
Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Application Security

Fang Yu

Software Security Lab.
Department of Management Information Systems
College of Commerce, National Chengchi University

http://soslab.nccu.edu.tw

Flolac Talk, August 14, 2023

1 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

About Me

Yu, Fang

• 2014-present: Associate Professor, Department of
Management Information Systems, National Chengchi
University

• 2010-2014: Assistant Professor, Department of Management
Information Systems, National Chengchi University

• 2005-2010: Ph.D. and M.S., Department of Computer
Science, University of California at Santa Barbara

• 2001-2005: Institute of Information Science, Academia Sinica

• 1994-2000: M.B.A. and B.B.A., Department of Information
Management, National Taiwan University

2 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Book Reference

• String Analysis for Software Verification and Security
Tevfik Bultan, Fang Yu, Muath Alkhalaf, Abdulbaki Aydin. [Springer. 2018]

• https://www.springer.com/gp/book/9783319686684

3 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

More Recent Work

• Parameterized Model Counting for String and Numeric Constraints
Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov,
Tevfik Bultan and Fang Yu. [ACM ESEC/FSE ’18]

• A Symbolic Model Checking Approach to the Analysis of String and Length
Constraints
Hung-En Wang, Shih-Yu Chen, Fang Yu, Jie-Hong R. Jiang. [ACM ASE’18]

• Static API Call Vulnerability Detection in iOS Applications
Chun-Han Lin, Fang Yu, Jie-Hong Jiang, and Tevfik Bultan. [ACM/IEEE
ICSE’18]

• Optimal Sanitization Synthesis for Web Application Vulnerability Repair
Fang Yu, ChinYuan Shueh, ChunHan Lin, YuFang Chen, BowYaw Wang, Tevfik
Bultan. [ACM ISSTA’16]

• String Analysis via Automata Manipulation with Logic Circuit Representation

HungEn Wang, ThungLin Tsai, ChunHan Lin, Fang Yu, JieHong R Jiang.

[CAV’16]

4 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Automatic Verification of String Manipulating Programs

Web Applications = String Manipulating Programs

5 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Web Applications

Web applications are used extensively in many areas

• Commerce: online banking, online shopping, etc.

• Entertainment: online game, music and videos, etc.

• Interaction: social networks

6 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Web Applications

We may rely on web applications more in the future

• Health Records: Google Health, Microsoft HealthVault

• Controlling and monitoring national infrastructures: Google
Powermeter

7 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Web Applications

Web software is also rapidly replacing desktop applications.

8 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

One Major Road Block

Web applications are not trustworthy!

Web applications are notorious for security vulnerabilities

• Their global accessibility makes them a target for many
malicious users

Web applications are becoming increasingly dominant and their use
in safety critical areas is increasing

• Their trustworthiness is becoming a critical issue

9 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Web Application Vulnerabilities

• The top two vulnerabilities of the Open Web Application
Security Project (OWASP)’s top ten list in 2007, 2010, 2013,
and 2017

1 Cross Site Scripting (XSS)
2 Injection Flaws (such as SQL Injection)

10 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Web Application Vulnerabilities

Percentage of the Cross-site Scripting (XSS) and SQL Injection
(SQLI) vulnerabilities among all the computer security
vulnerabilities reported in the CVE repository.

0%	

5%	

10%	

15%	

20%	

25%	

30%	

35%	

40%	

20
00
	

20
01
	

20
02
	

20
03
	

20
04
	

20
05
	

20
06
	

20
07
	

20
08
	

20
09
	

20
10
	

20
11
	

20
12
	

20
13
	

20
14
	

SQLI	
XSS	

11 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Why are web applications error prone?

