
FLOLAC ‘07
Type Systems

Exercise 1

1. Please give the type derivations (proof trees) for the following Mini-Haskell

expressions. You should try to derive the most general type for them.
(a) let id = \x -> x in id id
(b) \f -> f (\x -> x)
(c) \x-> let f = \y -> x in (f 1, f True)

2. (a) In Mini-Haskell+Type Classes, what would be the type inferred for the
expression: \x -> \y -> x /= (y (x, 1)).
(b) If you enter the above expression into Hugs using “:t \x y -> x /= (y (x, 1))”,
you will get a different type scheme, a more general one. How would you interpret
this difference? Hint: consider the type for the overloaded numeric literal “1”.

3. Mini-Haskell does not support recursive function definitions! One way to extend
Haskell with recursive functions is to add a new form of function declaration as
follows:
 E ::= …
 | letrec f = E1 in E2 --E1 may contain a reference(s) to f
For example:
 letrec fac = \x -> if x==0 then 1 else x * fac (x-1)
Please add a typing rule for recursive function definitions. Hint: the type of f must
be monomorphic and is the same as that of E1.

