Regular
Transition
Systems

Chih-Duo Hong
FLOLAC 2023

Transition system

— S 1s the set of states
— I € S 1s the set of initial states

— T € § X S i1s the set of transitions

A trace of (S,1,T) 1s a sequence G =G, G; G, ... € S® such that
— o,€el

— forall1>0, (c;,0,,) €T

That 1s, a trace is a finite/infinite sequence of consecutive transitions
starting from an 1initial state.

Safety property

Safety properties are concerned with the assurance that certain
undesirable behaviors will never occur 1n a system

Typical safety properties of software:
1. Division by zero: A program will never divide a number by zero
2. Null dereference: A program will never dereference a null or uninitialized pointer
3. Datarace: A shared variable will never be updated simultaneously
Safety of a transition system
— Does every trace never reach a bad state?
Model checking a liveness property

— Yes + proof

— No + counterexample (a system trace that reaches a bad state)

Liveness property

Liveness properties are concerned with the assurance that certain
desirable behaviors will eventually occur 1n a system

Typical liveness properties of software:
1. Termination: A program will eventually terminate
2. Response: A system will respond to an input event within a bounded time frame

3. Progress: A thread will eventually make progress and not get stuck in a deadlock
Liveness of a transition system

— Does every trace eventually reach a good state?
Model checking a liveness property

— Yes + proof

— No + counterexample (a system trace that never reaches a good state)

Symbolic transition system

We usually specify and reason about a transition system using a
symbolic representation

In this lecture, we will introduce two symbolic representations for
infinite-state transition systems:

1. Logical formulas (over a background theory)

2. Regular languages

Formulas as symbolic representation

* A symbolic transition system 1s a tuple (V, I, T), where
— V 1s a set of variables,
— I 1s a formula over variables IV
— T is a formula over variables V U V'

(E.g.,i’ =i+ 1isaformula over {i} U {i'} that increments i by 1)
* Astate o € A 1s a type-consistent assignment to variables in
 Atraceof (V,I,T) is a sequence G = G, G, G, ... € A®, where

— o, EI(V)
- o,,06,, ETV,V’) foralli>0

Example: the Collatz transition system

Consider the following operation on a natural number:

— If the number is even, divide it by two.

— If the number is odd, triple it and add one.

Applying this operation to a number repeatedly will generate a
sequence, for example: 21 - 64 >32-516-58-4-52 -1

The corresponding symbolic transition system is (V/, I, T), where
V:i={x},1:=(x=1),and T is defined in Presburger arithmetic as

(Ak.x=2kAx"=k)V(@k.x=2k+1Ax"=3x+1)

Example: the Collatz transition system

* Consider the following operation on a natural number:

— If the number is even, divide it by two.

— If the number is odd, triple it and add one.

* Applying this operation to a number repeatedly will generate a
sequence, for example: 21 - 64 >32-516-58-4-52 -1

An example safety property:

“Every sequence starting from a power of 2
will reach no odd numbers but 1.”

An example liveness property:

“Every sequence will eventually reach 1.”

Forward reachability analysis

T(A)={s'":s€eAand(s,s') €T}

Inductive invariant

A set of states Inv 1s an inductive invariant 1f
it satisfies the following three conditions:

* Initiation: | € Inv

e Consecution: T(Inv) € Inv

» Safety: InvNB=20

When I, F, B, Inv are expressed in formulas,
these conditions are equivalent to

V) = Inv(V)

Inv(V) AT(V, V') = Inv(V’)
Inv(V) = —B(V)

Inductive invariant (cont’d)

: Bad

Initial

A system 1s safe 1ff it has an inductive invariant

Example: inductive invariant

e Consider a symbolic transition system (V, I, T), where

V:={x,y}
| =x=1Ay=1
T=x'=x+y)ANQY =y+x)

* We want to prove the safety property P :=y > 1.