Extensive string manipulation:
• Web applications use extensive string manipulation

• To construct html pages, to construct database queries in
SQL, to construct system commands

• The user input comes in string form and must be validated
and sanitized before it can be used

• This requires the use of complex string manipulation functions
such as string-replace

• String manipulation is error prone

12 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

SQL Injection

13 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

SQL Injection

Access students’ data by $name (from a user input).

l 1:<?php

l 2: $name =$ GET[”name”];

l 3: $user data = $db->query(’SELECT * FROM students
WHERE name = ”$name” ’);

l 4:?>

14 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

SQL Injection

l 1:<?php

l 2: $name = $ GET[”name”];

l 3: $user data = $db->query(’SELECT * FROM students
WHERE name = ”Robert ’); DROP TABLE students; - -”’);

l 4:?>

15 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Cross Site Scripting (XSS) Attack

A PHP Example:

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• The echo statement in line 4 can contain a Cross Site
Scripting (XSS) vulnerability

16 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

XSS Attack

An attacker may provide an input that contains <script and
execute the malicious script.

l 1:<?php

l 2: $www = <script ... >;

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” .<script ... >.
”</td>”;

l 5:?>

17 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Is it Vulnerable?

A simple taint analysis, e.g., [Huang et al. WWW04], would report
this segment as vulnerable using taint propagation.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l 4: echo ”<td>” . $l otherinfo . ”: ” .$www. ”</td>”;

l 5:?>

18 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Is it Vulnerable?

Add a sanitization routine at line s.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www);
l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• Taint analysis will assume that $www is untainted after the
routine, and conclude that the segment is not vulnerable.

19 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Sanitization Routines are Erroneous

However, ereg replace(”[∧A-Za-z0-9 .-@://]”,””,$www); does not
sanitize the input properly.

• Removes all characters that are not in { A-Za-z0-9 .-@:/ }.
• .-@ denotes all characters between ”.” and ”@” (including
”<” and ”>”)

• ”.-@” should be ”.\-@”

20 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

A buggy sanitization routine

l 1:<?php

l 2: $www = <script ... >;

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””, $www);
l 4: echo ”<td>” . $l otherinfo . ”: ” . <script ... > .
”</td>”;

l 5:?>

• A buggy sanitization routine used in MyEasyMarket-4.1 that
causes a vulnerable point at line 218 in trans.php [Balzarotti
et al., S&P’08]

• Our string analysis identifies that the segment is vulnerable
with respect to the attack pattern: Σ∗ <scriptΣ∗.

21 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Eliminate Vulnerabilities

Input <!sc+rip!t ...> does not match the attack pattern
Σ∗ <scriptΣ∗, but still can cause an attack

l 1:<?php

l 2: $www =<!sc+rip!t ...>;

l 3: $l otherinfo = ”URL”;

l s: $www = ereg replace(”[∧A-Za-z0-9 .-@://]”,””, <!sc+rip!t
...>);

l 4: echo ”<td>” . $l otherinfo . ”: ” . <script ...> .
”</td>”;

l 5:?>

22 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Eliminate Vulnerabilities

• We generate vulnerability signature that characterizes all
malicious inputs that may generate attacks (with respect to
the attack pattern)

• The vulnerability signature for $ GET[”www”] is
Σ∗ < α∗sα∗cα∗rα∗iα∗pα∗tΣ∗, where
α ̸∈ { A-Za-z0-9 .-@:/ } and Σ is any ASCII character

• Any string accepted by this signature can cause an attack

• Any string that dose not match this signature will not cause
an attack. I.e., one can filter out all malicious inputs using
our signature

23 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Prove the Absence of Vulnerabilities

Fix the buggy routine by inserting the escape character \.
l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = ”URL”;

l s’: $www = ereg replace(”[∧A-Za-z0-9 .\-@://]”,””,$www);
l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

Using our approach, this segment is proven not to be vulnerable
against the XSS attack pattern: Σ∗ <scriptΣ∗.

24 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Multiple Inputs?

Things can be more complicated while there are multiple inputs.

l 1:<?php

l 2: $www = $ GET[”www”];

l 3: $l otherinfo = $ GET[”other”];

l 4: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

l 5:?>

• An attack string can be contributed from one input, another
input, or their combination

• We can generate relational vulnerability signatures and
automatically synthesize effective patches.

