

$\lambda\text{-}\mathsf{CALCULUS}$

SIMPLE TYPES AND THEIR EXTENSIONS

陳亮廷 Chen, Liang-Ting

Formosan Summer School on Logic, Language, and Computation 2024

Institute of Information Science Academia Sinica

Simply Typed λ -Calculus: Introduction

While λ -calculus is expressive and computationally powerful, it is rather painful to write programs inside λ -calculus.

Function can be applied to an arbitrary term which can represent a Boolean value, a number, or even a function, so as a programming language it is not easy to see the intention of a program.

Therefore, we will consider a formal definition of a typing judgement

 $\Gamma \vdash t:A$

which specifies the type A of a term t under a list of free (typed) variables, allowing us to *restrict the formation* of a valid term by typing.

Simply Typed $\lambda\text{-}\mathsf{Calculus:}$ Statics

Assume V is a set of type variables different from variables in untyped λ -terms. (And suppress its existence from now on.)

Definition 1

The judgement A : Type is defined inductively as follows.

$$\overline{X: \mathsf{Type}}$$
 if $X \in \mathbb{V}$

$$\frac{A: \mathsf{Type}}{A \to B: \mathsf{Type}}$$

where $A \rightarrow B$ represents a function type from A to B.

We say that A is a type if A : Type is derivable.

The function type is higher-order, because

- 1. functions can be arguments of another function;
- 2. functions can be the result of a computation.

For example,

 $(A_1 \to A_2) \to B$ a function type whose argument is of type $A_1 \to A_2$; $A_1 \to (A_2 \to B)$ a function whose return type is $A_2 \to B$.

Following the convention of function application, we introduce the convention for the function type:

Convention

$$A_1 \rightarrow A_2 \rightarrow \ldots A_n \quad \coloneqq \quad A_1 \rightarrow (A_2 \rightarrow (\ldots \rightarrow (A_{n-1} \rightarrow A_n) \ldots))$$

CONTEXT

Definition 2

A typing context Γ is a sequence

$$\Gamma\equiv x_1:A_1,\;x_2:A_2,\;\ldots,\;x_n:A_n$$

of distinct variables x_i of type A_i .

Definition 3

The membership judgement $\Gamma \ni (x : A)$ is defined inductively:

 $\begin{tabular}{c} \hline \Gamma, x: A \ni x: A \\ \hline \Gamma, y: B \ni x: A \\ \hline \end{tabular}$

We say that x of type A occurs in Γ if $\Gamma \ni (x : A)$ if derivable.

The implicit typing system for simply typed λ -calculus is defined by the following typing rules, i.e. inference rules with its conclusion a typing judgement:

$$\begin{array}{c} \hline \Gamma \vdash_{i} x : A \end{array} \text{ (var) } \quad \text{if } \Gamma \ni (x : A) \\\\ \hline \frac{\Gamma, x : A \vdash_{i} t : B}{\Gamma \vdash_{i} \lambda x. \ t : A \to B} \text{ (abs)} \\\\ \hline \hline \frac{\Gamma \vdash_{i} t : A \to B}{\Gamma \vdash_{i} t \ u : B} \quad \Gamma \vdash_{i} u : A \text{ (app)} \end{array}$$

We say that t is a closed term if $\vdash t : A$ is derivable.

N.B. Whether a term t has a typing derivation is a *property* of t.

A typing system is *syntax-directed* if it has *exactly* one typing rule for each term construct.

By being syntax-directed, every typing derivation can be inverted:

```
Lemma 4 (Typing inversion)
```

Suppose that $\Gamma \vdash_i t : A$ is derivable. Then,

 $t \equiv x$ implies x : A occurs in Γ .

$$t \equiv \lambda x. t'$$
 implies $A = B \rightarrow C$ and $\Gamma, x: B \vdash_i u': C$.

 $t \equiv u \ v \ \text{ implies there is some } B \text{ such that } \Gamma \vdash_i u : B \to A \text{ and } \Gamma \vdash_i v : B.$

This lemma is particularly useful when constructing a typing derivation by hand.

