Functional Programming Practicals 0

Shin-Cheng Mu

FLOLAC 2024

Reviews...

- 1. A practice on curried functions.
 - (a) Define a function *poly* such that *poly* $a b c x = a \times x^2 + b \times x + c$. All the inputs and the result are of type *Float*.
 - (b) Reuse *poly* to define a function *poly1* such that *poly1* $x = x^2 + 2 \times x + 1$.
 - (c) Reuse *poly* to define a function *poly*2 such that *poly*2 *a b c* = $a \times 2^2 + b \times 2 + c$.
- 2. Type in the definition of *square* in your working file.
 - (a) Define a function *quad* :: Int \rightarrow Int such that *quad* x computes x^4 .
 - (b) Type in this definition into your working file. Describe, in words, what this function does.

twice $:: (a \to a) \to (a \to a)$ twice $f \ x = f \ (f \ x)$.

- (c) Define quad using twice.
- 3. Replace the previous *twice* with this definition:

twice
$$:: (a \rightarrow a) \rightarrow (a \rightarrow a)$$

twice $f = f \cdot f$.

- (a) Does quad still behave the same?
- (b) Explain in words what this operator (\cdot) does.
- 4. Functions as arguments, and a quick practice on sectioning.

(a) Type in the following definition to your working file, without giving the type.

forktimes $f g x = f x \times g x$.

Use : *t* in GHCi to find out the type of *forktimes*. You will end up getting a complex type which, for now, can be seen as equivalent to

$$(t \rightarrow Int) \rightarrow (t \rightarrow Int) \rightarrow t \rightarrow Int$$
.

Can you explain this type?

- (b) Define a function that, given input x, use *forktimes* to compute $x^2 + 3 \times x + 2$. Hint: $x^2 + 3 \times x + 2 = (x + 1) \times (x + 2)$.
- (c) Type in the following definition into your working file: $lift_2 h f g x = h (f x) (g x)$. Find out the type of *lift_2*. Can you explain its type?
- (d) Use *lift2* to compute $x^2 + 3 \times x + 2$.

Definitions and Proofs by Induction

1. Prove that *length* distributes into (#):

length (xs + ys) = length xs + length ys.

- 2. Prove: $sum \cdot concat = sum \cdot map sum$.
- 3. Prove: *filter* $p \cdot map f = map f \cdot filter (p \cdot f)$. **Hint**: for calculation, it might be easier to use this definition of *filter*:

filter p [] = []filter p (x : xs) = **if** p x **then** x : filter p xs **else** filter p xs

and use the law that in the world of total functions we have:

f (if q then e_1 else e_2) = if q then $f e_1$ else $f e_2$

You may also carry out the proof using the definition of *filter* using guards:

 $filter \ p \ (x : xs) \ | \ p \ x = \dots$ $| \ otherwise = \dots$

You will then have to distinguish between the two cases: $p \ x$ and $\neg (p \ x)$, which makes the proof more fragmented. Both proofs are okay, however.

4. Reflecting on the law we used in the previous exercise:

f (if q then e_1 else e_2) = if q then $f e_1$ else $f e_2$

Can you think of a counterexample to the law above, when we allow the presence of \perp ? What additional constraint shall we impose on *f* to make the law true?

- 5. Prove: *take n xs* + *drop n xs* = *xs*, for all *n* and *xs*.
- 6. Define a function $fan :: a \to List \ a \to List \ (List \ a)$ such that $fan \ x \ xs$ inserts x into the 0th, 1st... *n*th positions of *xs*, where *n* is the length of *xs*. For example:

fan 5 [1, 2, 3, 4] = [[5, 1, 2, 3, 4], [1, 5, 2, 3, 4], [1, 2, 5, 3, 4], [1, 2, 3, 5, 4], [1, 2, 3, 4, 5]]

- 7. Prove: map $(map f) \cdot fan x = fan (f x) \cdot map f$, for all f and x. **Hint**: you will need the map-fusion law, and to spot that map $f \cdot (y :) = (f y :) \cdot map f$ (why?).
- 8. Define *perms* :: *List* $a \rightarrow List$ (*List* a) that returns all permutations of the input list. For example:

perms [1, 2, 3] = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]

You will need several auxiliary functions defined in the lectures and in the exercises.

- 9. Prove: $map(map f) \cdot perm = perm \cdot map f$. You may need previously proved results, as well as a property about *concat* and *map*: for all g, we have map $g \cdot concat = concat \cdot map(map g)$.
- 10. Define *inits* :: *List* $a \rightarrow List$ (*List* a) that returns all prefixes of the input list.

inits "abcde" = ["", "a", "ab", "abc", "abcd", "abcde"].

Hint: the empty list has *one* prefix: the empty list. The solution has been given in the lecture. Please try it again yourself.

11. Define *tails* :: *List* $a \rightarrow List$ (*List* a) that returns all suffixes of the input list.

tails "abcde" = ["abcde", "bcde", "cde", "de", "e", ""].

Hint: the empty list has *one* suffix: the empty list. The solution has been given in the lecture. Please try it again yourself.

12. The function *splits* :: *List* $a \rightarrow List$ (*List* a, *List* a) returns all the ways a list can be split into two. For example,

splits [1, 2, 3, 4] = [([], [1, 2, 3, 4]), ([1], [2, 3, 4]), ([1, 2], [3, 4]), ([1, 2, 3], [4]), ([1, 2, 3, 4], [])] .

Define *splits* inductively on the input list. **Hint**: you may find it useful to define, in a **where**clause, an auxiliary function f(ys, zs) = ... that matches pairs. Or you may simply use $(\lambda (ys, zs) \rightarrow ...)$. 13. An *interleaving* of two lists *xs* and *ys* is a permutation of the elements of both lists such that the members of *xs* appear in their original order, and so does the members of *ys*. Define *interleave* :: *List* $a \rightarrow List$ $a \rightarrow List$ (*List* a) such that *interleave xs ys* is the list of interleaving of *xs* and *ys*. For example, *interleave* [1, 2, 3] [4, 5] yields:

[[1, 2, 3, 4, 5], [1, 2, 4, 3, 5], [1, 2, 4, 5, 3], [1, 4, 2, 3, 5], [1, 4, 2, 5, 3], [1, 4, 5, 2, 3], [4, 1, 2, 3, 5], [4, 1, 2, 5, 3], [4, 1, 5, 2, 3], [4, 5, 1, 2, 3]].

14. A list *ys* is a *sublist* of *xs* if we can obtain *ys* by removing zero or more elements from *xs*. For example, [2, 4] is a sublist of [1, 2, 3, 4], while [3, 2] is *not*. The list of all sublists of [1, 2, 3] is:

[[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]].

Define a function *sublist* :: List $a \rightarrow List$ (List a) that computes the list of all sublists of the given list. **Hint**: to form a sublist of *xs*, each element of *xs* could either be kept or dropped.

15. Consider the following datatype for internally labelled binary trees:

data Tree a = Null | Node a (Tree a) (Tree a).

- (a) Given (↓) :: Nat → Nat → Nat, which yields the smaller one of its arguments, define minT :: Tree Nat → Nat, which computes the minimal element in a tree. (Note: (↓) is actually called min in the standard library. In the lecture we use the symbol (↓) to be brief.)
- (b) Define $mapT :: (a \rightarrow b) \rightarrow Tree \ a \rightarrow Tree \ b$, which applies the functional argument to each element in a tree.
- (c) Can you define (\downarrow) inductively on *Nat*?
- (d) Prove that for all *n* and *t*, minT (mapT (n+) t) = n + minT t. That is, $minT \cdot mapT (n+) = (n+) \cdot minT$.