25 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

String Analysis

• String analysis determines all possible values that a string
expression can take during any program execution

• Using string analysis we can identify all possible input values
of the sensitive functions. Then we can check if inputs of
sensitive functions can contain attack strings

• If string analysis determines that the intersection of the attack
pattern and possible inputs of the sensitive function is empty.
Then we can conclude that the program is secure

• If the intersection is not empty, then we can again use string
analysis to generate a vulnerability signature that
characterizes all malicious inputs

26 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Automata-based String Analysis

• Finite State Automata can be used to characterize sets of
string values

• We use automata based string analysis
• Associate each string expression in the program with an

automaton
• The automaton accepts an over approximation of all possible

values that the string expression can take during program
execution

• Using this automata representation we symbolically execute
the program, only paying attention to string manipulation
operations

• Attack patterns are specified as regular expressions

27 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

String Analysis Stages

28 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Front End

Consider the following segment.

l <?php

l 1: $www = $ GET[”www”];

l 2: $url = ”URL:”;

l 3: $www = preg replace(”[∧A-Z.-@]”,””,$www);
l 4: echo $url. $www;
l ?>

29 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Front End

A dependency graph specifies how the values of input nodes flow
to a sink node (i.e., a sensitive function)

NEXT: Compute all possible values of a sink node

30 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Detecting Vulnerabilities

• Associates each node with an automaton that accepts an over
approximation of its possible values

• Uses automata-based forward symbolic analysis to identify the
possible values of each node

• Uses post-image computations of string operations:
• postConcat(M1, M2) returns M, where M=M1.M2

• postReplace(M1, M2, M3) returns M, where
M=replace(M1, M2, M3)

31 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Forward Analysis

• Allows arbitrary values, i.e., Σ∗, from user inputs

• Propagates post-images to next nodes iteratively until a fixed
point is reached

32 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Forward Analysis

• At the first iteration, for the replace node, we call
postReplace(Σ∗, Σ \ {A− Z .− @}, "")

33 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Forward Analysis

• At the second iteration, we call postConcat("URL:",
{A− Z .− @}∗)

34 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Forward Analysis

• The third iteration is a simple assignment

• After the third iteration, we reach a fixed point

NEXT: Is it vulnerable?
35 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Detecting Vulnerabilities

• We know all possible values of the sink node (echo)
• Given an attack pattern, e.g., (Σ\ <)∗ < Σ∗, if the
intersection is not an empty set, the program is vulnerable.
Otherwise, it is not vulnerable with respect to the attack
pattern

NEXT: What are the malicious inputs?
36 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Generating Vulnerability Signatures

• A vulnerability signature is a characterization that includes all
malicious inputs that can be used to generate attack strings

• Uses backward analysis starting from the sink node
• Uses pre-image computations on string operations:

• preConcatPrefix(M, M2) returns M1 and
preConcatSuffix(M, M1) returns M2, where M = M1.M2.

• preReplace(M, M2, M3) retunrs M1, where
M=replace(M1, M2, M3).

37 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Backward Analysis

• Computes pre-images along with the path from the sink node
to the input node

• Uses forward analysis results while computing pre-images

38 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Backward Analysis

• The first iteration is a simple assignment.

39 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Backward Analysis

• At the second iteration, we call
preConcatSuffix(URL : {A− Z .−; = −@}∗ < {A− Z .− @}∗,
"URL:").

• M = M1.M2

40 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Backward Analysis

• We call preReplace({A− Z .−; = −@}∗ < {A− Z .− @}∗,
Σ \ {A− Z .− @}, "") at the third iteration.

• M = replace(M1, M2, M3)
• After the third iteration, we reach a fixed point.

41 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Vulnerability Signatures

• The vulnerability signature is the result of the input node,
which includes all possible malicious inputs

• An input that does not match this signature cannot exploit
the vulnerability

NEXT: How to detect and prevent malicious inputs

42 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Patch Vulnerable Applications

• Match-and-block: A patch that checks if the input string
matches the vulnerability signature and halts the execution if
it does

• Match-and-sanitize: A patch that checks if the input string
matches the vulnerability signature and modifies the input if it
does

43 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Sanitize

The idea is to modify the input by deleting certain characters (as
little as possible) so that it does not match the vulnerability
signature

• Given a DFA, an alphabet cut is a set of characters that after
”removing” the edges that are associated with the characters
in the set, the modified DFA does not accept any non-empty
string

44 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Find An Alphabet Cut

• Finding a minimum alphabet cut of a DFA is an NP-hard
problem (one can reduce the vertex cover problem to this
problem)