For any types A and B, the judgement $\vdash_i \lambda x y. x : A \rightarrow B \rightarrow A$ has a derivation

$$\frac{\overline{x:A,y:B\vdash_{i} x:A} \text{ (var)}}{x:A\vdash_{i} \lambda y.x:B \to A} \text{ (abs)}$$
$$\vdash_{i} \lambda x y.x:A \to B \to A \text{ (abs)}$$

Therefore, $\lambda x y. x$ is a program of type $A \rightarrow B \rightarrow A$.

Derive the typing judgement

$$\vdash_i \lambda f \, g \, x. \, f \, x \, (g \, x): (A \to B \to C) \to (A \to B) \to A \to C$$

for every types A, B and C.

Can we answer the following questions algorithmically?

Type inference Given a context Γ and a term t, is there a type ? such that the typing judgement $\Gamma \vdash t$: ? is derivable?

Type checking Given a context Γ , a type A, and a term t, is the typing judgement $\Gamma \vdash t : A$ derivable?

Typability is reducible to type checking problem of

 $x_0: A \vdash \texttt{fst} \; x_0 \; t: A$

Theorem 5

Type checking is decidable in simply typed λ -calculus.

Programming in Simply Typed $\lambda\text{-}\mathsf{Calculus}$

The type of natural numbers is of the form

$$\mathsf{nat}_A := (A \to A) \to A \to A$$

for every type A.

Church numerals

$$\label{eq:c_n} \mathbf{c}_n := \lambda f \, x. \, f^n x$$
 - $\mathbf{c}_n : \mathrm{nat}_A$

Successor

$$suc := \lambda n f x \cdot f (n f x)$$
$$\vdash suc : nat_A \rightarrow nat_A$$

CHURCH ENCODINGS OF NATURAL NUMBERS II

Addition

$$\begin{split} \mathsf{add} &\coloneqq \lambda n \, m \, f \, x. \, (m \ f) \ (n \ f \ x) \\ \vdash \mathsf{add} : \mathsf{nat}_A \to \mathsf{nat}_A \to \mathsf{nat}_A \end{split}$$

Muliplication

$$\begin{split} & \texttt{mul} \mathrel{\mathop:}= \lambda n \, m \, f \, x. \, (m \; (n \; f)) \; x \\ & \vdash \texttt{mul} : \texttt{nat}_A \to \texttt{nat}_A \to \texttt{nat}_A \end{split}$$

Conditional

$$ifz := \lambda n x y. n (\lambda z. x) y$$
$$- ifz : ?$$

We can also define the type of Boolean values for each type variable as

 $\operatorname{bool}_A:=A\to A\to A$

Boolean values

true $:= \lambda x y. x$ and false $:= \lambda x y. y$

Conditional

$$\label{eq:cond} \begin{split} & \operatorname{\mathsf{cond}} := \lambda b \, x \, y. \, b \, x \, y \\ & \vdash \, \operatorname{\mathsf{cond}} : \operatorname{\mathsf{bool}}_A \to A \to A \end{split}$$

- 1. Define conjunction and, disjunction or, and negation not in simply typed λ -calculus.
- 2. Prove that and, or, and not are well-typed.

Properties of Simply Typed $\lambda\text{-}\mathsf{Calculus}$

"Well-typed programs cannot 'go wrong?"

-(Milner, 1978)

Preservation If $\Gamma \vdash t : A$ is derivable and $t \longrightarrow_{\beta} u$, then $\Gamma \vdash u : A$. Progress If $\Gamma \vdash t : A$ is derivable, then either t is in *normal form* or there is u with $t \longrightarrow_{\beta} u$.

By combing the above two properties, we can extend the progress theorem to $- \ast_{\beta}$: if $\Gamma \vdash t : A$ then $t \to \ast_{\beta} u$ for some $\Gamma \vdash u : A$ which is either reducible or in normal form.

