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SIMPLY TYPED 𝜆-CALCULUS:
INTRODUCTION



ADDING TYPES TO A LANGUAGE

While 𝜆-calculus is expressive and computationally powerful, it is rather painful
to write programs inside 𝜆-calculus.
Function can be applied to an arbitrary term which can represent a Boolean
value, a number, or even a function, so as a programming language it is not easy
to see the intention of a program.

Therefore, we will consider a formal definition of a typing judgement

Γ ⊢ 𝑡 ∶ 𝐴

which specifies the type 𝐴 of a term 𝑡 under a list of free (typed) variables,
allowing us to restrict the formation of a valid term by typing.
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SIMPLY TYPED 𝜆-CALCULUS: STATICS



HIGHER-ORDER FUNCTION TYPE

Assume 𝕍 is a set of type variables different from variables in untyped 𝜆-terms.
(And suppress its existence from now on.)

Definition 1
The judgement 𝐴 ∶ Type is defined inductively as follows.

if 𝑋 ∈ 𝕍𝑋 ∶ Type
𝐴 ∶ Type 𝐵 ∶ Type

𝐴 → 𝐵 ∶ Type

where 𝐴 → 𝐵 represents a function type from 𝐴 to 𝐵.

We say that 𝐴 is a type if 𝐴 ∶ Type is derivable.
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The function type is higher-order, because

1. functions can be arguments of another function;
2. functions can be the result of a computation.

For example,

(𝐴1 → 𝐴2) → 𝐵 a function type whose argument is of type 𝐴1 → 𝐴2;
𝐴1 → (𝐴2 → 𝐵) a function whose return type is 𝐴2 → 𝐵.

Following the convention of function application, we introduce the convention
for the function type:

Convention

𝐴1 → 𝐴2 → …𝐴𝑛 ⋅⋅= 𝐴1 → (𝐴2 → (… → (𝐴𝑛−1 → 𝐴𝑛)… ))
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CONTEXT

Definition 2
A typing context Γ is a sequence

Γ ≡ 𝑥1 ∶ 𝐴1, 𝑥2 ∶ 𝐴2, … , 𝑥𝑛 ∶ 𝐴𝑛

of distinct variables 𝑥𝑖 of type 𝐴𝑖.

Definition 3
The membership judgement Γ ∋ (𝑥 ∶ 𝐴) is defined inductively:

Γ, 𝑥 ∶ 𝐴 ∋ 𝑥 ∶ 𝐴
Γ ∋ 𝑥 ∶ 𝐴

Γ, 𝑦 ∶ 𝐵 ∋ 𝑥 ∶ 𝐴

We say that 𝑥 of type 𝐴 occurs in Γ if Γ ∋ (𝑥 ∶ 𝐴) if derivable.
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TYPING RULE – CURRY-STYLE TYPING SYSTEM

The implicit typing system for simply typed 𝜆-calculus is defined by the following
typing rules, i.e. inference rules with its conclusion a typing judgement:

(var) if Γ ∋ (𝑥 ∶ 𝐴)Γ ⊢𝑖 𝑥 ∶ 𝐴

Γ, 𝑥 ∶ 𝐴 ⊢𝑖 𝑡 ∶ 𝐵 (abs)Γ ⊢𝑖 𝜆𝑥. 𝑡 ∶ 𝐴 → 𝐵

Γ ⊢𝑖 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢𝑖 𝑢 ∶ 𝐴
(app)Γ ⊢𝑖 𝑡 𝑢 ∶ 𝐵

We say that 𝑡 is a closed term if ⊢ 𝑡 ∶ 𝐴 is derivable.

N.B. Whether a term 𝑡 has a typing derivation is a property of 𝑡.
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SYNTAX-DIRECTEDNESS

A typing system is syntax-directed if it has exactly one typing rule for each term
construct.