• We apply a min-cut algorithm to find a cut that separates the
initial state and the final states of the DFA

• We give higher weight to edges that are associated with
alpha-numeric characters

• The set of characters that are associated with the edges of the
min cut is an alphabet cut

45 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Patch Vulnerable Applications

A match-and-sanitize patch: If the input matches the vulnerability
signature, delete all characters in the alphabet cut

l <?php

l if (preg match(’/[∧ <]*<.*/’,$ GET[”www”]))

l $ GET[”www”] = preg replace(Ò<Ó,””,$ GET[”www”]);

l 1: $www = $ GET[”www”];

l 2: $url = ”URL:”;

l 3: $www = preg replace(”[∧A-Z.-@]”,””,$www);
l 4: echo $url. $www;
l ?>

46 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Automatic Verification of String Manipulating Programs

• Symbolic String Vulnerability Analysis

• Relational String Analysis

• Composite String Analysis

47 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Relational String Analysis

Instead of multiple single-track DFAs, we use one multi-track DFA,
where each track represents the values of one string variable.

Using multi-track DFAs we are able to:

• Identify the relations among string variables

• Generate relational vulnerability signatures for multiple user
inputs of a vulnerable application

• Prove properties that depend on relations among string
variables, e.g., $file = $usr.txt (while the user is Fang, the
open file is Fang.txt)

• Summarize procedures

• Improve the precision of the path-sensitive analysis

48 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Multi-track Automata

• Let X (the first track), Y (the second track), be two string
variables

• λ is a padding symbol

• A multi-track automaton that encodes X = Y.txt

49 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Relational Vulnerability Signature

• Performs forward analysis using multi-track automata to
generate relational vulnerability signatures

• Each track represents one user input

• An auxiliary track represents the values of the current node

• Each constant node is a single track automaton (the auxiliary
track) accepting the constant string

• Each user input node is a two track automaton (an input
track + the auxiliary track) accepting strings that two tracks
have the same value

50 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Relational Vulnerability Signature

Consider a simple example having multiple user inputs

l <?php

l 1: $www = $ GET[”www”];

l 2: $url =$ GET[”url”];

l 3: echo $url. $www;
l ?>

Let the attack pattern be (Σ\ <)∗ < Σ∗

51 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Signature Generation

52 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Relational Vulnerability Signature

Upon termination, intersects the auxiliary track with the attack
pattern

• A multi-track automaton: ($url, $www , aux)

• Identifies the fact that the concatenation of two inputs
contains <

53 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Relational Vulnerability Signature

• Projects away the auxiliary track

• Finds a min-cut
• This min-cut identifies the alphabet cuts:

• {<} for the first track ($url)
• {<} for the second track ($www)

54 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Patch Vulnerable Applications with Multi Inputs

Patch: If the inputs match the signature, delete its alphabet cut

l <?php

l if (preg match(’/[∧ <]*<.*/’, $ GET[”url”].$ GET[”www”]))
{

l $ GET[”url”] = preg replace(”<”,””,$ GET[”url”]);

l $ GET[”www”] = preg replace(”<”,””,$ GET[”www”]);

l }
l 1: $www = $ GET[”www”];

l 2: $url = $ GET[”url”];

l 3: echo $url. $www;
l ?>

55 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Other Technical Issues

To conduct relational string analysis, we need a meaningful
”intersection” of multi-track automata

• Intersection are closed under aligned multi-track automata

• λs are right justified in all tracks, e.g., abλλ instead of aλbλ

• However, there exist unaligned multi-track automata that are
not describable by aligned ones

• We propose an alignment algorithm that constructs aligned
automata which under/over approximate unaligned ones

56 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Other Technical Issues

Modeling Word Equations:

• Intractability of X = cZ : The number of states of the
corresponding aligned multi-track DFA is exponential to the
length of c.

• Irregularity of X = YZ : X = YZ is not describable by an
aligned multi-track automata

We have proven the above results and proposed a conservative
analysis.

57 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

Automatic Verification of String Manipulating Programs

• Symbolic String Vulnerability Analysis

• Relational String Verification

• Composite String Analysis

58 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

Composite Verification

We aim to extend our string analysis techniques to analyze systems
that have unbounded string and integer variables.