The converse of preservation might not hold.

```
Lemma 6 (Typability of subterms)
Let t be a term with \Gamma \vdash t : A derivable. Then, for every subterm t' of t there exists \Gamma' such that
```

 $\Gamma' \vdash t' : A'.$

Recall that

- 1. $\mathbf{K}_1 = \lambda x y. x$
- 2. $\Omega = (\lambda x. x x) (\lambda x. x x)$

and $\mathbf{K}_1 \ (\lambda x. x) \ \Omega \longrightarrow_{\beta} \mathbf{I}.$

 Ω is not typable, so $\mathbf{K}_1 \mathbf{I} \, \Omega$ is not typable.

```
Weakening If \Gamma \vdash t : A and x \notin \Gamma, then \Gamma, x : B \vdash t : A.
Substitution If \Gamma, x : A \vdash t : B and \Gamma \vdash u : A then \Gamma \vdash t[u/x] : B.
```

Corollary 7 (Variable renaming)

If $\Gamma, x : A \vdash t : B$ and $y \notin \operatorname{dom}(\Gamma)$, then $\Gamma, y : A \vdash t[y/x] : B$ where $\operatorname{dom}(\Gamma)$ denotes the set of variables which occur in Γ .

Theorem 8 For any t and u if $\Gamma \vdash t : A$ is derivable and $t \longrightarrow_{\beta} u$, then $\Gamma \vdash u : A$.

Proof sketch. By induction on both the derivation of $\Gamma \vdash t : A$ and $t \longrightarrow_{\beta} u$.

N.B. The only non-trivial case is $\Gamma \vdash (\lambda x. t) \ u : B$ which needs the above results.

Proof.

By induction on both the derivation of $\Gamma \vdash t : A$ and $t \longrightarrow_{\beta} u$.

- 1. Suppose $\Gamma \vdash x : A$. However, $x \not\rightarrow_{\beta} u$ for any u. Therefore, it is vacuously true that $\Gamma \vdash u : A$.
- 2. Suppose $\Gamma \vdash \lambda x. t : A \to B$ and $\lambda x. t \longrightarrow_{\beta} u$. Then, u must be $\lambda x. u'$ for some u'; $\Gamma, x : A \vdash t : B$ and $t \longrightarrow_{\beta} u'$ must be derivable. By induction hypothesis, $\Gamma, x : A \vdash u'$ is derivable, so is $\Gamma \vdash \lambda x. u' : A \to B$.
- 3. Suppose $\Gamma \vdash t \ u$. Then ...

4. ...

Theorem 9

If $\Gamma \vdash t : A$ is derivable, then t is in normal form or there is u with $t \longrightarrow_{\beta} u$.

To prove the theorem, we would like to use induction on $\Gamma \vdash t : A$ again.

However, the fact that t is in normal form does not tell us much what t is. Can we characterise t syntactically?

Definition 10

Define judgements Neutral t and Normal u mutually by

Neutral x

 $\frac{\text{Neutral } t}{\text{Normal } t}$

Neutral t Normal u Neutral t u

 $\frac{\text{Normal } u}{\text{Normal } \lambda x. \, u}$

Idea. Neutral u and Normal t are derivable iff

 $t \equiv x \ u_1 \cdots u_n$ and $u \equiv \lambda x_1 \cdots x_n \cdot x \ u_1 \cdots u_m$

where β -redex cannot exist in u if u is normal.

A term t has no β -reduction if and only if t is normal:

Lemma 11

Soundness If Normal t (resp. Neutral t) is derivable, then t is in normal form. Completeness If t is in normal form, then Normal t is derivable.

Proof sketch.

Soundness **By mutual induction on the derivation of** Normal *t* **and** Neutral *t*. Completeness **By induction on the formation of** *t*.

Progress

Theorem 12 If $\Gamma \vdash t : A$ is derivable, then Normal t or there is u with $t \longrightarrow_{\beta} u$.

Proof sketch. By induction on the derivation of $\Gamma \vdash t : A$.

The statement is trivial in classical logic, as a direct consequence of the Law of Excluded Middle.

Yet, the progress theorem can be proved constructively without LEM. What is the *computational meaning* of this theorem?

WEAK NORMALISATION

That is, t is weakly normalising if there is a sequence

$$t \longrightarrow_{\beta} t_1 \longrightarrow_{\beta} t_2 \longrightarrow_{\beta} \dots u \not \longrightarrow_{\beta}$$

Theorem 14 (Weak normalisation) Every term t with $\Gamma \vdash t : A$ is weakly normalising.

STRONG NORMALISATION

Definition 15

t is strongly normalising denoted by $t\Downarrow if$

$$\frac{\forall u. \, (t \longrightarrow_{\beta} u \implies u \Downarrow)}{t \Downarrow}$$

Intuitively, strong normalisation says every sequence

 $t \longrightarrow_\beta t_1 \longrightarrow_\beta t_2 \cdots$

terminates, but the definition builds the sequence backwards.