P =

Example: inductive invariant (cont’d)

[=P:
— x=lay=Dl)=>y=>1
ButPAT#P:

- YZIAK =Xty Ay =xty) Py 21

y = 1 1s not an inductive mvariant

V:i={x, vy}
I =x=1Ay=1
T=0=x+y)ANQ =y+x)
P=y=>1

(V) = Inv(V)

Inv(V) AT(V, V') = Inv(V)
Inv(V) = —B(V)

Example: inductive invariant (cont’d)

P :=y =1 is not an inductive imnvariant V= {x,y}
. I=x—1/\y—1
« I=P: Ir=@x=x+y)AQy' =y+x)
- x=1lay=1l)>y=>1 P=y=>1

e ButPAT#P:
- YZIAK =Xty Ay =xty) Py 21

Consider Inv:i=x>0Ay>1
x=1Ay=1)=>x>0Ay>1
— X20Ay>21IAX=x+tyAy =x+ty)=2x’>0Ay >1
— x>20Ay>21l>>y>1

V) = Inv(V)

Property proved! Inv(V) AT(V, V') = Inv(V')

Example: inductive invariant (cont’d)

Induction hypothesis

P:=y=>1isn~ Basecase 1variant V= {x,y}
Fe=x=1Ay=1
- I=>P Tim (X =x+) A =y +2)
- (x=1Ay=1) Induction step P=y>1

e ButPAT#P:

— y>2IAX=x+yAy =x+ " Strengthening the
induction hypothesis
Consider Inv:i=x>0Ay>1

x=1Ay=1)=>x>0Ay>1
— X20Ay>21IAX=x+tyAy =x+ty)=2x’>0Ay >1
— x>20Ay>1>y>1

Property proved!

Symbolic transition system

We usually specify and reason about a transition system using a
symbolic representation

In this lecture, we introduce two common symbolic representation
for infinite transition systems:

1. Logical formulas (over a background theory)

2. Regular languages

Regular language as symbolic representation

« For a finite alphabet X, define X4 := X W {#} with padding symbol #.

« Aregular language L € X, encodes a set of words

IL] == {w: w#* €L forallk >0} € z*

Regular language as symbolic representation

« For a finite alphabet X, define X4 := X W {#} with padding symbol #.
« Aregular language L € X, encodes a set of words

IL] == {w: w#* €L forallk >0} € z*
e The convolution of two words u and v in X" 1s definedas u Q v :=

u u
[Ui] [U:] (S (2# X Z#)*, where n = maX{lul’ |U|} and

B {u[k], k < |ul vlk], k < |v]
U =

= <
i k= id] and vy {#’ ks (o] for 0 < k <n.

Regular language as symbolic representation

For a finite alphabet X, define X4 := X W {#} with padding symbol #.
A regular language L € X encodes a set of words

IL] == {w: w#* €L forallk >0} € z*
The convolution of two words u and v in X* is defined as u Q) v :=

u u
[Ui] [U:] (S (2# X Z#)*, where n = maX{lul’ |U|} and

B {u[k], k < |ul vlk], k < |v]
U =

= <
i k= id] and vy {#’ k= (o] for 0 < k <n.

A regular language L € (24 X X4)* encodes a binary relation

k
[L] = {(u,v):u@v[z] €L forallk >0} C 5" x £*

We use L to denote the minimal language L satisfying [L] = E

Example: regular language as symbolic representation

We can encode the structure (N, 0, 1, +, <) in regular languages by
representing natural numbers in binary with the least significant bit

first and without tailing zeros.

We can define Ly '= (e + (0 + 1)"D#" , L,oro := #", Lope 1= 1#".
The language L, = L({(x,y,z) : x + y = z}) can be defined by
intersecting Ly X Ly X Ly with the language of

318
stm

In fact, every relation definable in FO(N, 0, 1, +, <), which is
equivalent to Presburger arithmetic, can be represented by a regular
language under this encoding!

