
Functional Programming
Practicals 0

Shin-Cheng Mu

FLOLAC 2024

Reviews…
1. A practice on curried functions.

(a) Define a function poly such that poly a b c x = a× x2 + b× x + c. All the inputs and the
result are of type Float .

(b) Reuse poly to define a function poly1 such that poly1 x = x2 + 2× x + 1.

(c) Reuse poly to define a function poly2 such that poly2 a b c = a× 22 + b × 2 + c.

2. Type in the definition of square in your working file.

(a) Define a function quad :: Int → Int such that quad x computes x4.

(b) Type in this definition into your working file. Describe, in words, what this function
does.

twice :: (a → a) → (a → a)
twice f x = f (f x) .

(c) Define quad using twice.

3. Replace the previous twice with this definition:

twice :: (a → a) → (a → a)
twice f = f · f .

(a) Does quad still behave the same?

(b) Explain in words what this operator (·) does.

4. Functions as arguments, and a quick practice on sectioning.

1

(a) Type in the following definition to your working file, without giving the type.

forktimes f g x = f x × g x .

Use : t in GHCi to find out the type of forktimes. You will end up getting a complex type
which, for now, can be seen as equivalent to

(t → Int) → (t → Int) → t → Int .

Can you explain this type?

(b) Define a function that, given input x , use forktimes to compute x2 + 3 × x + 2. Hint:
x2 + 3× x + 2 = (x + 1)× (x + 2).

(c) Type in the following definition into your working file: lift2 h f g x = h (f x) (g x). Find
out the type of lift2. Can you explain its type?

(d) Use lift2 to compute x2 + 3× x + 2.

Definitions and Proofs by Induction
1. Prove that length distributes into (++):

length (xs ++ ys) = length xs + length ys .

2. Prove: sum · concat = sum ·map sum.

3. Prove: filter p ·map f = map f · filter (p · f).
Hint: for calculation, it might be easier to use this definition of filter :

filter p [] = []
filter p (x : xs) = if p x then x : filter p xs

else filter p xs

and use the law that in the world of total functions we have:

f (if q then e1 else e2) = if q then f e1 else f e2

You may also carry out the proof using the definition of filter using guards:

…
filter p (x : xs) | p x = …

| otherwise = …

You will then have to distinguish between the two cases: p x and ¬ (p x), which makes the
proof more fragmented. Both proofs are okay, however.

Page 2

4. Reflecting on the law we used in the previous exercise:

f (if q then e1 else e2) = if q then f e1 else f e2

Can you think of a counterexample to the law above, when we allow the presence of ⊥?
What additional constraint shall we impose on f to make the law true?

5. Prove: take n xs ++ drop n xs = xs, for all n and xs.

6. Define a function fan :: a → List a → List (List a) such that fan x xs inserts x into the 0th,
1st. . .nth positions of xs, where n is the length of xs. For example:

fan 5 [1, 2, 3, 4] = [[5, 1, 2, 3, 4], [1, 5, 2, 3, 4], [1, 2, 5, 3, 4], [1, 2, 3, 5, 4], [1, 2, 3, 4, 5]] .

7. Prove: map (map f) · fan x = fan (f x) · map f , for all f and x . Hint: you will need the
map-fusion law, and to spot that map f · (y :) = (f y :) ·map f (why?).

8. Define perms :: List a → List (List a) that returns all permutations of the input list. For
example:

perms [1, 2, 3] = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]] .

You will need several auxiliary functions defined in the lectures and in the exercises.

9. Prove: map (map f) · perm = perm · map f . You may need previously proved results, as well
as a property about concat and map: for all g, we have map g · concat = concat ·map (map g).

10. Define inits :: List a → List (List a) that returns all prefixes of the input list.

inits "abcde" = ["", "a", "ab", "abc", "abcd", "abcde"].

Hint: the empty list has one prefix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

11. Define tails :: List a → List (List a) that returns all suffixes of the input list.

tails "abcde" = ["abcde", "bcde", "cde", "de", "e", ""].

Hint: the empty list has one suffix: the empty list. The solution has been given in the lecture.
Please try it again yourself.

12. The function splits :: List a → List (List a, List a) returns all the ways a list can be split into
two. For example,

splits [1, 2, 3, 4] = [([], [1, 2, 3, 4]), ([1], [2, 3, 4]), ([1, 2], [3, 4]),
([1, 2, 3], [4]), ([1, 2, 3, 4], [])] .

Define splits inductively on the input list. Hint: you may find it useful to define, in awhere-
clause, an auxiliary function f (ys, zs) = … that matches pairs. Or you may simply use
(λ (ys, zs) → …).

Page 3

13. An interleaving of two lists xs and ys is a permutation of the elements of both lists such that
the members of xs appear in their original order, and so does the members of ys. Define
interleave :: List a → List a → List (List a) such that interleave xs ys is the list of interleaving
of xs and ys. For example, interleave [1, 2, 3] [4, 5] yields:

[[1, 2, 3, 4, 5], [1, 2, 4, 3, 5], [1, 2, 4, 5, 3], [1, 4, 2, 3, 5], [1, 4, 2, 5, 3],
[1, 4, 5, 2, 3], [4, 1, 2, 3, 5], [4, 1, 2, 5, 3], [4, 1, 5, 2, 3], [4, 5, 1, 2, 3]].

14. A list ys is a sublist of xs if we can obtain ys by removing zero or more elements from xs. For
example, [2, 4] is a sublist of [1, 2, 3, 4], while [3, 2] is not. The list of all sublists of [1, 2, 3] is:

[[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

Define a function sublist :: List a → List (List a) that computes the list of all sublists of the
given list. Hint: to form a sublist of xs, each element of xs could either be kept or dropped.

15. Consider the following datatype for internally labelled binary trees:

data Tree a = Null | Node a (Tree a) (Tree a) .

(a) Given (↓) :: Nat → Nat → Nat , which yields the smaller one of its arguments, define
minT :: Tree Nat → Nat , which computes the minimal element in a tree. (Note: (↓) is
actually called min in the standard library. In the lecture we use the symbol (↓) to be
brief.)

(b) Define mapT :: (a → b) → Tree a → Tree b, which applies the functional argument to
each element in a tree.

(c) Can you define (↓) inductively on Nat?

(d) Prove that for all n and t , minT (mapT (n+) t) = n +minT t . That is, minT ·mapT (n+) =
(n+) ·minT .

Page 4

