
Logic

III. The Curry–Howard correspondence

柯向上
中央研究院資訊科學研究所

joshko@iis.sinica.edu.tw

III-0

Annotated derivation

(assum)
A, A → B ⊢ A → B

(assum)
A, A → B ⊢ A (→E)

A, A → B ⊢ B (→I)
A ⊢ (A → B) → B

(→I)
⊢ A → (A → B) → B

III-1

Annotated derivation

(assum)
x : A, y : A → B ⊢ A → B

(assum)
x : A, y : A → B ⊢ A

(→E)
x : A, y : A → B ⊢ B

(→I)
x : A ⊢ (A → B) → B

(→I)
⊢ A → (A → B) → B

Label elements in contexts with (distinct) names.

III-2

Annotated derivation

(assum)
x : A, y : A → B ⊢ y : A → B

(assum)
x : A, y : A → B ⊢ x : A

(→E)
x : A, y : A → B ⊢ B

(→I)
x : A ⊢ (A → B) → B

(→I)
⊢ A → (A → B) → B

Label elements in contexts with (distinct) names.
Represent (assum) by the name of the assumption used.

III-3

Annotated derivation

(assum)
x : A, y : A → B ⊢ y : A → B

(assum)
x : A, y : A → B ⊢ x : A

(→E)
x : A, y : A → B ⊢ y x : B

(→I)
x : A ⊢ (A → B) → B

(→I)
⊢ A → (A → B) → B

Label elements in contexts with () names.
Represent (assum) by the name of the assumption used.
Represent (→E) by juxtaposing the representations of its two
sub-derivations.

III-4

Annotated derivation

(assum)
x : A, y : A → B ⊢ y : A → B

(assum)
x : A, y : A → B ⊢ x : A

(→E)
x : A, y : A → B ⊢ y x : B

(→I)
x : A ⊢ λ y. y x : (A → B) → B

(→I)
⊢ λ x. λ y. y x : A → (A → B) → B

Label elements in contexts with (distinct) names.
Represent (assum) by the name of the assumption used.
Represent (→E) by juxtaposing the representations of its two
sub-derivations.
Represent (→I) by prefixing λ v. to the representation of its
sub-derivation, where v is the name of the new assumption.

III-5

Annotated derivation

(var)
x : A, y : A → B ⊢ y : A → B

(var)
x : A, y : A → B ⊢ x : A

(app)
x : A, y : A → B ⊢ y x : B

(abs)
x : A ⊢ λ y. y x : (A → B) → B

(abs)
⊢ λ x. λ y. y x : A → (A → B) → B

Label elements in contexts with (distinct) names.
Represent (assum) by the name of the assumption used.
Represent (→E) by juxtaposing the representations of its two
sub-derivations.
Represent (→I) by prefixing λ v. to the representation of its
sub-derivation, where v is the name of the new assumption.

This is a typing derivation for the λ-term λ x. λ y. y x!

III-6

Simply typed λ-calculus (à la Curry)

Let the set of types be the implicational fragment of Prop, i.e.,
the subset of the propositional language generated by variables and
implication only.

A λ-term t is said to have type τ under context Γ if, using the
following rules, there is a closed typing derivation whose conclusion
is Γ ⊢ t : τ . In this case we simply write Γ ⊢ t : τ .

(var)
Γ ⊢ v : τ if (v : τ) ∈ Γ

Γ, v : σ ⊢ t : τ (abs)
Γ ⊢ λ v. t : σ → τ

Γ ⊢ t : σ → τ Γ ⊢ s : σ (app)
Γ ⊢ t s : τ

III-7

The Curry–Howard correspondence

Deduction systems and programming calculi can be put in
correspondence — a corresponding pair of a deduction system and
a programming calculus can be regarded as logical and
computational interpretations of essentially the same set of
syntactic objects.

Slogan: propositions are types; proofs are programs.

Natural deduction for full propositional logic corresponds to simply
typed λ-calculus with constants: defining the set of types to be
Prop, the derivations in natural deduction (the proofs) correspond
exactly to the well-typed λ-terms (the programs).

Question. Are unannotated derivations and λ-terms in
one-to-one correspondence?