FeF3k
OOO
H)—‘O
,_.O._.
oo:ﬂ:
o:ﬂ:o
r—u—AZﬂ:
r—tZﬂ:»—t
OOD—‘
o»-AO
(S
O»—aiﬁz
Diﬁ:»—-

HOO
»—AO#}:

»-Azﬁ:o
*"‘:ﬁ:%

Regular transition system

A regular transition system (RTS) 1s a triple (¥, 1, T), where I is a
regular language over alphabet X4, and T 1s a regular language over
alphabet X4 X X4.

An RTS (%, 1, T) induces a transition system (X%, [I], [T]):
— Each state is a finite word over the alphabet X
— The set of initial states is a regular set [I]] € X*

— The transition relation is regular relation [T] € X* X *

Regular transition system (cont’d)

Aregular transition system (TS) tr1pl (2,1, T), where I is a
1 -

L aYae = | 1r\1A ~

Icg u1cu 1ang uagc oV

alphabet X4 X X4,

1/\

b ad Il 1{" o 1&/\(&11]
1 P # Nna 1 iSa 1CE Ul

Q)

Example The Collatz transition system 1s (isomorphic to) an RTS.

Presburger definable relations can be encoded in regular languages.

Example The configuration graph of a Turing machine 1s an RTS.
A TM with a two-sided tape can be simulated by a TM with a one-sided tape.

A configuration of a one-sided TM can be encoded as a regular language usaw#~,
where u is the tape content before the head, s is the control state, a is the tape
symbol at the head position, and w is the tape content after the head.

Safety of regular transition systems

Fix an RTS (Z,1,T). Let B € X, denote the language representation
of a set of bad states.

« The RTS (Z,1,T) is safe if [B] cannot be reached from [I]

» A safety proof is a regular language P satisfying

- /ICcP
- PNB=¢
- T(P)C P

» A regular transition system 1s safe iff it has a safety proof

Example: the Collatz transition system

The Collatz system applies the following operation on natural numbers:

— If the number is even, divide it by two.

— If the number is odd, triple it and add one.

We can specify the Collatz transition system as an RTS (Z, I, T) by encoding
natural numbers in binary with the least significant bit first without tailing zeros.

Consider the safety property: “Every sequence starting from a power of 2 will
reach no odd numbers but 1.”

We set I := 0*1#* as the initial states and B := 1(0 + 1)(0 + 1)*#* as the bad
states. Observe that T(0:--01#*) = 0--- 01#"* foreachn > 1.

N i
n zeros n — 1 zeros

We therefore have I N B = @ and T(I) € I. Namely, I is itself a safety proof.

Regular model checking

i | PRI R, e ~dAl o
111C reguial mmoucl L

1

1
proof for a regular tr ansmo n system
A RTS may not have a regular proof even if it 1s safe!

For some subclass of RTSs, a regular proof is guaranteed to exist
when the system 1s safe

For example, the set of reachable states is regular for RTSs like
Petr1 nets, pushdown systems, and lossy-channel systems

Such systems have a regular safety proof whenever they are safe

Regular model checking (cont’d)

If an RTS has a regular proof when it is safe, then safety checking of

the system 1s decidable. Idea: launch two procedures as follows at the
same time

Procedure A:
while true do
i:=1

let A; be the i-th DFA, and let P := L4

ifI S Pand PN B = @ and T(P) € P then
terminate and report “safe”

i==10i+1

Procedure B:
while true do
i:=0
if B 1s reachable from I in i step then
terminate and report “unsafe”
i=1i+1

Eventually one of the two procedures will terminate!

Learning proofs for regular model checking

In Lh€ rest Of Lhm IUC

regular proof for an RTS
— SAT-based learning

— L*-based learning

The SAT-based method is less scalable (i.e. it 1s not effective when
all regular proofs are large). However, it has the same termination
guarantee as brute-force enumeration.

The L*-based method is more scalable and is capable of finding very
large regular proofs in practice. However, it 1s not guaranteed to find
a regular proof even if one exists.

