Functional Programming Practicals 0

Shin-Cheng Mu

FLOLAC 2024

Reviews...

1. A practice on curried functions.
(a) Define a function poly such that poly abcx=a× $x^{2}+b \times x+c$. All the inputs and the result are of type Float.
(b) Reuse poly to define a function poly1 such that poly1 $x=x^{2}+2 \times x+1$.
(c) Reuse poly to define a function poly2 such that poly2 $a b c=a \times 2^{2}+b \times 2+c$.
2. Type in the definition of square in your working file.
(a) Define a function quad:: Int \rightarrow Int such that quad x computes x^{4}.
(b) Type in this definition into your working file. Describe, in words, what this function does.

$$
\begin{aligned}
& \text { twice }::(a \rightarrow a) \rightarrow(a \rightarrow a) \\
& \text { twice } f x=f(f x) .
\end{aligned}
$$

(c) Define quad using twice.
3. Replace the previous twice with this definition:

$$
\begin{aligned}
& \text { twice }::(a \rightarrow a) \rightarrow(a \rightarrow a) \\
& \text { twice } f=f \cdot f .
\end{aligned}
$$

(a) Does quad still behave the same?
(b) Explain in words what this operator (•) does.
4. Functions as arguments, and a quick practice on sectioning.
(a) Type in the following definition to your working file, without giving the type.

$$
\text { forktimes } f g x=f x \times g x
$$

Use : t in GHCi to find out the type of forktimes. You will end up getting a complex type which, for now, can be seen as equivalent to

$$
(t \rightarrow \text { Int }) \rightarrow(t \rightarrow \text { Int }) \rightarrow t \rightarrow \text { In } t .
$$

Can you explain this type?
(b) Define a function that, given input x, use forktimes to compute $x^{2}+3 \times x+2$. Hint: $x^{2}+3 \times x+2=(x+1) \times(x+2)$.
(c) Type in the following definition into your working file: lift2 $h f g x=h(f x)(g x)$. Find out the type of lift2. Can you explain its type?
(d) Use lift2 to compute $x^{2}+3 \times x+2$.

Definitions and Proofs by Induction

1. Prove that length distributes into (+):

$$
\text { length }(x s+y s)=\text { length } x s+\text { length } y s .
$$

2. Prove: sum \cdot concat $=$ sum \cdot map sum.
3. Prove: filter $p \cdot \operatorname{map} f=\operatorname{map} f \cdot \operatorname{filter}(p \cdot f)$.

Hint: for calculation, it might be easier to use this definition of filter:

$$
\begin{aligned}
\text { filter } p[]= & {[] } \\
\text { filter } p(x: x s)= & \text { if } p \times \text { then } x: \text { filter } p x s \\
& \text { else filter } p \times s
\end{aligned}
$$

and use the law that in the world of total functions we have:

$$
f\left(\text { if } q \text { then } e_{1} \text { else } e_{2}\right)=\text { if } q \text { then } f e_{1} \text { else } f e_{2}
$$

You may also carry out the proof using the definition of filter using guards:

$$
\text { filter } p(x: x s) \left\lvert\, \begin{aligned}
& p x=\ldots \\
& \mid \text { otherwise }=\ldots
\end{aligned}\right.
$$

You will then have to distinguish between the two cases: $p x$ and $\neg(p x)$, which makes the proof more fragmented. Both proofs are okay, however.
4. Reflecting on the law we used in the previous exercise:

$$
f\left(\text { if } q \text { then } e_{1} \text { else } e_{2}\right)=\text { if } q \text { then } f e_{1} \text { else } f e_{2}
$$

Can you think of a counterexample to the law above, when we allow the presence of \perp ? What additional constraint shall we impose on f to make the law true?
5. Prove: take $n x s+$ drop $n x s=x s$, for all n and $x s$.
6. Define a function fan :: $a \rightarrow$ List $a \rightarrow$ List (List a) such that fan x xs inserts x into the 0 th, 1 st... nth positions of $x s$, where n is the length of $x s$. For example:

$$
\text { fan } 5[1,2,3,4]=[[5,1,2,3,4],[1,5,2,3,4],[1,2,5,3,4],[1,2,3,5,4],[1,2,3,4,5]] .
$$