We propose a composite static analysis approach that combines
string analysis and size analysis.

59 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

String Analysis

Static String Analysis: At each program point, statically compute
the possible values of each string variable.

The values of each string variable are over approximated as a
regular language accepted by a string automaton [Yu et al.
SPIN08].

String analysis can be used to detect web vulnerabilities like SQL
Command Injection [Wassermann et al, PLDI07] and Cross Site
Scripting (XSS) attacks [Wassermann et al., ICSE08].

60 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

Size Analysis

Integer Analysis: At each program point, statically compute the
possible states of the values of all integer variables.

These infinite states are symbolically over-approximated as linear
arithmetic constraints that can be represented as an arithmetic
automaton

Integer analysis can be used to perform Size Analysis by
representing lengths of string variables as integer variables.

61 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

What is Missing?

Consider the following segment.

• 1:<?php

• 2: $www = $ GET[”www”];

• 3: $l otherinfo = ”URL”;

• 4: $www = ereg replace(”[∧A-Za-z0-9 ./-@://]”,””,$www);
• 5: if(strlen($www) < $limit)

• 6: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

• 7:?>

62 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

What is Missing?

If we perform size analysis solely, after line 4, we do not know the
length of $www.

• 1:<?php

• 2: $www = $ GET[”www”];

• 3: $l otherinfo = ”URL”;

• 4: $www = ereg replace(”[∧A-Za-z0-9 ./-@://]”,””,$www);
• 5: if(strlen($www) < $limit)

• 6: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

• 7:?>

63 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

What is Missing?

If we perform string analysis solely, at line 5, we cannot
check/enforce the branch condition.

• 1:<?php

• 2: $www = $ GET[”www”];

• 3: $l otherinfo = ”URL”;

• 4: $www = ereg replace(”[∧A-Za-z0-9 ./-@://]”,””,$www);
• 5: if(strlen($www) < $limit)

• 6: echo ”<td>” . $l otherinfo . ”: ” . $www . ”</td>”;

• 7:?>

64 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

What is Missing?

We need a composite analysis that combines string analysis with
size analysis.

Challenge: How to transfer information between string automata
and arithmetic automata?

65 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

Some Facts about String Automata

• A string automaton is a single-track DFA that accepts a
regular language, whose length forms a semi-linear set, .e.g.,
{4, 6} ∪ {2 + 3k | k ≥ 0}

• The unary encoding of a semi-linear set is uniquely identified
by a unary automaton

• The unary automaton can be constructed by replacing the
alphabet of a string automaton with a unary alphabet

66 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

Some Facts about Arithmetic Automata

• An arithmetic automaton is a multi-track DFA, where each
track represents the value of one variable over a binary
alphabet

• If the language of an arithmetic automaton satisfies a
Presburger formula, the value of each variable forms a
semi-linear set

• The semi-linear set is accepted by the binary automaton that
projects away all other tracks from the arithmetic automaton

67 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

An Overview

To connect the dots, we propose a novel algorithm to convert
unary automata to binary automata and vice versa.

68 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

An Example of Length Automata

Consider a string automaton that accepts (great)+.
The length set is {5 + 5k|k ≥ 0}.

• 5: in unary 11111, in binary 101, from lsb 101.

• 1000: in binary 1111101000, from lsb 0001011111.

(a) Unary (b) Binary

69 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

String Analysis + Size Analysis
What is Missing?
What is Its Length?

Another Example of Length Automata

Consider a string automaton that accepts (great)+cs.
The length set is {7 + 5k|k ≥ 0}.

• 7: in unary 1111111, in binary 1100, from lsb 0011.
• 107: in binary 1101011, from lsb 1101011.
• 1077: in binary 10000110101, from lsb 10101100001.

(c) Unary (d) Binary

70 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

STRANGER Tool

We have developed STRANGER (STRing AutomatoN
GEneratoR)

• A public automata-based string analysis tool for PHP

• Takes a PHP application (and attack patterns) as input, and
automatically analyzes all its scripts and outputs the possible
XSS, SQL Injection, or MFE vulnerabilities in the application

71 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

STRANGER Tool

• Uses Pixy [Jovanovic et al., 2006] as a front end
• Uses MONA [Klarlund and Møller, 2001] automata package
for automata manipulation

The tool, detailed documents, and several benchmarks are
available: http://www.cs.ucsb.edu/∼vlab/stranger.