Learning proofs for regular model checking

T tho oot Afthic lonrtiires vire w711l 1AAL at +fvy7a 1o thnadc tAn A o
111 LIV 10D Ul Uil 1Ivbulv, Wu Will 1IJUURN Al LWU 111IVUIvUD W 11114 a
regular proof for an RTS:

— SAT-based learning

— L*-based learning

The SAT-based method 1s less scalable (1.e. 1t is not effective when
all regular proofs are large). However, it has the same termination
guarantee as brute-force enumeration.

The L*-based method is more scalable and is capable of finding very
large regular proofs in practice. However, it is not guaranteed to find
a regular proof even if one exists.

SAT-based learning for safety proofs

Fix a regular system (%, 1, T) and a set of bad states B

For each n = 1, we construct a Boolean formula &,, such that a model of
®,, corresponds to a DFA A of n states and vice versa

SAT-based learning of regular proofs:

n=1C=0@
while true do
construct @,
while @, A &, has a model a do
construct a DFA A from «
if L, 1s a safety proof then
return A
let cex be a witness of the violation
€ =€ U{cex}
n=n+1

SAT-based learning for safety proofs

Fix a regular system (%, 1, T) and a set of bad states B

For each n = 1, we construct a Boolean formula &,, such that a model of
®,, corresponds to a DFA A of n states and vice versa

SAT-based learning of regular proofs:

n:=1,C=¢9 [€ Ly
while true do L,NB=0
construct @, T(Ly) S Ly

while @, A &, has a model a do
construct a DFA A from «
if L4 is a safety proof then
return A
let cex be a witness of the violation
€ =€ U{cex}
n=n+1

SAT-based learning for safety proofs

Fix a regular system (X, I, T) and a set of bad states B

For each n = 1, we construct a Boolean formula © such that 3 model of
®,, corresponds to a DFA 7
a E @, iff forall c € C,

c 1s not a witness of 4,
ni=1 F=g violating the proof rules

SAT-based learning ¢

while true do
construct @,
while @, A @, has a model a do
construct a DFA A from a
if L4 1s a safety proof then
return A
let cex be a witness of the violation
C :=CU {cex}
n=n+1

SAT encoding of DFA

Encoding of a DFA (%, S, sy, 6, F)

* Given X and S, 1t suffices to fix sy and define only § and F.

« Foreachi,j € §and a € X, we define a Boolean variable t; ; ; such
that “t; ; ; 1s true” corresponds to “6 (i, a) = j”.

 Foreachi € S, we define a Boolean variable f; such that “f; 1s true”
corresponds to “i € F”.

* We use the following constraint to ensure that the DFA 1s deterministic
and complete:

</\ o A (tia A tt,a,k)> A </\ \/ tLaJ)
[,j,KES, j*¥k, aeX leS, nek JES

SAT encoding of DFA (cont’d)

Encoding of a DFA (%, S, sy, 6, F)

« Foreachn > 1, we define a propositional formula ¢ A(f, f) as

/\ . . _'(ti,a] lak)) (/\ \/ La]>
1<i,j,k<n, j#k, a€X 1<isn,a€X 1<js<n

with free variables
{tigj:1<ij<na€Xland{f;:1<i<n}
« Anya E ¢Jpa(E f) corresponds to a DFA A, = (%, S, s, 6, F):
S={1,..,n}, sp =1

— ForieSanda€X 6(i,a) =] iffa(ti,a,j) = true
— F={i:a(f;) =true}

Counterexample refinement

SAT-based learning of regular proofs:

ne=1,C=0
while true
construct @,
while &, A @ has a model a
construct a DFA A from a
if L, 1s a safety proof then
return A
let cex be a witness of the violation
C := C U {cex}
n=n+1

Counterexample refinement (cont’d)

e Positive counterexample I'Edy
— A positive cex is a word supposed to be accepted by A. LynB=20
T(Ly) € Ly

— We obtain a positive cex w € [\ Ly when I & L.
 Negative counterexample

— A negative cex is a word not supposed to be accepted by A.

