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SIMPLY TYPED A-CALCULUS:
INTRODUCTION



ADDING TYPES TO A LANGUAGE

While A-calculus is expressive and computationally powerful, it is rather painful
to write programs inside \-calculus.

Function can be applied to an arbitrary term which can represent a Boolean
value, a number, or even a function, so as a programming language it is not easy
to see the intention of a program.

Therefore, we will consider a formal definition of a typing judgement
I'kFt: A

which specifies the type A of a term ¢ under a list of free (typed) variables,
allowing us to restrict the formation of a valid term by typing.



SIMPLY TYPED A-CALCULUS: STATICS



HIGHER-ORDER FUNCTION TYPE

Assume V is a set of type variables different from variables in untyped \-terms.
(And suppress its existence from now on.)

Definition 1
The judgement A : Type is defined inductively as follows.

. A:Type B :Type
ifXeV
X :Type A— B:Type

where A — B represents a function type from A to B.

We say that A is a type if A: Type is derivable.



The function type is higher-order, because

1. functions can be arguments of another function;
2. functions can be the result of a computation.

For example,

(A, — A,) — B afunction type whose argument is of type A, — A,;
A, — (A, — B) afunction whose return type is A, — B.

Following the convention of function application, we introduce the convention
for the function type:

Convention

A2 Ay— A, = A->A—(.—oA4,.12A4,)...))



CONTEXT

Definition 2
A typing context I is a sequence

F'=x:4A;, 29: 4,5, ...,z A,
of x,; of type A,.

Definition 3
The membership judgement " 5 (x : A) is defined inductively:

'sz:A
Iz:A3z: A Iy:Baz: A

We say that = of type A occursin T if ' 5 (z : A) if derivable.



TYPING RULE — CURRY-STYLE TYPING SYSTEM

The implicit typing system for simply typed X-calculus is defined by the following
typing rules, i.e. inference rules with its conclusion a typing judgement:

m (Var) ifI" > (l’ : A)

1

Nx:AF,;t: B
', A.t:A— B

(abs)

Drit:AoB  Thu:d o
T tu:B app

We say that ¢ is a closed term if - ¢ : A is derivable.

N.B. Whether a term ¢ has a typing derivation is a property of t.



SYNTAX-DIRECTEDNESS

A typing system is syntax-directed if it has exactly one typing rule for each term
construct.

By being syntax-directed, every typing derivation can be inverted:

Lemma 4 (Typing inversion)
Suppose thatT , ¢t : A is derivable. Then,

t =z implies z : AoccursinT.
t=MXx.t’" implies A=B— CandT',z: B+, u : C.

t =w v implies there is some B suchthatT', w: B— Aand T+, v: B.

This lemma is particularly useful when constructing a typing derivation by hand.



TYPING DERIVATION

For any types A and B, the judgement -, A\zy.z : A — B — A has a derivation

(var)
(abs)
(abs)

x:Ay:BF,z: A
i Aeyz:A—B— A

Therefore, Az y. z is a program of type A — B — A.



EXERCISE

Derive the typing judgement
F, Afgx. fx(gz):(A—-B—-C)—-(A—B)—-A—-C

for every types A, B and C.



TYPE INFERENCE AND CHECKING

Can we answer the following questions algorithmically?

Type inference Given a context I and a term ¢, is there a type 7 such that the
typing judgement ' - ¢ : 7 is derivable?

Type checking Given a context T, a type A, and a term ¢, is the typing judgement
'k t: Aderivable?

Typability is reducible to type checking problem of
Ty AFfstazyt: A

Theorem 5
Type checking is decidable in simply typed \-calculus.



PROGRAMMING IN SIMPLY TYPED
A-CALCULUS




CHURCH ENCODINGS OF NATURAL NUMBERS |

The type of natural numbers is of the form
naty,:=A—-A4) -A—- A

for every type A.