By being syntax-directed, every typing derivation can be inverted:

Lemma 4 (Typing inversion)
Suppose that Γ ⊢𝑖 𝑡 ∶ 𝐴 is derivable. Then,

𝑡 ≡ 𝑥 implies 𝑥 ∶ 𝐴 occurs in Γ.
𝑡 ≡ 𝜆𝑥. 𝑡′ implies 𝐴 = 𝐵 → 𝐶 and Γ, 𝑥 ∶ 𝐵 ⊢𝑖 𝑢′ ∶ 𝐶 .

𝑡 ≡ 𝑢 𝑣 implies there is some 𝐵 such that Γ ⊢𝑖 𝑢 ∶ 𝐵 → 𝐴 and Γ ⊢𝑖 𝑣 ∶ 𝐵.

This lemma is particularly useful when constructing a typing derivation by hand.
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TYPING DERIVATION

For any types 𝐴 and 𝐵, the judgement ⊢𝑖 𝜆𝑥 𝑦. 𝑥 ∶ 𝐴 → 𝐵 → 𝐴 has a derivation

(var)𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢𝑖 𝑥 ∶ 𝐴
(abs)𝑥 ∶ 𝐴 ⊢𝑖 𝜆𝑦. 𝑥 ∶ 𝐵 → 𝐴
(abs)⊢𝑖 𝜆𝑥 𝑦. 𝑥 ∶ 𝐴 → 𝐵 → 𝐴

Therefore, 𝜆𝑥 𝑦. 𝑥 is a program of type 𝐴 → 𝐵 → 𝐴.
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EXERCISE

Derive the typing judgement

⊢𝑖 𝜆𝑓 𝑔 𝑥. 𝑓 𝑥 (𝑔 𝑥) ∶ (𝐴 → 𝐵 → 𝐶) → (𝐴 → 𝐵) → 𝐴 → 𝐶

for every types 𝐴,𝐵 and 𝐶 .

8



TYPE INFERENCE AND CHECKING

Can we answer the following questions algorithmically?

Type inference Given a context Γ and a term 𝑡, is there a type ? such that the
typing judgement Γ ⊢ 𝑡 ∶ ? is derivable?

Type checking Given a context Γ, a type 𝐴, and a term 𝑡, is the typing judgement
Γ ⊢ 𝑡 ∶ 𝐴 derivable?

Typability is reducible to type checking problem of

𝑥0 ∶ 𝐴 ⊢ fst 𝑥0 𝑡 ∶ 𝐴

Theorem 5
Type checking is decidable in simply typed 𝜆-calculus.
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PROGRAMMING IN SIMPLY TYPED
𝜆-CALCULUS



CHURCH ENCODINGS OF NATURAL NUMBERS I

The type of natural numbers is of the form

nat𝐴 ⋅⋅= (𝐴 → 𝐴) → 𝐴 → 𝐴

for every type 𝐴.

Church numerals

c𝑛 ⋅⋅= 𝜆𝑓 𝑥. 𝑓𝑛𝑥
⊢ c𝑛 ∶ nat𝐴

Successor

suc ⋅⋅= 𝜆𝑛 𝑓 𝑥 . 𝑓 (𝑛 𝑓 𝑥)
⊢ suc ∶ nat𝐴 → nat𝐴
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CHURCH ENCODINGS OF NATURAL NUMBERS II

Addition

add ⋅⋅= 𝜆𝑛𝑚𝑓 𝑥. (𝑚 𝑓) (𝑛 𝑓 𝑥)
⊢ add ∶ nat𝐴 → nat𝐴 → nat𝐴

Muliplication

mul ⋅⋅= 𝜆𝑛𝑚𝑓 𝑥. (𝑚 (𝑛 𝑓)) 𝑥
⊢ mul ∶ nat𝐴 → nat𝐴 → nat𝐴

Conditional

ifz ⋅⋅= 𝜆𝑛𝑥 𝑦. 𝑛 (𝜆𝑧. 𝑥) 𝑦
⊢ ifz ∶ ?
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CHURCH ENCODINGS OF BOOLEAN VALUES