— We obtain a negative cex w € L, N B when L, N B + 0.
 Implication counterexample

— An implication cex is a pair of words (w, w') such that “w isin L,”
implies “w' isin L,”

— We obtain an implication cex when T'(L,) € L,. In such case, we can
find a pair of words (w,w') such thatw € L, and w' € T(w) \ L,.

SAT encoding of positive counterexample

Encoding the membership of a word

* Suppose we got a positive counterexample w

* We give a formula ¢, such that
if @ E pjpa A P, then A, accepts w

* We introduce variables { Vi t0<k<|w|, 1<i<n } and let

= V0,1/\</\ \V vk,i>A(/\ (vt = £))
1<sk<|w| 1<isn 1<isn
A(/\ /\ - (V1,0 A Vg :ti,ak»j)>
1<k<|w]| 1<i,jsn

Intuitively, a(vk,i) = true 1ff the DFA A, reaches state i after reading
the prefix a, -+ a; of the word w.

SAT encoding of negative counterexample

Encoding the non-membership of a word

e Suppose we got a negative counterexample w

* We give a formula v, such that

if @ E ¢jpa AP, then A, does not accept w

* We introduce variables { Ui 0<k<|w|, 1<i<n } and let

1/)‘/76 — uo,l N </\ \/ _ uk,l) N (/\ _ (u|W|,i = _'fl))
1<sk<|w| 1<isn 1<isn
A (/\ /\ - (Uk—1i Augj = ti,ak,j) >
1<k<|w]| 1<i,j<n

Intuitively, a(uk,l-) = true 1ff the DFA A, reaches state i after reading
the prefix a, -+ a; of the word w.

SAT encoding of negative counterexample

Encoding the non-membership of a word

e Suppose we got a negative counterexample w

* We give a formula v, such that

ifa = works only if 4, is ot accept w

, a complete DFA _
e We introduce va... wl, 1<i<n } and let

1/)‘/76 — uo,l N </\ \/ _ uk,i) N (/\ _ (u|W|,i = _'fl))
1<sk<|w| 1<isn 1<isn
A (/\ /\ - (Uk—1i Augj = ti,ak,j) >
1<k<|w]| 1<i,j<n

Intuitively, a(uk,l-) = true 1ff the DFA A, reaches state i after reading
the prefix a, -+ a; of the word w.

SAT-based learning for safety proofs

SAT-based learning with counterexample refinement:

n:=1,Pos:=0, Neg:=0,Imp :=0Q
while true do
while ¢fpa A 'y, has a satisfying assignment a do
construct a DFA A from «
if A 1s a safety proof then
return A
add a new counterexample to either Pos, Neg, or Imp
n=n+1

I"n . (/\wePos x) 4 </\weNeg V%) 4 </\(w,v)elmp¢‘/1;5 Y 4)3)

Learning proofs for regular model checking

T tha ract Afthic lantiira wira vx711l TAAL at +vi7Aa 1tha thnada +a Find o
111 € reSt O1 tiis 1IECWrc, w€ wiii 100K at twO mceuioas 10 1ina a
regular proof for an RTS:

— SAT-based learning

— L*-based learning

The SAT-based method 1s less scalable (1.e. 1t is not effective when
all regular proofs are large). However, it has the same termination
guarantee as the brute-force enumeration.

The L*-based method is more scalable and can find very large
regular proofs in practice. However, it 1s not guaranteed to find a
regular proof even if one exists.

Myhill-Nerode Theorem

Given a language L € X*, we can define an equivalence relation =; over
X" such that x =; y if and only if

YeeEX", ¥32€el- e yz €L

We will call =; the Nerode congruence.

Fact x #; y if and only if there exists z € £* such that either
xZ€LANyz¢& L orxz¢& LAyz € L.

In such case, we say z 1s a distinguishing word for x and y.