Church numerals

c, =Mz flz
Fcn : natA

Successor

suc:=Anfx.f(nfx)

Fsuc:nat, — naty,
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CHURCH ENCODINGS OF NATURAL NUMBERS Il

Addition
add:=Anm fz. (m f) (n f x)
Fadd:nat, - nat, — naty,
Muliplication
mul :=Anm fx.(m (n f))x
Fmul:nat, —»naty, — naty,
Conditional

ifz:=Xnzy.n(Az.2)y
Fifz:?

L



CHURCH ENCODINGS OF BOOLEAN VALUES

We can also define the type of Boolean values for each type variable as

bool,=A—-A— A

Boolean values
true:=AXzy.x and false:=Xxy.y

Conditional

cond:=Xzxy.bxy
Fcond:booly v A—-A— A

12



1. Define conjunction and, disjunction or, and negation not in simply typed
A-calculus.

2. Prove that and, or, and not are well-typed.
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PROPERTIES OF SIMPLY TYPED
A-CALCULUS




TYPE SAFETY = PRESERVATION + PROGRESS

“Well-typed programs cannot ‘go wrong’”
—(Milner, 1978)

Preservation IfT't: Ais derivable and ¢t —; u, thenT'F u : A.

Progress If ' -t : Ais derivable, then either ¢ is in normal form or there is u

By combing the above two properties, we can extend the progress theorem to
—»g ifTFt: Athent — 5 u for someT'Fu : A which is either reducible or in
normal form.
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CONVERSE OF PRESERVATION

The converse of preservation might not hold.

Lemma 6 (Typability of subterms)
Lett be aterm with T -t : A derivable. Then, for every subterm t’ of t there

exists IV such that
't A
Recall that

1. K, =Mry.z
2. Q= Mz.zx)(A\r.xx)

and K; (Az.z) Q —»5 L

Q2 is not typable, so K, IQ is not typable.

15



PRESERVATION THEOREM

Weakening IfT'Ht: Aand z ¢ T, thenT',z: BFHt: A.
Substitution fz: A-t: BandT'Fu: AthenT + t[u/x] : B.

Corollary 7 (Variable renaming)
IfT,x: A-t: Bandy ¢ dom(T"), thenT',y : A+ t[y/z] : B where dom(T")
denotes the set of variables which occur in T.

Theorem 8
Foranytand uif "' -t : Ais derivable andt — 5 u, thenT' - u : A.

Proof sketch.
By induction on both the derivation of ' : Aand t — 5 u. O

N.B. The only non-trivial case isT" - (Az.t) u : B which needs the above results.
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PROOF OF PRESERVATION THEOREM

Proof.
By induction on both the derivation of I'-¢: Aand t — 5 u.

1. SupposeI' -z : A. However, x —AB u for any u. Therefore, it is vacuously
truethat ' u : A.

2. Suppose I' = Az.t: A — Band Azx.t — 4 u. Then, u must be Az. v’ for some
u;T,x: AFt: Bandt — 4 u’ must be derivable. By induction hypothesis,
I'z: AFu is derivable,soisT F \z.uv': A — B.

3. Suppose '+t u. Then ...
4, ...
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PROGRESS: FIRST ATTEMPT

Theorem 9
IfT -t: Aisderivable, then t is in normal form or there is u with t — 5 u.

To prove the theorem, we would like to use inductionon T' ¢ : A again.

However, the fact that ¢ is in normal form does not tell us much what ¢ is. Can we
characterise ¢ syntactically?

18



NORMAL FORM

Definition 10
Define judgements Neutral ¢ and Normal u mutually by

Neutral ¢
Neutral z Norma'l ¢

Neutral ¢ Norma'l u
Neutral tu Norma'l u

Normal A\z.u

Idea. Neutral v and Normal ¢ are derivable iff

t=zuy-—u, and wu=Azy-x,.Tu U,

where 3-redex cannot exist in u if v is normal.
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SOUNDNESS AND COMPLETENESS OF THE INDUCTIVE CHARACTERISATION

Aterm t has no S-reduction if and only if ¢ is normal:
Lemma 11

Soundness If Normal t (resp. Neutral t) is derivable, then t is in normal form.