7. Prove: $\operatorname{map}(\operatorname{map} f) \cdot f a n x=\operatorname{fan}(f x) \cdot \operatorname{map} f$, for all f and x. Hint: you will need the map-fusion law, and to spot that $\operatorname{map} f \cdot(y:)=(f y:) \cdot \operatorname{map} f$ (why?).
8. Define perms :: List $a \rightarrow$ List (List a) that returns all permutations of the input list. For example:

$$
\operatorname{perms}[1,2,3]=[[1,2,3],[2,1,3],[2,3,1],[1,3,2],[3,1,2],[3,2,1]] .
$$

You will need several auxiliary functions defined in the lectures and in the exercises.
9. Prove: $\operatorname{map}(\operatorname{map} f) \cdot \operatorname{perm}=\operatorname{perm} \cdot \operatorname{map} f$. You may need previously proved results, as well as a property about concat and map: for all g, we have map g.concat $=$ concat $\cdot \operatorname{map}(\operatorname{map} g)$.
10. Define inits :: List $a \rightarrow \operatorname{List}($ List $a)$ that returns all prefixes of the input list.
inits "abcde" = [" ", "a", "ab", "abc", "abcd", "abcde"].

Hint: the empty list has one prefix: the empty list. The solution has been given in the lecture. Please try it again yourself.
11. Define tails :: List $a \rightarrow$ List (List a) that returns all suffixes of the input list.
tails "abcde" = ["abcde", "bcde", "cde", "de", "e", " "].

Hint: the empty list has one suffix: the empty list. The solution has been given in the lecture. Please try it again yourself.
12. The function splits :: List $a \rightarrow$ List (List a, List a) returns all the ways a list can be split into two. For example,

$$
\begin{aligned}
\text { splits }[1,2,3,4]= & {[([],[1,2,3,4]),([1],[2,3,4]),([1,2],[3,4]),} \\
& ([1,2,3],[4]),([1,2,3,4],[])] .
\end{aligned}
$$

Define splits inductively on the input list. Hint: you may find it useful to define, in a whereclause, an auxiliary function $f(y s, z s)=\ldots$ that matches pairs. Or you may simply use ($\lambda(y s, z s) \rightarrow \ldots$.
13. An interleaving of two lists $x s$ and $y s$ is a permutation of the elements of both lists such that the members of $x s$ appear in their original order, and so does the members of $y s$. Define interleave :: List $a \rightarrow$ List $a \rightarrow$ List (List a) such that interleave xs ys is the list of interleaving of $x s$ and $y s$. For example, interleave $[1,2,3][4,5]$ yields:

$$
\begin{gathered}
{[[1,2,3,4,5],[1,2,4,3,5],[1,2,4,5,3],[1,4,2,3,5],[1,4,2,5,3]} \\
[1,4,5,2,3],[4,1,2,3,5],[4,1,2,5,3],[4,1,5,2,3],[4,5,1,2,3]] .
\end{gathered}
$$

14. A list $y s$ is a sublist of $x s$ if we can obtain $y s$ by removing zero or more elements from $x s$. For example, $[2,4]$ is a sublist of $[1,2,3,4]$, while $[3,2]$ is not. The list of all sublists of $[1,2,3]$ is:

$$
[[],[3],[2],[2,3],[1],[1,3],[1,2],[1,2,3]] .
$$

Define a function sublist :: List $a \rightarrow$ List (List a) that computes the list of all sublists of the given list. Hint: to form a sublist of $x s$, each element of $x s$ could either be kept or dropped.
15. Consider the following datatype for internally labelled binary trees:
data Tree $a=$ Null \mid Node $a($ Tree $a)($ Tree $a)$.
(a) Given $(\downarrow)::$ Nat \rightarrow Nat \rightarrow Nat, which yields the smaller one of its arguments, define $\min T::$ Tree Nat \rightarrow Nat, which computes the minimal element in a tree. (Note: (\downarrow) is actually called \min in the standard library. In the lecture we use the symbol (\downarrow) to be brief.)
(b) Define mapT :: $(a \rightarrow b) \rightarrow$ Tree $a \rightarrow$ Tree b, which applies the functional argument to each element in a tree.
(c) Can you define (\downarrow) inductively on Nat?
(d) Prove that for all n and $t, \min T(\operatorname{map} T(n+) t)=n+\min T t$. That is, $\min T \cdot \operatorname{map} T(n+)=$ $(n+) \cdot \min T$.

