, we can choose x 6∈ FV(ψ) and then rewrite to

∀x .(ϕ ∨ ψ); likewise for the other cases.

49 / 51



Propositional Logic First Order Logic

Examples

∀n.n > 0→ (∀m.m < n + m)
= ∀n.¬(n > 0) ∨ (∀m.m < n + m)
= ∀n.∀m.¬(n > 0) ∨m < n + m

= ∀n.∀m.n > 0→ m < n + m

((∀x .p(x)) ∨ (∀x .q(x))) → (∀x .p(x) ∨ q(x))
= ((∀x .p(x)) ∨ (∀y .q(y))) → (∀z .p(z) ∨ q(z))
= (∀x .∀y .p(x) ∨ q(y)) → (∀z .p(z) ∨ q(z))
= ∃x .∃y .((p(x) ∨ p(y)) → (∀z .p(z) ∨ q(z)))
= ∃x .∃y .∀z .(p(x) ∨ p(y) → p(z) ∨ q(z))

50 / 51



Propositional Logic First Order Logic

Examples

∀n.n > 0→ (∀m.m < n + m)
= ∀n.¬(n > 0) ∨ (∀m.m < n + m)
= ∀n.∀m.¬(n > 0) ∨m < n + m

= ∀n.∀m.n > 0→ m < n + m

((∀x .p(x)) ∨ (∀x .q(x))) → (∀x .p(x) ∨ q(x))
= ((∀x .p(x)) ∨ (∀y .q(y))) → (∀z .p(z) ∨ q(z))
= (∀x .∀y .p(x) ∨ q(y)) → (∀z .p(z) ∨ q(z))
= ∃x .∃y .((p(x) ∨ p(y)) → (∀z .p(z) ∨ q(z)))
= ∃x .∃y .∀z .(p(x) ∨ p(y) → p(z) ∨ q(z))

50 / 51



Propositional Logic First Order Logic

Undecidability of FOL

Theorem
It is undecidable for a formula ϕ of FOL whether it is a tautology.

This theorem can be proved, for example, by encoding Post's

Correspondence Problem in �rst order logic.

51 / 51


	Propositional Logic
	First Order Logic

