




























































Modal FRP

Veel Krishnaswami
University of Cambridge

FLOLAC 2024
Taipei Taiwan



Interactive Programs

Many forms of computation are

functions

Compilers Source Object code

LaTex Source PDF

gzip File File



Interactive Programs

Other forms of computation are

interactive

IDEs

Word Processors

Web browsers



Interaction is Historical

Interactive Programs mix I and 0

1 The user issues a command
2 The tool gives feed back
3 The user issues an updated command
4 The tool gives further feed back

User or computer actions are

history sensitive



How are GUIs currently built

The current state of the art is

the event based programing model



How are GUIs currently built

The current state of the art is

the event based programing model

It dates back to the 1970s
with the work on Smalltalk



Event Based Programming
t
type callbacks

key
72 e.itx.ee
7x.es

click 7 4522.12

touch Ax e



Event Based Programming
while true t

type callbacks
let e next Event
let fs table e type Axe Tx.ee
for each f in fs key ax.es

f e data click 7x.tijhx.to

I touch Ax e



Event Based Programming
while true t

type callbacks
let e next Event
let fs table e type key

taxie ix ezi
for each f in fs 7x.es

f e data click 7x.tl 72.12

I touch Ax e

1 We wait for an event



Event Based Programming
while true t

type callbacks
let e next Event
let fs table e type key

taxie ix ezi
for each f in fs 7x.es

f e data click 7x.tl 2x Ez

I touch Ax e

1 We wait for an event

2 We look in the table for
all callbacks of that type



Event Based Programming
while true t

type callbacks
let e next Event
let fs table e type Axe Tx.ee
for each f in fs key ax.es

f e data click 7x.tl 2x Ez

I touch Ax e

1 We wait for an event

2 We look in the table for
all callbacks of that type

3 We execute the callbacks



Event Based Programming
while true t

type callbacks
let e next Event
let fs table e type Axe Tx.ee
for each f in fs key ax.es

f e data click 7x.tl 2x Ez

I touch Ax e

1 We wait for an event

2 We look in the table for
all callbacks of that type

3 We execute the callbacks

4 We wait for the next event



Event Based Programming
This code is

Higher Order

Imperative
Concurrent

This is very difficult



GUIs are Hard

U I code codebase

But majority of bugs
Guts are harder to
write than optimized
image processing code



FRP

In 1997 Hudak and Elliot
proposed

Functional Reactive

Programming



FRP

Idea replace state with streams

Then an interactive program is

a function

f Stream Input Stream Output



FRP

streams have a clear API

head Stream A A

tail Stream A Stream A

Cons Ax Stream A Stream A

map A B Stream A Stream B

fix A A A



FRP

Much state can be replaced with

recursively defined streams

count IN S IN

count n cons n count ntl

count o 0,1 2,3 4



FRP

Streams can be manipulated with

ordinary functional programming

map fun n n 2 count 0

0,2 4 6,8



Problems with FRP

When programs are correct
FRP programs are beautiful

When programs are wrong
FRP programs are very
hard to debug



Problem I Causality
trade S Price S Trade

trade ps
let today head ps
let tomorrow head tail ps
let order if today tomorrow then Buy else Sell

cons order trade tail ps

This mathematically well defined

But it is not l



Making Streams Causal
Introduce A later an A Then

head S A A
tail SCA SCA

Cons Ax SCA S A

map A B SCA SCB

fix A A A



Making Streams Causal

trade S Price S Trade

trade ps
let today head ps
let tomorrow head tail ps
let order if today tomorrow then Buy else Sell

cons order trade tail ps



Making Streams Causal

trade S Price S Trade

trade ps
let today head ps
let tomorrow head tail ps
let order if today tomorrow then Buy else Sell

cons order trade tail ps

head S Price Price

tail ps S Price
S Price Serial



Problem 2 Space Leaks

A Good Program A BAD Program

const IN SCIN const SCN SCS IN
const n cons n const n const n cons n const n

These programs are identical

Only the types are different



Streams Abstract State

t 0 a b e d e f



Streams Abstract State

1 0 a b e d e f

t t b c d e f



Streams Abstract State

1 0 a b e d e f

t t b c d e f

1 2 c d e f



Streams Abstract State

1 0 a b e d e f

t t b c d e f

1 2 c d e f

t 3 d e f



Streams Abstract State

1 0 a b e d e f

t t b c d e f

t 2 c d e f

t 3 d e f

t 4 e f



Streams Abstract State

1 0 a b e d e f

t t b c d e f

t 2 c d e f

t 3 d e f

t 4 e f

The const function has to save

more and more state



Streams Abstract State

1 0 a b e d e f

t t a b c d e f

t 2 c d e f

t 3 d e f

t 4 e f

The const function has to save

more and more state



Streams Abstract State

1 0 a b e d e f

t t a b c d e f

1 2 a b c d e f

t 3 d e f

t 4 e f

The const function has to save

more and more state



Streams Abstract State

1 0 a b e d e f

t t a b c d e f

1 2 a b c d e f

t 3 a b c d e f

t 4 e f

The const function has to save

more and more state



Streams Abstract State

1 0 a b e d e f

t t a b c d e f

1 2 a b c d e f

t 3 a b c d e f

t 4 a b c d e f

The const function has to save

more and more state



Streams Abstract State

1 0 a b e d e f

t t a b c d e f

1 2 a b c d e f

t 3 a b c d e f

t 4 a b c d e f

At time n n values have

to be buffered



Streams Abstract State

1 0 a b e d e f

t t a b c d e f

1 2 a b c d e f

t 3 a b c d e f

t 4 a b c d e f

Compare the stream to the number 36



Streams Abstract State

1 0 a b e d e f 36

t t a b c d e f

1 2 a b c d e f

t 3 a b c d e f

t 4 a b c d e f

Compare the stream to the number 36



Streams Abstract State

1 0 a b e d e f 36

t t a b c d e f 36

1 2 a b c d e f

t 3 a b c d e f

t 4 a b c d e f

Compare the stream to the number 36



Streams Abstract State

1 0 a b e d e f 36

t t a b c d e f 36

1 2 a b c d e f 36

t 3 a b c d e f

t 4 a b c d e f

Compare the stream to the number 36



Streams Abstract State

1 0 a b e d e f 36

t t a b c d e f 36

1 2 a b c d e f 36

t 3 a b c d e f 36

1 4 a b c d e f

Compare the stream to the number 36



Streams Abstract State

1 0 a b e d e f 36

t t a b c d e f 36

1 2 a b c d e f 36

t 3 a b c d e f 36

1 4 a b c d e f 36

Compare the stream to the number 36



Streams Abstract State

1 0 a b e d e f 36

t t a b c d e f 36

1 2 a b c d e f 36

t 3 a b c d e f 36

1 4 a b c d e f 36

Compare the stream to the number 36

36 never changes



Streams Abstract State

1 0 a b e d e f 36

t t a b c d e f 36

1 2 a b c d e f 36

t 3 a b c d e f 36

1 4 a b c d e f 36

The stream changes over time

36 does not it is stable



Making Streams
Introduce A the stable values of A

head S A A All IN stable
No SCIN stabletail SCA S A some A B stable

Cons Ax SCA S A

map A B SCA SCB

fix A A A



Fixing Const

const A SCA

const box a cons a const a

Now const is defined only for

stable arguments



Hey That Looks Familiar

A and B look very familiar

FRP indeed needs multimodal types