72 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

STRANGER Tool

A case study on Schoolmate 1.5.4

• 63 php files containing 8000+ lines of code

• Intel Core 2 Due 2.5 GHz with 4GB of memory running Linux
Ubuntu 8.04

• Stranger took 22 minutes / 281MB to reveal 153 XSS
from 898 sinks

• After manual inspection, we found 105 actual vulnerabilities
(false positive rate: 31.3%)

• We inserted patches for all actual vulnerabilities

• Stranger proved that our patches are correct with respect to
the attack pattern we are using

73 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

STRANGER Tool

Another case study on SimpGB-1.49.0, a PHP guestbook web
application

• 153 php files containing 44000+ lines of code

• Intel Core 2 Due 2.5 GHz with 4GB of memory running Linux
Ubuntu 8.04

• For all executable entries, Stranger took
• 231 minutes to reveal 304 XSS from 15115 sinks,
• 175 minutes to reveal 172 SQLI from 1082 sinks, and
• 151 minutes to reveal 26 MFE from 236 sinks

74 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

Related Work on String Analysis

• String analysis based on context free grammars: [Christensen et

al., SAS’03] [Minamide, WWW’05]

• String analysis based on symbolic execution: [Bjorner et al.,

TACAS’09]

• Bounded string analysis: [Kiezun et al., ISSTA’09]

• Automata based string analysis: [Xiang et al., COMPSAC’07]

[Shannon et al., MUTATION’07] [Barlzarotti et al. S&P’08][Veneas et al.,

POPL’15][Wang et al. CAV’16]

• String constraint solving: [CVC4] [Z3, Z3-Str, Z3-Str2,2016] [SSS,

S3P] [Norn] [Slog, Slender (Wang et al. CAV’16, ASE’18)]

• Application of string analysis to web applications: [Wassermann

and Su, PLDI’07, ICSE’08] [Halfond and Orso, ASE’05, ICSE’06]

75 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

Related Work on Size Analysis and Composite Analysis

• Size analysis : [Dor et al., SIGPLAN Notice’03] [Hughes et al., POPL’96]

[Chin et al., ICSE’05] [Yu et al., FSE’07] [Yang et al., CAV’08]

• Composite analysis:
• Composite Framework: [Bultan et al., TOSEM’00]

• Symbolic Execution: [Xu et al., ISSTA’08] [Saxena et al., UCB-TR’10]

• Abstract Interpretation: [Gulwani et al., POPL’08] [Halbwachs et al.,

PLDI’08]

• Model Counting Analysis: [William et al., ESEC/FSE’18]

76 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

Related Work on Vulnerability Signature Generation

• Test input/Attack generation: [Wassermann et al., ISSTA’08] [Kiezun

et al., ICSE’09]

• Vulnerability signature generation: [Brumley et al., S&P’06]

[Brumley et al., CSF’07] [Costa et al., SOSP’07][Yu et al. ISSTA’16]

77 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

Take Away: Future Direction

To have impact.

• What will be the most dominant software platform?

• What will be the major roadblock?

• What will be the key techniques?

78 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

Take Away: Software Dependability

• Software will become parts of our live.
• Web applications and services
• Mobile applications
• IoT applications
• Smart contract applications
• Machine learning applications

• Security and dependability will be the major roadblock

• An automatic and scalable verification framework to achieve
dependability of web applications

79 / 80

Introduction
Symbolic String Vulnerability Analysis

Composite String Analysis
Implementation and Summary

STRANGER Tool
Summary
Conclusion

Thank you for your attention.

Questions?

80 / 80

	Introduction
	Web Software
	Security Issues
	Vulnerabilities
	Detection
	Removal
	Overview

	Symbolic String Vulnerability Analysis
	Vulnerability Analysis
	Signature Generation
	Sanitization Generation
	Relational String Analysis

	Composite String Analysis
	String Analysis + Size Analysis
	What is Missing?
	What is Its Length?

	Implementation and Summary
	STRANGER Tool
	Summary
	Conclusion