Myhill-Nerode Theorem (cont’d)

Given a language L € X*, we can define an equivalence relation =; over
X" such that x =; y if and only if

YZzEX, 32€l oS yvZEL
We will call =; the Nerode congruence.

Example 1

Consider 2 := {a, b} and L = (aa)".
Ise =; aa ?

Isa=; aa?

Isab =; ba?

What are the equivalence classes induced by =; ?

Myhill-Nerode Theorem (cont’d)

Given a language L € X*, we can define an equivalence relation =; over
X" such that x =; y if and only if

YZzEX, 32€l oS yvZEL
We will call =; the Nerode congruence.

Example 1

Consider 2 := {a, b} and L = (aa)".
Ise =; aa ?

Isa=; aa?

Isab =; ba?

What are the equivalence classes induced by =; ?

Myhill-Nerode Theorem (cont’d)

Given a language L € X*, we can define an equivalence relation =; over
X" such that x =; y if and only if

YZzEX, 32€l oS yvZEL
We will call =; the Nerode congruence.

Example 2

Consider 2 := {a,b} and L := {a"b" : n = 0}.

What are the equivalence classes induced by =; ?

Myhill-Nerode Theorem (cont’d)

Given a language L € X*, we can define an equivalence relation =; over
X" such that x =; y if and only if

YZzEX, 32€l oS yvZEL

We will call =; the Nerode congruence.

Myhill-Nerode Theorem

L 1s regular iff =; induces a finite number of equivalence classes.

Key observation

When L is regular, the set of the equivalence classes is isomorphic to the
set of states of the minimal DFA that recognizes L.

Nerode congruence vs DFA

When L is regular, the set of equivalence classes induced by =; is
isomorphic to the set of states of the minimal DFA that recognizes L.

Nerode congruence vs DFA (cont’d)

When L is regular, the set of equivalence classes induced by =; is
isomorphic to the set of states of the minimal DFA that recognizes L.

DFA to equivalence classes
Suppose A4 := (I, sg, S, 8, F) is the minimal DFA recognizing L.

Let L € X" be the language accepted by A, = (Z, 5, S, 6, {s}).
Then {L. : s € S} is the set of equivalence classes induced by =; .

Nerode congruence vs DFA (cont’d)

When L is regular, the set of equivalence classes induced by =; is
isomorphic to the set of states of the minimal DFA that recognizes L.

DFA to equivalence classes

Suppose A4 := (I, sg, S, 8, F) is the minimal DFA recognizing L.

Let L € X" be the language accepted by A, = (Z, 5, S, 6, {s}).
Then {L. : s € S} is the set of equivalence classes induced by =; .

{L; : s € S} forms a partitioning of X* (by determinism of A)
Ifx,y € L; forsome s € S, thenx =; y (by def. of L and =)
Ifx =; y,thenx,y € Lg forsome s € S (by minimality of A)

Nerode congruence vs DFA (cont’d)

When L is regular, the set of equivalence classes induced by =; is
isomorphic to the set of states of the minimal DFA that recognizes L.

DFA to equivalence classes

Suppose A := (I, g, S, §, F) 1s the minimal DFA recognizing L.

Let L, € X be the language accepted by A, == (%, 5y, S, 6, {s}).
Then {L. : s € S} is the set of equivalence classes induced by =; .

Equivalence classes to DFA

Let {[x]; : x € £*} be the set of equivalence classes induced by =; .
Define an automaton 4; := (%, sy, S, §, F) as follows:

so = lelL

S ={[x], : x € X%}

6 ={([x],a [xa];) :x €X, a€l}
F={[x], : x €L}

Nerode congruence vs DFA (cont’d)

When L is regular, the set of equivalence classes induced by =; is
isomorphic to the set of states of the minimal DFA that recognizes L.

DFA to equivalence classes

Suppose A := (I, g, S, §, F) 1s the minimal DFA recognizing L.

Let L, € X be the language accepted by A, == (%, 5y, S, 6, {s}).
Then {L. : s € S} is the set of equivalence classes induced by =; .