We can also define the type of Boolean values for each type variable as

bool𝐴 ⋅⋅= 𝐴 → 𝐴 → 𝐴

Boolean values
true ⋅⋅= 𝜆𝑥 𝑦. 𝑥 and false ⋅⋅= 𝜆𝑥 𝑦. 𝑦

Conditional

cond ⋅⋅= 𝜆𝑏 𝑥 𝑦. 𝑏 𝑥 𝑦
⊢ cond ∶ bool𝐴 → 𝐴 → 𝐴 → 𝐴
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EXERCISE

1. Define conjunction and, disjunction or, and negation not in simply typed
𝜆-calculus.

2. Prove that and, or, and not are well-typed.
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PROPERTIES OF SIMPLY TYPED
𝜆-CALCULUS



TYPE SAFETY = PRESERVATION + PROGRESS

“Well-typed programs cannot ‘go wrong’.”
—(Milner, 1978)

Preservation If Γ ⊢ 𝑡 ∶ 𝐴 is derivable and 𝑡 ⟶𝛽 𝑢, then Γ ⊢ 𝑢 ∶ 𝐴.
Progress If Γ ⊢ 𝑡 ∶ 𝐴 is derivable, then either 𝑡 is in normal form or there is 𝑢

with 𝑡 ⟶𝛽 𝑢.

By combing the above two properties, we can extend the progress theorem to
−↠𝛽: if Γ ⊢ 𝑡 ∶ 𝐴 then 𝑡 −↠𝛽 𝑢 for some Γ ⊢ 𝑢 ∶ 𝐴 which is either reducible or in
normal form.
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CONVERSE OF PRESERVATION

The converse of preservation might not hold.

Lemma 6 (Typability of subterms)
Let 𝑡 be a term with Γ ⊢ 𝑡 ∶ 𝐴 derivable. Then, for every subterm 𝑡′ of 𝑡 there
exists Γ′ such that

Γ′ ⊢ 𝑡′ ∶ 𝐴′.

Recall that

1. K1 = 𝜆𝑥𝑦. 𝑥
2. Ω = (𝜆𝑥. 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥)

and K1 (𝜆𝑥. 𝑥) Ω −↠𝛽 I.

Ω is not typable, so K1 IΩ is not typable.
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PRESERVATION THEOREM

Weakening If Γ ⊢ 𝑡 ∶ 𝐴 and 𝑥 ∉ Γ, then Γ, 𝑥 ∶ 𝐵 ⊢ 𝑡 ∶ 𝐴.
Substitution If Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 and Γ ⊢ 𝑢 ∶ 𝐴 then Γ ⊢ 𝑡[𝑢/𝑥] ∶ 𝐵.

Corollary 7 (Variable renaming)
If Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵 and 𝑦 ∉ dom(Γ), then Γ, 𝑦 ∶ 𝐴 ⊢ 𝑡[𝑦/𝑥] ∶ 𝐵 where dom(Γ)
denotes the set of variables which occur in Γ.

Theorem 8
For any 𝑡 and 𝑢 if Γ ⊢ 𝑡 ∶ 𝐴 is derivable and 𝑡 ⟶𝛽 𝑢, then Γ ⊢ 𝑢 ∶ 𝐴.

Proof sketch.
By induction on both the derivation of Γ ⊢ 𝑡 ∶ 𝐴 and 𝑡 ⟶𝛽 𝑢.

N.B. The only non-trivial case is Γ ⊢ (𝜆𝑥. 𝑡) 𝑢 ∶ 𝐵 which needs the above results.
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PROOF OF PRESERVATION THEOREM

Proof.
By induction on both the derivation of Γ ⊢ 𝑡 ∶ 𝐴 and 𝑡 ⟶𝛽 𝑢.

1. Suppose Γ ⊢ 𝑥 ∶ 𝐴. However, 𝑥 ⟶̸𝛽 𝑢 for any 𝑢. Therefore, it is vacuously
true that Γ ⊢ 𝑢 ∶ 𝐴.

2. Suppose Γ ⊢ 𝜆𝑥. 𝑡 ∶ 𝐴 → 𝐵 and 𝜆𝑥. 𝑡 ⟶𝛽 𝑢. Then, 𝑢 must be 𝜆𝑥. 𝑢′ for some
𝑢′; Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡∶ 𝐵 and 𝑡 ⟶𝛽 𝑢′ must be derivable. By induction hypothesis,
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑢′ is derivable, so is Γ ⊢ 𝜆𝑥. 𝑢′ ∶ 𝐴 → 𝐵.