Theorem 16 Every term t with $\Gamma \vdash t : A$ is strongly normalising.

Extensions to Simply Typed $\lambda\text{-}\mathsf{Calculus}$

Self-applicative term cannot be typed in simply typed $\lambda\text{-calculus. E.g.,}$

 $\lambda x. x x$

cannot be typed, since $A \rightarrow A$ is not equal to A. Hence, the Y-combinator in untyped λ -calculus cannot be typed.

A construct is introduced explicitly for general recursion:

Let $\Lambda_{fix}(V)$ be the set of terms defined with an additional construct:

fixpoint fix f.t is a term in $\Lambda_{fix}(V)$, if $t \in \Lambda_{fix}(V)$ and $f \in V$

An additional typing rule is added to simply typed λ -calculus:

 $\frac{\Gamma, f: A \vdash_i t: A}{\Gamma \vdash_i \mathsf{fix} f. t: A}$

 β -reduction for the general recursion fix is extended with the relation

 $\mathsf{fix}\, x.\, t \longrightarrow_\beta t[\mathsf{fix}\, x.\, t/x]$

A term which never terminates can be defined easily.

 $\begin{array}{ll} \operatorname{fix} x.x & \longrightarrow_{\beta} x[\operatorname{fix} x.x/x] \\ \equiv \operatorname{fix} x.x & \longrightarrow_{\beta} x[\operatorname{fix} x.x/x] \\ \equiv \operatorname{fix} x.x & \longrightarrow_{\beta} x[\operatorname{fix} x.x/x] \\ \equiv \dots \end{array}$

Other notions such as $=_{\alpha}, \longrightarrow_{\beta}$, and **FV** are extended similarly.

While Church numerals can have multiple types nat_A , for any A, we extend the calculus with a single type of natural numbers instead.

Let $\Lambda_{\texttt{fix}, \mathsf{N}}(V)$ be the set of terms defined with additional constructs:

- zero is a term in $\Lambda_{\texttt{fix}, \mathbf{N}}(V)$
- $\operatorname{suc}(t)$ is a term in $\Lambda_{fix,N}(V)$ if t is
- ifz(t; x. u; v) is a term in $\Lambda_{fix,N}(V)$ if $t, u, v \in \Lambda_{fix,N}(V)$ and $x \in V$

with additional typing rules

	$\Gamma \vdash t : \mathbb{N}$	$\Gamma \vdash v : \mathbb{N}$	$\Gamma \vdash t : A$	$\Gamma, x: \mathbb{N} \vdash u: A$
$\Gamma \vdash {\tt zero}: \mathbb{N}$	$\overline{\Gamma \vdash \texttt{suc}(t):\mathbb{N}}$	Ι	$\boxed{ \Gamma \vdash ifz(t; x. u; v) : A }$	

The third rule is akin to pattern matching on natural numbers.

 β -reduction for natural numbers is extended with two rules:

$$\begin{split} & \operatorname{ifz}(t;x.\,u;\operatorname{zero}) \longrightarrow_\beta t \\ & \operatorname{ifz}(t;x.\,u;\operatorname{suc}(n)) \longrightarrow_\beta u[n/x] \end{split}$$

Define the predecessor of natural numbers as a program

 $\texttt{pred}:\mathbb{N}\to\mathbb{N}.$

Evaluate the following terms to their normal forms.

- 1. pred zero
- 2. pred (suc (suc (suc zero)))

Extend simply typed λ -calculus $\Lambda_{fix,N}(V)$ further with a type of Boolean values.

- 1. What term constructs are needed?
- 2. What typing rules should be added?
- 3. How β -reduction should be updated?
- 4. Define Boolean operations, i.e. conjunction, disjunction, and negation, in this extension.

- 1. (5%) Show the Progress Theorem.
- 2. (2.5%) Show that if t is in normal form then Normal t is derivable.
- 3. (2.5%) Extend $\Lambda_{fix,N}(V)$ further with product types $A \times B$, for any A and B where additional constructs should include pairs (t, u) and a construct to pattern match on a pair.