Functional Programming Practicals 2: Monads

Shin-Cheng Mu

FLOLAC 2024

1. The Maybe either returns a value or fails, and when it fails we do not know the cause. One would like to have more information in case of failure. Defined in the file Except.hs is the following type for exceptions:
data Except $e a=$ Return $a \mid$ Throw e.
(a) Complete the definitions of return and (\gg) for Except e.
(b) Complete the definition of catch E :

$$
\text { catchE }:: \text { Except } e a \rightarrow(e \rightarrow \text { Except } e a) \rightarrow \text { Except } e a
$$

(c) Back to evaluating expressions. We assume that we are working on very early computers where integers are 2-bytes long. Therefore, signed numbers are between 32767 and -32768 . Evaluating an expression may fail in the following ways:

> data Err = DivByZero | Overflow | Underflow .

If a result of evaluation exceeds 32767, we get an Overflow error; if the result goes below -32768 we get an Underflow error. And division by zero is still an error.
Complete the definition of eval such that when Overflow happens when evaluating any sub-expression, the value of the sub-expression is 32767 ; when Underflow happens, the value is -32768 , and DivByZero is not dealt with. (Well, it doesn't always make sense, but it's just an example.) Use funtions add and $d i v^{\prime}$, which raise Overflow and Underflow errors when necessary, in place of $(+)$ and div. If the definition is correct, eval tstExpr00 should be Return 1 and eval tstExpr01 should be Throw DivByZero. Hint: eval calls an auxiliary funcition eval', which should be mutually recursive with eval.
2. (a) Complete the definitions in the file EvalLet00.hs.
(b) Our "environment" for this application is essentially a mapping, that is, a function, from variable names to values. What if, instead of type Env = [(Name, Int)], we define

$$
\text { type Env }=\text { Name } \rightarrow \text { Maybe Int ? }
$$

Implement the following two methods:

$$
\begin{aligned}
& \text { empty :: Env, } \\
& \text { extend }::(\text { Name, Int }) \rightarrow \text { Env } \rightarrow \text { Env , }
\end{aligned}
$$

where empty denotes an empty environment, and extend extends an environment with a (variable, value) pair, and use them in eval.
3. Pseudorandom numbers are needed in various applications. The following equation shows a classical (while not mathematically ideal) approach to generate sequences of pseudorandom numbers between [$0 \ldots m-1$]:

$$
X_{n+1}=\left(a \times X_{n}+c\right) \bmod m
$$

where X_{n} is the current number, X_{n+1} is the next, and a and c are positive constants.
(a) To implement a pseudorandom number generator, one may use a state monad that keeps the current number as the state. Complete the definitions in Rand00.hs.
(b) In Rand00.hs the constants m, a, and c are given as global variables. In Rand01.hs we keep the constants in a Reader monad. Complete the definitions.
4. In EvalLet01.hs we consider an Expr evaluator that raises two kinds of exceptions: division by zero, and variable not found. Complete the definition. Start from implementing eval, finding out what effects it demands from the monad. Then implement a monad that does support these effects.
5. Regarding "fast product" discussed in the lecture. We aim to prove that

$$
\begin{equation*}
\text { fastprod xs }=\text { return }(\text { prod } x s) . \tag{1}
\end{equation*}
$$

(a) Consider the following work, which is equivalent to the one given in the lecture apart from using if:

```
work :: [Int] \(\rightarrow\) Maybe Int
work [] = return 1
work \((x: x s)=\) if \(x=0\) then fail
    else work \(x s \gg \lambda y \rightarrow\) return \((x \times y)\).
```

Prove that

$$
\begin{equation*}
\text { work } x s=\text { if elem } 0 \text { xs then fail else return (prod } x s) \text {, } \tag{2}
\end{equation*}
$$

where prod is defined in the handouts and elem is defined by

$$
\begin{array}{ll}
\text { elem } y[] & =\text { False } \\
\text { elem } y(x: x s) & =x=y \vee \text { elem } y x s .
\end{array}
$$

(b) Prove (1) using (2) and the properties of catch.
(c) We needed (2) because we cannot yet prove (1) directly. The reason is that we do not have a rule telling us what happens when catch meets (\gg). The following, unfortunately, does not hold for reasonable interpretations of failure catching:

$$
\begin{equation*}
\text { catch } m x h \gg f=\operatorname{catch}(m x \gg f)(h \gg f) . \tag{3}
\end{equation*}
$$

Find a counter-example, when the monad is Maybe, that (3) does not hold.
(d) However, recall

$$
\begin{aligned}
& (\langle \$\rangle):: \text { Monad } m \Rightarrow(a \rightarrow b) \rightarrow(m a \rightarrow m b) \\
& f\langle \$\rangle m x=m x \gg(\text { return } \cdot f),
\end{aligned}
$$

We can demand that

$$
\begin{equation*}
f\langle \$\rangle \text { catch } m x h=\operatorname{catch}(f\langle \$\rangle m x)(f\langle \$\rangle h) . \tag{4}
\end{equation*}
$$

Prove (4) when the monad is Maybe.
(e) With $(\langle \$\rangle)$, the function work can be defined by

$$
\begin{array}{ll}
\text { work }[] & =\text { return } 1 \\
\text { work }(x: x s) & =\text { if } x=0 \text { then fail else }(x \times)\langle \$\rangle \text { work } x s .
\end{array}
$$

Prove (1) without going through (2), but using (4).