3. Suppose Γ ⊢ 𝑡 𝑢. Then ...
4. ...
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PROGRESS: FIRST ATTEMPT

Theorem 9
If Γ ⊢ 𝑡 ∶ 𝐴 is derivable, then 𝑡 is in normal form or there is 𝑢 with 𝑡 ⟶𝛽 𝑢.

To prove the theorem, we would like to use induction on Γ ⊢ 𝑡 ∶ 𝐴 again.

However, the fact that 𝑡 is in normal form does not tell us much what 𝑡 is. Can we
characterise 𝑡 syntactically?
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NORMAL FORM

Definition 10
Define judgements Neutral 𝑡 and Normal 𝑢 mutually by

Neutral 𝑥

Neutral 𝑡 Normal 𝑢
Neutral 𝑡 𝑢

Neutral 𝑡
Normal 𝑡

Normal 𝑢
Normal 𝜆𝑥. 𝑢

Idea. Neutral 𝑢 and Normal 𝑡 are derivable iff

𝑡 ≡ 𝑥 𝑢1 ⋯𝑢𝑛 and 𝑢 ≡ 𝜆𝑥1 ⋯𝑥𝑛. 𝑥 𝑢1 ⋯𝑢𝑚

where 𝛽-redex cannot exist in 𝑢 if 𝑢 is normal.
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SOUNDNESS AND COMPLETENESS OF THE INDUCTIVE CHARACTERISATION

A term 𝑡 has no 𝛽-reduction if and only if 𝑡 is normal:

Lemma 11

Soundness If Normal 𝑡 (resp. Neutral 𝑡) is derivable, then 𝑡 is in normal form.
Completeness If 𝑡 is in normal form, then Normal 𝑡 is derivable.

Proof sketch.

Soundness By mutual induction on the derivation of Normal 𝑡 and Neutral 𝑡.
Completeness By induction on the formation of 𝑡.
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PROGRESS

Theorem 12
If Γ ⊢ 𝑡 ∶ 𝐴 is derivable, then Normal 𝑡 or there is 𝑢 with 𝑡 ⟶𝛽 𝑢.

Proof sketch.
By induction on the derivation of Γ ⊢ 𝑡 ∶ 𝐴.

The statement is trivial in classical logic, as a direct consequence of the Law of
Excluded Middle.

Yet, the progress theorem can be proved constructively without LEM. What is the
computational meaning of this theorem?
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WEAK NORMALISATION

Definition 13
𝑡 is weakly normalising denoted by 𝑡 ↓ if

Normal 𝑡
𝑡 ↓

𝑡 ⟶𝛽 𝑢 𝑢 ↓
𝑡 ↓

That is, 𝑡 is weakly normalising if there is a sequence

𝑡 ⟶𝛽 𝑡1 ⟶𝛽 𝑡2 ⟶𝛽 …𝑢 ⟶̸𝛽

Theorem 14 (Weak normalisation)
Every term 𝑡 with Γ ⊢ 𝑡 ∶ 𝐴 is weakly normalising.
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STRONG NORMALISATION

Definition 15
𝑡 is strongly normalising denoted by 𝑡 ⇓ if

∀𝑢. (𝑡 ⟶𝛽 𝑢 ⟹ 𝑢 ⇓)
𝑡 ⇓

Intuitively, strong normalisation says every sequence

𝑡 ⟶𝛽 𝑡1 ⟶𝛽 𝑡2 ⋯

terminates, but the definition builds the sequence backwards.

Theorem 16
Every term 𝑡 with Γ ⊢ 𝑡 ∶ 𝐴 is strongly normalising.

23



EXTENSIONS TO SIMPLY TYPED
𝜆-CALCULUS



GENERAL RECURSION: STATIC

Self-applicative term cannot be typed in simply typed 𝜆-calculus. E.g.,

𝜆𝑥. 𝑥 𝑥

cannot be typed, since 𝐴 → 𝐴 is not equal to 𝐴. Hence, the 𝑌 -combinator in
untyped 𝜆-calculus cannot be typed.