III-8

Cartesian products
Conjunctions correspond to cartesian products: the introduction
rule gives type to the pairing operator,

Γ ⊢ s : σ Γ ⊢ t : τ (∧I)
Γ ⊢ ⟨s, t⟩ : σ ∧ τ

and the two elimination rules give types to the projections.
Γ ⊢ t : σ ∧ τ (∧EL)
Γ ⊢ outl t : σ

Γ ⊢ t : σ ∧ τ (∧ER)
Γ ⊢ outr t : τ

Note that we are adding the constants ⟨_,_⟩, outl, and outr into
the language of λ-calculus.

III-9

Disjoint sums

Disjunctions correspond to disjoint sums (unions): the introduction
rules give types to the injections,

Γ ⊢ s : σ (∨IL)
Γ ⊢ inl s : σ ∨ τ

Γ ⊢ t : τ (∨IR)
Γ ⊢ inr t : σ ∨ τ

and the elimination rule gives type to the conditional operator.
Γ ⊢ c : σ ∨ τ Γ, u : σ ⊢ s : ϑ Γ, v : τ ⊢ t : ϑ (∨E)

Γ ⊢ case c
[u⇝ s

v⇝ t : ϑ

Again we add the constants inl, inr, and case_
[_⇝ _

_⇝ _ to the
language of λ-calculus.

III-10

Empty set

⊥ is interpreted as the empty set. The elimination rule gives type
to a variant of Dijkstra’s abort operator.

Γ ⊢ t : ⊥ (⊥E)
Γ ⊢ abort t : φ

Example. The type ⊤, i.e., ⊥ → ⊥, is inhabited by λ x. abort x.

Question. What is the computational meaning of abort?

III-11

Example: distributivity

The type
A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)

is inhabited by the λ-term

λ x. case (outr x)
[y⇝ inl ⟨outl x, y⟩

z⇝ inr ⟨outl x, z⟩ .

Exercise. ‘Decompress’ the term and find the corresponding
derivation.

Question. If asked to prove the classical truth of this proposition,
would you prefer constructing a program or a truth table?

III-12

δ-reduction
In pure λ-calculus we have β-reduction that rewrites β-redexes.

(λ v. s) t ⇝β s [t/v]
Note that this is how an elimination form (application) cancels out
an introduction form (λ-abstraction) for the same connective
(Gentzen’s inversion principle).
For λ-calculus with constants, we should also specify how to
reduce the δ-redexes, which involve the introduction and
elimination forms of the other connectives.

outl ⟨s, t⟩ ⇝δ s outr ⟨s, t⟩ ⇝δ t

case (inl p)
[u⇝ s

v⇝ t ⇝δ s [p/u]

case (inr q)
[u⇝ s

v⇝ t ⇝δ t [q/v]

III-13

Proof normalisation
β-/δ-redexes in λ-terms correspond to detours in derivations, and
evaluation of λ-terms corresponds to proof normalisation.

B → C → B, A ⊢ B → C → B (→I)
B → C → B ⊢ A → B → C → B (→I)

⊢ (B → C → B) → A → B → C → B

B, C ⊢ B (→I)
B ⊢ C → B (→I)

⊢ B → C → B
(→E)

⊢ A → B → C → B

normalises to
A, B, C ⊢ B (→I)

A, B ⊢ C → B (→I)
A ⊢ B → C → B (→I)

/////////////B → C → B ⊢ A → B → C → B

The corresponding reduction is
(λ x. λ y. x) (λ z. λ w. z) ⇝β λ y. λ z. λ w. z.