Completeness If t is in normal form, then Normal ¢ is derivable.

Proof sketch.
Soundness By mutual induction on the derivation of Normal ¢ and Neutral .

Completeness By induction on the formation of ¢.
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PROGRESS

Theorem 12
IfT - t: Alisderivable, then Normal ¢ or there is u with t — 5 w.

Proof sketch.
By induction on the derivation of I' - ¢ : A. O

The statement is trivial in classical logic, as a direct consequence of the Law of
Excluded Middle.

Yet, the progress theorem can be proved constructively without LEM. What is the
computational meaning of this theorem?
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WEAK NORMALISATION

Definition 13
t is weakly normalising denoted by ¢ | if

Normal ¢ t—pu w

That is, t is weakly normalising if there is a sequence

t—rgty —vgty —rg .t Fg

Theorem 14 (Weak normalisation)
Every term t with T' -t : A is weaRly normalising.
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STRONG NORMALISATION

Definition 15
t is strongly normalising denoted by ¢ | if

Vu. (t —gu = ul)

¢4

Intuitively, strong normalisation says every sequence

terminates, but the definition builds the sequence backwards.

Theorem 16
Every term t with T' ¢ : A is strongly normalising.
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EXTENSIONS TO SIMPLY TYPED
A-CALCULUS




GENERAL RECURSION: STATIC

Self-applicative term cannot be typed in simply typed A-calculus. E.g.,
Ax.xx

cannot be typed, since A — A is not equal to A. Hence, the Y-combinator in
untyped A-calculus cannot be typed.

A construct is introduced explicitly for general recursion:

Let A¢;, (V) be the set of terms defined with an additional construct:
fixpoint fix f.tisatermin A¢; (V),ift € Ag; (V)and feV

An additional typing rule is added to simply typed A-calculus:

Lf:AFt: A
Pk, fixf.t: A
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GENERAL RECURSION: DYNAMIC

B-reduction for the general recursion fix is extended with the relation

fixz.t —gt[fixx.t/x]

A term which never terminates can be defined easily.

fixz.z —rg x[fixz. z/a]
=fixz.x — g x[fixz. z/2]
=fixz.z —rg x[fixz. z/z]

Other notions such as =,, —# 4, and FV are extended similarly.
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NATURAL NUMBERS: STATIC

While Church numerals can have multiple types nat 4, for any A, we extend the
calculus with a single type of natural numbers instead.

Let A¢;y (V) be the set of terms defined with additional constructs:

« zeroisatermin Ag;, (V)
* suc(t)isatermin Ag;, (V) iftis
c ifz(t;z.uyv)isatermin Ag, (V) ift,u,v € Aggy y(V)andz € V

with additional typing rules

I'Ht:N I'v:N 'Ht: A Iz:NFu:A
'k zero:N I'Fsuc(t):N FFifz(t;z.u;v): A

The third rule is akin to pattern matching on natural numbers.
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NATURAL NUMBERS: DYNAMIC

B-reduction for natural numbers is extended with two rules:

1fz(t;x.u;zero) — gt

1fz(t; . u;suc(n)) — 5 uln/x]
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NATURAL NUMBERS: EXERCISE

Define the predecessor of natural numbers as a program

pred:N — N.

Evaluate the following terms to their normal forms.

1. pred zero

2. pred (suc (suc (suc zero)))
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BOOLEAN VALUES: EXERCISE

Extend simply typed A-calculus Ag;, (V) further with a type of Boolean values.

1. What term constructs are needed?

2. What typing rules should be added?
3. How S-reduction should be updated?
4,

Define Boolean operations, i.e. conjunction, disjunction, and negation, in
this extension.
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1. (5%) Show the Progress Theorem.
2. (2.5%) Show that if ¢ is in normal form then Normal ¢ is derivable.

3. (2.5%) Extend A¢;, (V) further with product types A x B, for any A and B
where additional constructs should include pairs (¢,«) and a construct to
pattern match on a pair.
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