Equivalence classes to DFA

Let {[x]; : x € £*} be the set of equivalence classes induced by =; .
Define an automaton 4; := (%, sy, S, §, F) as follows:

so = |, | |
S ={[x], : x € X%} A; 1s finite
§ = {([x],, a,[xa],) : x €X*, a € X} A; is deterministic

F={[x],:x€L} A, is minimal

Nerode congruence vs DFA (cont’d)

Let L € X* be a language. Define an automaton A4; := (%, sy, S, 6, F) as:

0 = lel;
{[x], s x € 27}

{([lpalxaly) :x €XF, a €L}

{[x]y : x € L}

“1109(/303
I i

Key observation When L 1s regular, there is a finite D € X" such that A; is
isomorphic to a DFA Ap ; := (%, 59, S, §, F) defined as follows:

so = lelp,

S ={[x]lp. : x €%}

) —{(xXlpr, a xa]D,L):xEZ*, aEZ}
F:={[x]p,: x €L}

Here, y € [x]p iff x, y cannot be distinguished by any word in D w.r.t. L.

Nerode congruence vs DFA (cont’d)

Let L € X* be a language. Define an automaton A4; := (%, sy, S, 6, F) as:

0 = lelL
{lx], : x €27}

([x];, a,[xal;) : x € £, a € X}

[x], : x € L}

“1109(/303
I i

{
{

Key observation When L 1s regular, there is a finite D € X" such that A; is
isomorphic to a DFA Ap ; := (%, 59, S, §, F) defined as follows:

so = lelp,

S ={[x]lp. : x €%}

) —{(xXlpr, a xa]D,L):xEZ*, aEZ}
F:={[x]p,: x €L}

Question: what’s the relationship between Ap ; and A, in general?

L™ automata learning algorithm

L™ was proposed by Dana Angluin in 1987 and later improved by Rivest
and Schapire in 1993. We will introduce R&S’s version in this lecture.

make a conjecture
O—0
QY4

automaton C
'\

Learner

membership queries

Yes / No

equivalence queries

No+w e L& L(C)

Yes

automaton C

L™ automata learning algorithm (cont’d)

Goal: learn a minimal DFA A := (%, s, S, §, F) for a language L such that
so = lel;

S ={lx]p:x€X}

6 ={(x];,a |xa];) : x €L, a€X}

F={lx], :x €L}

L™ automata learning algorithm (cont’d)

Goal: learn a minimal DFA A := (%, sy, 5,6, F) and D € X* for L such that
so = lelp

g = {[x]D’L 1 X € Z*}

§ = {([x]D,L, a, [xa]D,L) :X €X', a€ Z}

F = {[x]D,L : X € L}

L™ automata learning algorithm (cont’d)

Goal: learn a minimal DFA A := (%, sy, 5,6, F) and D € X* for L such that
so = lelp,s

S :={ DL:xEZ*}

) —{(xlpr, a xa]D,L):xEZ*, aEZ}

F::{xD,L:xEL}

The learner maintains an observation table:

———m D= {us, .

Eachw i
ac .W sa Wi, €, L Wit € L 1s a set of
candidate . . distinguishing
representative ' ' words for the
of state [w]p, \ Wy, representatives
Wi, e, W
Successors of the W14 wia Uy € L ! "

representatives:

a
Wlp, — [walp \ W, QA

L™ algorithm: the initial table

*

Fix X := {a, b} and suppose that the target language is L := (ab + aab)*.

The learner creates an initial table:

I -

&

In the 1nitial table, the column 1s indexed by &, while the rows are indexed

by {¢} U X.

L™ algorithm: the initial table

Fix X := {a, b} and suppose that the target language is L := (ab + aab)*.

The learner creates an initial table:

|

m T -

The learner then fills the table by making membership queries.
Now we know that the state [e]; differs from its successors [a]; and [b];.

We extend the table by adding a (or b) to the state space.