III-14

Detours
Corresponding to the β-/δ-redexes, the possible forms of detours are

Γ, φ ⊢ ψ (→I)
Γ ⊢ φ→ ψ Γ ⊢ φ (→E)

Γ ⊢ ψ
Γ ⊢ φ Γ ⊢ ψ (∧I)

Γ ⊢ φ ∧ ψ (∧EL)
Γ ⊢ φ

Γ ⊢ φ Γ ⊢ ψ (∧I)
Γ ⊢ φ ∧ ψ (∧ER)
Γ ⊢ ψ

Γ ⊢ φ (∨IL)
Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ (∨E)

Γ ⊢ ϑ
Γ ⊢ ψ (∨IR)

Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ (∨E)
Γ ⊢ ϑ

Exercise. What are the results of eliminating the above detours?
III-15

Gentzen’s inversion principle
Quoting (the English translation of) Gentzen’s own words:

The introductions represent, as it were, the ‘definitions’ of
the symbols concerned, and the eliminations are no more,
in the final analysis, than the consequences of these defini-
tions. This fact may be expressed as follows: In eliminat-
ing a symbol, we may use the formula with whose terminal
symbol we are dealing only ‘in the sense afforded it by the
introduction of that symbol’.

Question. Gentzen’s inversion principle is asymmetric in its
treatment of introduction and elimination. Does the dual of the
principle make any sense?

III-16

Subject reduction and strong normalisation

For simply typed λ-calculus we have the following results.

Theorem (subject reduction). If Γ ⊢ t : τ and t⇝βδ t ′, then
Γ ⊢ t ′ : τ .

Theorem (strong normalisation). Every reduction sequence of a
well-typed λ-term is finite.

They are readily translated into theorems about derivations.

Theorem. Elimination of a detour produces a derivation with the
same conclusion.

Theorem. Every derivation can be normalised (to a derivation
that does not contain detours).

III-17

Canonicity

Definition. A derivation is in canonical form if its bottom-most
rule is an introduction rule.
Theorem (canonicity). If ⊢NJ φ is derivable, then there is a
derivation of ⊢NJ φ in canonical form.
PROOF There is a derivation of ⊢ φ with no detours; perform

induction on this derivation. If the bottom-most rule
were an elimination rule, a detour would arise,
contradicting the assumption about the derivation.

Exercise. Expand the above proof sketch.
Question. Is the proof above an indirect one (using ¬¬A → A)?
Question. Is it important for a deduction system to have strong
normalisation and canonicity?
Question. Why is the context empty in the canonicity statement?

III-18

Classical axioms
We obtained the classical deduction system NK by adding to NJ
an inference rule, which corresponds to introducing a constant, say

(LEM)
Γ ⊢ LEM φ : φ ∨ ¬φ

We do not know how to reduce LEM, however. This breaks
canonicity, and the deduction system ceases to be computationally
meaningful.

Question. Why is there a connection between constructivity and
computation?

Question. Without canonicity, is NK still meaningful?

III-19

Underivability

Corollary. NJ is consistent, that is, ̸⊢NJ ⊥.
PROOF If ⊢NJ ⊥, then there is a λ-term of type ⊥ in canonical

form. But none of the canonical forms can have type ⊥.

Corollary (disjunction property). If ⊢NJ φ ∨ ψ, then either ⊢NJ φ
or ⊢NJ ψ.
PROOF A λ-term of type φ ∨ ψ under the empty context can be

reduced to either inl p where ⊢ p : φ or inr q where
⊢ q : ψ.

Remark. The disjunction property does not hold for NK.
Corollary. A ∨ ¬A is underivable in NJ.
PROOF If ⊢NJ A ∨ ¬A, then either ⊢NJ A or ⊢NJ ¬A by the

disjunction property, and thus either |= A or |= ¬A by
soundness. But neither A nor ¬A is a tautology.

III-20

Unifying programming and reasoning

The Curry–Howard correspondence suggests that programs and
proofs be identified. Both of them are mental constructions, which
are exactly what intuitionistic mathematics cares about.

Per Martin-Löf: ‘If programming is understood
not as the writing of instructions for this or that computing
machine
but as the design of methods of computation that it is the
computer’s duty to execute

(a difference that Dijkstra has referred to as the difference
between computer science and computing science),

then it no longer seems possible to distinguish the discipline of
programming from constructive mathematics.’

III-21

Martin-Löf Type Theory

Martin-Löf Type Theory is an influential framework in which
programs and proofs are treated uniformly. It is simultaneously

a computationally meaningful higher-order logic system and
a very expressively typed functional programming language.

There are numerous variations, extensions, and applications of
MLTT. The dependently typed programming language Agda that
we will see next is one of its descendants.

III-22

