
 

Modal
Logic

and
Capability

Safety
Veel Krishnaswami
University of Cambridge

FLOLAC 202L
Taipei Taiwan



An Effectful Programming Language

A 11A B IN Chan

e Ax A e le e In x printle e

I let x e inez

F Tx A

Fte A



Typing Rules

Fro 1 Ttn N

F x Ate B The A B Fte A

rtax.ae A B Tt ee B

The Chan Fte N
It printle e 1

Pte A F x A tea C a AET
Ttletx e inez C Trx A



Operational Semantics
vi 17nA.e In c

channel names

a Wr C N

e e

e transitions to e possibly writing a

We write e el when a



Reduction Rules

Ax A e Culae print e n
wran C

e e e ed

e e eies ve vez

e te
let x vine updez let e ine let x e ine

Call by value Impure language
evaluation order



Evaluation Sequence

Consider an evaluation sequence

e e e e ey

We write multistep evaluation as

e
909192



Impurity Evaluation Order

let x print c D in wr c 0 Wrc 1
1

let y print C 1 in

C

let y print c 1 in wr c 1 Wr Cio
1

let x print C O in

C

Reordering expressions is not allowed



Impurity Dropping Expressions

FE Af 1 1 fi vs GE Af 1 1 C

F Ax L print e o
kid C

G Ax L print Cio C



Impurity Duplicating Expressions

let x printed in wread
clet y x in

let x print c 0 in wres o Wrko
glet y print e o in

C



Managing Effects with Monads

Introduce TCA such that

return A TCA

bind TCA A TB TIB

print Chan IN T1

Now print c n TA

e TCA e may perform effects



Capability Based Security
Traditional OS security

Anyone can refer to e.g files
by name e.g home nee.lk foo.md

OS checks whether access is

allowed via access control list



Capability Based Security
Alternative from 1970s used in Fuschia

1 Each object e.g file has a

unique unforgeable id

2 Ids combine identity authority
3 Clients control access via

parameter passing



Capability Safety

All effects controlled by
capabilities



Ambient Authority

print int IN 1



Ambient Authority

print int IN 1

Calling print o does a

write without a capability



Ambient Authority

print int String IN 1

Example print int foo txt O



Ambient Authority

print int String IN 1

Example print int feet O

Anyone can invent any
string file names are forgeable



A Capability Safe API

print int Chan IN 1

Chan abstract type of channels
Chan values are unforgeable
due to memory safety abstraction



Capability Safe Languages

Imperative memory safe language

Standard library APIs are

fully capability safe



Capability Safe Languages

Imperative memory safe language

Standard library APIs are

fully capability safe

our little language is capability safe



Capability Taming

Any ops with ambient authority
break capability safety



Capability Taming

Eng ops with ambient authority
break capability safety

To make a language capability safe

completely rewrite std library



Capability Taming

Eng ops with ambient authority
break capability safety

To make a language capability safe

completely rewrite std library

E g Cap Java Caja for JS



Capabilities and Types

Can we use types to track capabilities

Values of Type Own Capabilities

1 NO

IN NO

Chan YES



Capabilities and Types

Can we use types to track capabilities

Values of Type Own Capabilities

1 NO

IN NO

Chan YES

Ax B



Capabilities and Types

Can we use types to track capabilities

Values of Type Own Capabilities

1 NO

IN NO

Chan YES

Ax B

IN 1



Closures Capture Capabilities

f Chan t An IN print f n IN 1

fn is a closure capturing f

So IN 1 accesses a capability
even though IN and I don't



Modal Logic to the Rescue

A values of A with NI capabilities



Modal Logic to the Rescue

A values of A with NI capabilities

K A B A B

T A A

4 A A



Modal Logic to the Rescue

A values of A with NI capabilities

K A B Ax B Each axiom
makes
sense in

T A A terms of

4 A A denial



An Effectful Modal Language

A 11A BIN Chan A
e I Ax A e le e In x printle e

I let x e inez
1 box e I let box x e in e

f Tx A Δ Δ x A

Ditte A



Typing Rules

Dirt 1 Dittn.IN

Dit x Ate B Dire A B Ditte A

Dirtax A.e A B Dittee B

Ditte Chan Diftein
Dirt printle e 1

Apte A bit x A tea C a AET
A Ttletx e inez C Δ Ttx A



Modal Typing Rules

AE Δ
Δ Fte A

D te A
Δ r t boxle A

Ditte A D x A t tea c
Δ r t let box a e in ez c



Reduction Rules with Box

e e

box e boxle let box x box v in e upde

Ax A e Culae print e n
wream C

e e e e e ed

e e eies ve vez

e ee
let x vine updez let see ine let x e ine



Type based Reasoning

safe print Chan IN 1



Type based Reasoning

safe print Chan IN 1

safe print owns no channels



Type based Reasoning

safe print Chan IN 1

safe print owns no channels

All channels it can access come from

Chan argument



Type based Reasoning

safe print Chan IN 1

safe print owns no channels

All channels it can access come from

Chan argument
So it can only write to channels

it is given capability safe



Type based Reasoning

multi print List Chan IN 1



Type based Reasoning

multi print List Chan IN 1

multi print owns no channels



Type based Reasoning

multiprint List Chan IN 1

multi print owns no channels

All channels it can access come from

Listchan argument



Type based Reasoning

multi print List Chan IN 1

multi print owns no channels

All channels it can access come from

List chan argument
So it can only write to channels

it is given capability safe



Encoding Purity

f A B

f owns no channels
f's argument owns no channels
So f v runs with no channels

It does no writes

f is purely functional



Encoding Purity

f A B



Encoding Purity

f A B

f owns no channels



Encoding Purity

f A B

f owns no channels
f's argument owns no channels



Encoding Purity

f A B

f owns no channels
f's argument owns no channels
So f v runs with no channels

It does no writes



Encoding Purity

f A B

f owns no channels
f's argument owns no channels
So f v runs with no channels

It does no writes

f is purely functional



Capability Taming with

A B capability safe functions

As you update the stallib mark

updated functions w box

Modal discipline tracks capability
safety
GRADUAL rewrites now possible



Proving It

How can we prove A enforces

capability safety

Needs Legal relations


