
Functional Programming
Practicals 2: Monads

Shin-Cheng Mu

FLOLAC 2024

1. The Maybe either returns a value or fails, and when it fails we do not know the cause. One
would like to have more information in case of failure. Defined in the file Except.hs is the
following type for exceptions:

data Except e a = Return a | Throw e .

(a) Complete the definitions of return and (>>=) for Except e.

(b) Complete the definition of catchE :

catchE :: Except e a → (e → Except e a) → Except e a

(c) Back to evaluating expressions. We assume that we are working on very early computers
where integers are 2-bytes long. Therefore, signed numbers are between 32767 and
−32768. Evaluating an expression may fail in the following ways:

data Err = DivByZero | Overflow | Underflow .

If a result of evaluation exceeds 32767, we get an Overflow error; if the result goes below
−32768 we get an Underflow error. And division by zero is still an error.
Complete the definition of eval such that when Overflow happens when evaluating any
sub-expression, the value of the sub-expression is 32767; when Underflow happens, the
value is −32768, and DivByZero is not dealt with. (Well, it doesn’t always make sense,
but it’s just an example.) Use funtions add and div ′, which raiseOverflow andUnderflow
errors when necessary, in place of (+) and div . If the definition is correct, eval tstExpr00
should be Return 1 and eval tstExpr01 should be Throw DivByZero. Hint: eval calls an
auxiliary funcition eval′, which should be mutually recursive with eval.

2. (a) Complete the definitions in the file EvalLet00.hs.

(b) Our “environment” for this application is essentially a mapping, that is, a function, from
variable names to values. What if, instead of type Env = [(Name, Int)], we define

type Env = Name → Maybe Int ?

1

Implement the following two methods:

empty :: Env ,
extend :: (Name, Int) → Env → Env ,

where empty denotes an empty environment, and extend extends an environment with
a (variable, value) pair, and use them in eval.

3. Pseudorandomnumbers are needed in various applications. The following equation shows
a classical (while not mathematically ideal) approach to generate sequences of pseudoran-
dom numbers between [0…m− 1]:

Xn+1 = (a× Xn + c)modm ,

where Xn is the current number, Xn+1 is the next, and a and c are positive constants.

(a) To implement a pseudorandom number generator, one may use a state monad that
keeps the current number as the state. Complete the definitions in Rand00.hs.

(b) In Rand00.hs the constants m, a, and c are given as global variables. In Rand01.hs we
keep the constants in a Reader monad. Complete the definitions.

4. In EvalLet01.hswe consider an Expr evaluator that raises two kinds of exceptions: division
by zero, and variable not found. Complete the definition. Start from implementing eval,
finding out what effects it demands from the monad. Then implement a monad that does
support these effects.

5. Regarding “fast product” discussed in the lecture. We aim to prove that

fastprod xs = return (prod xs) . (1)

(a) Consider the following work, which is equivalent to the one given in the lecture apart
from using if:

work :: [Int] → Maybe Int
work [] = return 1
work (x : xs) = if x = = 0 then fail

else work xs >>= λy → return (x × y) .

Prove that

work xs = if elem 0 xs then fail else return (prod xs) , (2)

where prod is defined in the handouts and elem is defined by

elem y [] = False
elem y (x : xs) = x = = y ∨ elem y xs .

Page 2

(b) Prove (1) using (2) and the properties of catch.

(c) We needed (2) because we cannot yet prove (1) directly. The reason is that we do not
have a rule telling us what happens when catch meets (>>=). The following, unfortu-
nately, does not hold for reasonable interpretations of failure catching:

catch mx h>>= f = catch (mx >>= f) (h>>= f) . (3)

Find a counter-example, when the monad is Maybe, that (3) does not hold.

(d) However, recall

(⟨$⟩) :: Monad m ⇒ (a → b) → (m a → m b)
f ⟨$⟩mx = mx >>= (return · f) ,

We can demand that

f ⟨$⟩ catch mx h = catch (f ⟨$⟩mx) (f ⟨$⟩ h) . (4)

Prove (4) when the monad is Maybe.

(e) With (⟨$⟩), the function work can be defined by

work [] = return 1
work (x : xs) = if x = = 0 then fail else (x×) ⟨$⟩ work xs .

Prove (1) without going through (2), but using (4).

Page 3

