A-CALCULUS

SIMPLE TYPES AND THEIR EXTENSIONS

(& 52iE Chen, Liang-Ting
Formosan Summer School on Logic, Language, and Computation 2024

Institute of Information Science
Academia Sinica

SIMPLY TYPED A-CALCULUS:
INTRODUCTION

ADDING TYPES TO A LANGUAGE

While A-calculus is expressive and computationally powerful, it is rather painful
to write programs inside \-calculus.

Function can be applied to an arbitrary term which can represent a Boolean
value, a number, or even a function, so as a programming language it is not easy
to see the intention of a program.

Therefore, we will consider a formal definition of a typing judgement
I'kFt: A

which specifies the type A of a term ¢ under a list of free (typed) variables,
allowing us to restrict the formation of a valid term by typing.

SIMPLY TYPED A-CALCULUS: STATICS

HIGHER-ORDER FUNCTION TYPE

Assume V is a set of type variables different from variables in untyped \-terms.
(And suppress its existence from now on.)

Definition 1
The judgement A : Type is defined inductively as follows.

. A:Type B :Type
ifXeV
X :Type A— B:Type

where A — B represents a function type from A to B.

We say that A is a type if A: Type is derivable.

The function type is higher-order, because

1. functions can be arguments of another function;
2. functions can be the result of a computation.

For example,

(A, — A,) — B afunction type whose argument is of type A, — A,;
A, — (A, — B) afunction whose return type is A, — B.

Following the convention of function application, we introduce the convention
for the function type:

Convention

A2 Ay— A, = A->A—(.—oA4,.12A4,)...))

CONTEXT

Definition 2
A typing context I is a sequence

F'=x:4A;, 29: 4,5, ...,z A,
of x,; of type A,.

Definition 3
The membership judgement " 5 (x : A) is defined inductively:

'sz:A
Iz:A3z: A Iy:Baz: A

We say that = of type A occursin T if ' 5 (z : A) if derivable.

TYPING RULE — CURRY-STYLE TYPING SYSTEM

The implicit typing system for simply typed X-calculus is defined by the following
typing rules, i.e. inference rules with its conclusion a typing judgement:

m (Var) ifI" > (l’ : A)

1

Nx:AF,;t: B
', A.t:A— B

(abs)

Drit:AoB Thu:d o
T tu:B app

We say that ¢ is a closed term if - ¢ : A is derivable.

N.B. Whether a term ¢ has a typing derivation is a property of t.

SYNTAX-DIRECTEDNESS

A typing system is syntax-directed if it has exactly one typing rule for each term
construct.

By being syntax-directed, every typing derivation can be inverted:

Lemma 4 (Typing inversion)
Suppose thatT , ¢t : A is derivable. Then,

t =z implies z : AoccursinT.
t=MXx.t’" implies A=B— CandT',z: B+, u : C.

t =w v implies there is some B suchthatT', w: B— Aand T+, v: B.

This lemma is particularly useful when constructing a typing derivation by hand.

TYPING DERIVATION

For any types A and B, the judgement -, A\zy.z : A — B — A has a derivation

(var)
(abs)
(abs)

x:Ay:BF,z: A
i Aeyz:A—B— A

Therefore, Az y. z is a program of type A — B — A.

EXERCISE

Derive the typing judgement
F, Afgx. fx(gz):(A—-B—-C)—-(A—B)—-A—-C

for every types A, B and C.

TYPE INFERENCE AND CHECKING

Can we answer the following questions algorithmically?

Type inference Given a context I and a term ¢, is there a type 7 such that the
typing judgement ' - ¢ : 7 is derivable?

Type checking Given a context T, a type A, and a term ¢, is the typing judgement
'k t: Aderivable?

Typability is reducible to type checking problem of
Ty AFfstazyt: A

Theorem 5
Type checking is decidable in simply typed \-calculus.

PROGRAMMING IN SIMPLY TYPED
A-CALCULUS

CHURCH ENCODINGS OF NATURAL NUMBERS |

The type of natural numbers is of the form
naty,:=A—-A4) -A—- A

for every type A.

