
Functional Program Derivation

Exercises for Day 1

Shin-Cheng Mu Shu-Chun Weng (TA)

2007 Formosan Summer School on
Logic, Language, and Computation

July 4th, 2007

This exam sheet is worth 20 points in total.

1.1 The Expand/Reduce Transformation

1. (1 point) What does this function do?

descend 0 = []
descend (n + 1) = (n + 1):descend n

2. (1 point) Consider the definition f = sum · descend

(a) Describe in words what this function does.

(b) Calculate f 0.

(c) Simplify f (n + 1) = . . . f n

(d) From (b) and (c), synthesise a recursive definition of f .

3. (1 point) Recall the datatype definition for internally labelled binary
trees:

data iTree α = Null |Node α (iTree α) (iTree α).

Consider the function mapiTree defined below:

mapiTree f Null = Null ,
mapiTree f (Node a t u) = Node (f a) (mapiTree f u) (mapiTree f t).

What does this function do?

4. (1 point) Define a function sumiTree computing the sum of all node
values in an iTree.

1

5. (2 points) The function one x = 1 returns 1, what ever the input is. The
function sizeiTree, computing the size of a tree, can be specified by:

sizeiTree = sumiTree · mapiTree one.

Derive a definition of sizeiTree which does not construct an intermediate
tree.

1.2 Proof by Induction

1. (2 points) Prove (xs ++ ys) ++ zs = xs ++ (ys ++ zs). Hint: induction on
xs.

2. (2 points) The function concat concatenates a list of lists:

concat [] = [],
concat (xs : xss) = xs ++ concat xss.

E.g. concat [[1, 2], [3, 4], [5]] = [1, 2, 3, 4, 5]. Prove that:

sum · concat = sum · map sum.

Hint: you may need one of the properties proved in the lecture.

3. (2 points) Prove that map f · map g = map (f · g).

4. (2 points) The function swapTree is defined by:

swapiTree Null = Null ,
swapiTree (Node a t u) = Node a (swapiTree u) (swapiTree t).

Prove that swapiTree (swapiTree t) = t for all t .

1.3 Accumulating Parameters

1. (3 points) Recall the standard definition of factorial:

fact 0 = 1,
fact (n + 1) = (n + 1) × fact n.

This program also implicitly uses space linear to n in the call stack.

(a) Introduce factit n m = . . . where m is an accumulating parameter.

(b) Express fact in terms of factit .

(c) Construct a space efficient implementation of factit .

2

2. (3 points) Given an iTree, the following function flatten returns a list of
all labels in the tree, in left-to-right order:

flatten Null = [],
flatten (Node a t u) = flatten t ++ [a] ++ flatten u.

Unfortunately, flatten is slow. Let us try to improve it.

(a) Introduce flatcat t xs = . . . where xs is an accumulating parameter.

(b) Express flatten in terms of flatcat .

(c) Construct an efficient implementation of flatten. You will need some
properties of (++) proved in one of the exercises.

3