A construct is introduced explicitly for general recursion:

Let Λfix(𝑉 ) be the set of terms defined with an additional construct:

fixpoint fix 𝑓. 𝑡 is a term in Λfix(𝑉 ), if 𝑡 ∈ Λfix(𝑉 ) and 𝑓 ∈ 𝑉

An additional typing rule is added to simply typed 𝜆-calculus:

Γ, 𝑓 ∶ 𝐴 ⊢𝑖 𝑡 ∶ 𝐴
Γ ⊢𝑖 fix 𝑓. 𝑡 ∶ 𝐴
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GENERAL RECURSION: DYNAMIC

𝛽-reduction for the general recursion fix is extended with the relation

fix𝑥. 𝑡 ⟶𝛽 𝑡[fix𝑥. 𝑡/𝑥]

A term which never terminates can be defined easily.

fix𝑥. 𝑥 ⟶𝛽 𝑥[fix𝑥. 𝑥/𝑥]
≡ fix𝑥. 𝑥 ⟶𝛽 𝑥[fix𝑥. 𝑥/𝑥]
≡ fix𝑥. 𝑥 ⟶𝛽 𝑥[fix𝑥. 𝑥/𝑥]
≡ …

Other notions such as =𝛼, −↠𝛽, and FV are extended similarly.
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NATURAL NUMBERS: STATIC

While Church numerals can have multiple types nat𝐴, for any 𝐴, we extend the
calculus with a single type of natural numbers instead.

Let Λfix,N(𝑉 ) be the set of terms defined with additional constructs:

• zero is a term in Λfix,N(𝑉 )
• suc(𝑡) is a term in Λfix,N(𝑉 ) if 𝑡 is
• ifz(𝑡; 𝑥. 𝑢; 𝑣) is a term in Λfix,N(𝑉 ) if 𝑡, 𝑢, 𝑣 ∈ Λfix,N(𝑉 ) and 𝑥 ∈ 𝑉

with additional typing rules

Γ ⊢ zero ∶ ℕ
Γ ⊢ 𝑡 ∶ ℕ

Γ ⊢ suc(𝑡) ∶ ℕ
Γ ⊢ 𝑣 ∶ ℕ Γ ⊢ 𝑡 ∶ 𝐴 Γ, 𝑥 ∶ ℕ ⊢ 𝑢 ∶ 𝐴

Γ ⊢ ifz(𝑡; 𝑥. 𝑢; 𝑣) ∶ 𝐴

The third rule is akin to pattern matching on natural numbers.
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NATURAL NUMBERS: DYNAMIC

𝛽-reduction for natural numbers is extended with two rules:

ifz(𝑡; 𝑥. 𝑢;zero) ⟶𝛽 𝑡
ifz(𝑡; 𝑥. 𝑢;suc(𝑛)) ⟶𝛽 𝑢[𝑛/𝑥]
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NATURAL NUMBERS: EXERCISE

Define the predecessor of natural numbers as a program

pred ∶ ℕ → ℕ.

Evaluate the following terms to their normal forms.

1. pred zero
2. pred (suc (suc (suc zero)))
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BOOLEAN VALUES: EXERCISE

Extend simply typed 𝜆-calculus Λfix,N(𝑉 ) further with a type of Boolean values.

1. What term constructs are needed?
2. What typing rules should be added?
3. How 𝛽-reduction should be updated?
4. Define Boolean operations, i.e. conjunction, disjunction, and negation, in

this extension.
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HOMEWORK

1. (5%) Show the Progress Theorem.
2. (2.5%) Show that if 𝑡 is in normal form then Normal 𝑡 is derivable.
3. (2.5%) Extend Λfix,N(𝑉 ) further with product types 𝐴×𝐵, for any 𝐴 and 𝐵

where additional constructs should include pairs (𝑡, 𝑢) and a construct to
pattern match on a pair.
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