Underivability (continued)

Lemma (instantiation). If $\Gamma \vdash \varphi$, then $\Gamma[\psi/v] \vdash \varphi[\psi/v]$. **Exercise.** Define substitution $\varphi[\psi/v]$ and $\Gamma[\psi/v]$. **Corollary.** $\nvdash_{N,I} \neg \neg A \rightarrow A$. ASSUME | a derivation d of $\vdash \neg \neg A \rightarrow A$ GOAL contradiction **PROOF** Reduce $\vdash \neg \neg A \rightarrow A$ to the law of excluded middle. $0 \vdash \neg \neg (\mathbf{A} \lor \neg \mathbf{A}) \rightarrow (\mathbf{A} \lor \neg \mathbf{A})$ **PROOF** Apply the instantiation lemma to *d*, substituting $A \vee \neg A$ for A. 1 $\vdash \neg \neg (A \lor \neg A)$ **2** \vdash **A** $\lor \neg$ **A PROOF** Combine 0 and 1 with the \rightarrow **E** rule. 3 QED. PROOF 2 should have been underivable. **Exercise.** $\forall_{N,I} (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B).$