Church numerals

c, =Mz flz
Fcn : natA

Successor

suc:=Anfx.f(nfx)

Fsuc:nat, — naty,

10

CHURCH ENCODINGS OF NATURAL NUMBERS Il

Addition
add:=Anm fz. (m f) (n f x)
Fadd:nat, - nat, — naty,
Muliplication
mul :=Anm fx.(m (n f))x
Fmul:nat, —»naty, — naty,
Conditional

ifz:=Xnzy.n(Az.2)y
Fifz:?

L

CHURCH ENCODINGS OF BOOLEAN VALUES

We can also define the type of Boolean values for each type variable as

bool,=A—-A— A

Boolean values
true:=AXzy.x and false:=Xxy.y

Conditional

cond:=Xzxy.bxy
Fcond:booly v A—-A— A

12

1. Define conjunction and, disjunction or, and negation not in simply typed
A-calculus.

2. Prove that and, or, and not are well-typed.

13

PROPERTIES OF SIMPLY TYPED
A-CALCULUS

TYPE SAFETY = PRESERVATION + PROGRESS

“Well-typed programs cannot ‘go wrong’”
—(Milner, 1978)

Preservation IfT't: Ais derivable and ¢t —; u, thenT'F u : A.

Progress If ' -t : Ais derivable, then either ¢ is in normal form or there is u

By combing the above two properties, we can extend the progress theorem to
—»g ifTFt: Athent — 5 u for someT'Fu : A which is either reducible or in
normal form.

14

CONVERSE OF PRESERVATION

The converse of preservation might not hold.

Lemma 6 (Typability of subterms)
Lett be aterm with T -t : A derivable. Then, for every subterm t’ of t there

exists IV such that
't A
Recall that

1. K, =Mry.z
2. Q= Mz.zx)(A\r.xx)

and K; (Az.z) Q —»5 L

Q2 is not typable, so K, IQ is not typable.

15

PRESERVATION THEOREM

Weakening IfT'Ht: Aand z ¢ T, thenT',z: BFHt: A.
Substitution fz: A-t: BandT'Fu: AthenT + t[u/x] : B.

Corollary 7 (Variable renaming)
IfT,x: A-t: Bandy ¢ dom(T"), thenT',y : A+ t[y/z] : B where dom(T")
denotes the set of variables which occur in T.

Theorem 8
Foranytand uif "' -t : Ais derivable andt — 5 u, thenT' - u : A.

Proof sketch.
By induction on both the derivation of ' : Aand t — 5 u. O

N.B. The only non-trivial case isT" - (Az.t) u : B which needs the above results.

16

PROOF OF PRESERVATION THEOREM

Proof.
By induction on both the derivation of I'-¢: Aand t — 5 u.

1. SupposeI' -z : A. However, x —AB u for any u. Therefore, it is vacuously
truethat ' u : A.

2. Suppose I' = Az.t: A — Band Azx.t — 4 u. Then, u must be Az. v’ for some
u;T,x: AFt: Bandt — 4 u’ must be derivable. By induction hypothesis,
I'z: AFu is derivable,soisT F \z.uv': A — B.

3. Suppose '+t u. Then ...
4, ...

17

PROGRESS: FIRST ATTEMPT

Theorem 9
IfT -t: Aisderivable, then t is in normal form or there is u with t — 5 u.

To prove the theorem, we would like to use inductionon T' ¢ : A again.

However, the fact that ¢ is in normal form does not tell us much what ¢ is. Can we
characterise ¢ syntactically?

18

NORMAL FORM

Definition 10
Define judgements Neutral ¢ and Normal u mutually by

Neutral ¢
Neutral z Norma'l ¢

Neutral ¢ Norma'l u
Neutral tu Norma'l u

Normal A\z.u

Idea. Neutral v and Normal ¢ are derivable iff

t=zuy-—u, and wu=Azy-x,.Tu U,

where 3-redex cannot exist in u if v is normal.

19

SOUNDNESS AND COMPLETENESS OF THE INDUCTIVE CHARACTERISATION

Aterm t has no S-reduction if and only if ¢ is normal:
Lemma 11

Soundness If Normal t (resp. Neutral t) is derivable, then t is in normal form.

Completeness If t is in normal form, then Normal ¢ is derivable.

Proof sketch.
Soundness By mutual induction on the derivation of Normal ¢ and Neutral .

Completeness By induction on the formation of ¢.

20

PROGRESS

Theorem 12
IfT - t: Alisderivable, then Normal ¢ or there is u with t — 5 w.

Proof sketch.
By induction on the derivation of I' - ¢ : A. O

The statement is trivial in classical logic, as a direct consequence of the Law of
Excluded Middle.

Yet, the progress theorem can be proved constructively without LEM. What is the
computational meaning of this theorem?

21

WEAK NORMALISATION

Definition 13
t is weakly normalising denoted by ¢ | if

Normal ¢ t—pu w

That is, t is weakly normalising if there is a sequence

t—rgty —vgty —rg .t Fg

Theorem 14 (Weak normalisation)
Every term t with T' -t : A is weaRly normalising.

22

STRONG NORMALISATION

Definition 15
t is strongly normalising denoted by ¢ | if

Vu. (t —gu = ul)

¢4

Intuitively, strong normalisation says every sequence

terminates, but the definition builds the sequence backwards.

Theorem 16
Every term t with T' ¢ : A is strongly normalising.

23

EXTENSIONS TO SIMPLY TYPED
A-CALCULUS

GENERAL RECURSION: STATIC

Self-applicative term cannot be typed in simply typed A-calculus. E.g.,
Ax.xx

cannot be typed, since A — A is not equal to A. Hence, the Y-combinator in
untyped A-calculus cannot be typed.

A construct is introduced explicitly for general recursion:

Let A¢;, (V) be the set of terms defined with an additional construct:
fixpoint fix f.tisatermin A¢; (V),ift € Ag; (V)and feV

An additional typing rule is added to simply typed A-calculus:

Lf:AFt: A
Pk, fixf.t: A

24

GENERAL RECURSION: DYNAMIC

B-reduction for the general recursion fix is extended with the relation

fixz.t —gt[fixx.t/x]

A term which never terminates can be defined easily.

fixz.z —rg x[fixz. z/a]
=fixz.x — g x[fixz. z/2]
=fixz.z —rg x[fixz. z/z]

Other notions such as =,, —# 4, and FV are extended similarly.

25

NATURAL NUMBERS: STATIC

While Church numerals can have multiple types nat 4, for any A, we extend the
calculus with a single type of natural numbers instead.

Let A¢;y (V) be the set of terms defined with additional constructs:

« zeroisatermin Ag;, (V)
* suc(t)isatermin Ag;, (V) iftis
c ifz(t;z.uyv)isatermin Ag, (V) ift,u,v € Aggy y(V)andz € V

with additional typing rules

I'Ht:N I'v:N 'Ht: A Iz:NFu:A
'k zero:N I'Fsuc(t):N FFifz(t;z.u;v): A

The third rule is akin to pattern matching on natural numbers.

26

NATURAL NUMBERS: DYNAMIC

B-reduction for natural numbers is extended with two rules:

1fz(t;x.u;zero) — gt

1fz(t; . u;suc(n)) — 5 uln/x]

27

NATURAL NUMBERS: EXERCISE

Define the predecessor of natural numbers as a program

pred:N — N.

Evaluate the following terms to their normal forms.

1. pred zero

2. pred (suc (suc (suc zero)))

28

BOOLEAN VALUES: EXERCISE

Extend simply typed A-calculus Ag;, (V) further with a type of Boolean values.

1. What term constructs are needed?

2. What typing rules should be added?
3. How S-reduction should be updated?
4,

Define Boolean operations, i.e. conjunction, disjunction, and negation, in
this extension.

29

1. (5%) Show the Progress Theorem.
2. (2.5%) Show that if ¢ is in normal form then Normal ¢ is derivable.

3. (2.5%) Extend A¢;, (V) further with product types A x B, for any A and B
where additional constructs should include pairs (¢,«) and a construct to
pattern match on a pair.

30

	Simply Typed λ-Calculus: Introduction
	Simply Typed λ-Calculus: Statics
	Programming in Simply Typed λ-Calculus
	Properties of Simply Typed λ-Calculus
	Extensions to Simply Typed λ-Calculus