L™ algorithm: extending the table

Fix X := {a, b} and suppose that the target language is L := (ab + aab)*.

After extending the state space with a, we obtain the table

|

m M -

b
aa
ab

The learner then extends the table with the successors of a, b and fills the
table by making membership queries.

L™ algorithm: extending the table

*

Fix X := {a, b} and suppose that the target language is L := (ab + aab)*.

After extending the state space with a, we obtain the table

I T S
£ T
F
b F
aa F
ab T

Now every successor class has a representative in the table with respect to
the current set of distinguishing words.

We say that the table is closed.

L™ algorithm: making a conjecture

Fix X := {a, b} and suppose that the target language is L := (ab + aab)*.

The table is closed. We construct a DFA Ap ; from the table with D = {&}.

|

£ T
F

b F
aa F
ab T

so = lelp

S = {[x]D,L : X € Z*}

g = {([x]D,L, a, [xa]D,L) X €X', a€ 2}
F = {[x]D,L : X € L}

L™ algorithm: making a conjecture

*

Fix X := {a, b} and suppose that the target language is L := (ab + aab)*.

|

£ T
F

b F
aa F
ab T

The learner then makes an equivalence query Eq(Ap) to the teacher.
The teacher replies “No” and provides a counterexample w € Ly, © L.

Then this word w contains a suffix that is a valid distinguishing word.

L™ algorithm: making a conjecture

Fix X := {a, b} and suppose that the target language is L := (ab + aab)*.

|

£ T
F

b F
aa F
ab T

The learner then makes an equivalence query Eq(Ap) to the teacher.

The teacher replies “No” and provides a counterexample w € Ly, O L.

Suppose that the teacher returns bb. Then b 1s a distinguishing word for
at least two D-equivalent states.

L* algorithm: the 2" iteration

%

Fix X := {a, b}. Suppose that the language to learn is L := (ab + aab)".

I

£ T E
F T

b F F
aa F T
ab T F

We include b 1n the state space and extend the table accordingly.

The representatives a and b are separated by the new distinguishing word!

L* algorithm: the 2" iteration

Fix X := {a, b}. Suppose that the language to learn is L := (ab + aab)".

I

£ T E
F T

b F F
aa F T
ab T F
ba F F
bb F F

The table 1s now closed. The learner makes an equivalence query to the
teacher. The teacher replies “No”, and we obtain a new distinguishing
word ab after analyzing the counterexample.

L* algorithm: the 37! iteration

Fix X := {a, b}. Suppose that the language to learn is L := (ab + aab)".

| ¢ | b | ab

£ T E T

F T T

b F F F

aa F T F

ab T F T

ba F F F

bb F F F

aaa F F F

aab T F T

The learner successfully learns a minimal DFA A for L in the 3™ iteration.

L™ algorithm: counterexample analysis

Claim If the teacher returns a counterexample w € L(A) © L for an
equivalence query Eq(A), then one can make log|w| membership
queries to find a word that distinguish two states of A.

Recall that a hypothesis automaton A := (I, sy, S, §, F) is defined as
so = lelp,L

S ={[x]p : x € Z*}

§ = {([x]D,L, a, [xa]D,L) X EX, a€ Z}

F = {[x]D,L 1 X € L}

Consider a counterexample word w := a, ... a,,. Then A will reach state
la; ...ax]p after reading the prefix a; ... ay of w.

Ifw € L(A) © L, then there exists 1 < k < m such that aj;q ...a,, isa
distinguishing word for some x,y € [a; ...ax]p .

We can locate this k using binary search with log|w| membership queries. Adding
Ay41 - Ay to D will identify at least one new state.

L™ algorithm: complexity

Complexity result of L*

If the minimal DFA recognizing the target language has n states, then
1. The learner needs at most n equivalence queries
2. The learner needs O(|X|n? + nlogm) membership queries

where m 1s the maximum size of counterexample returned by the teacher.

L*-based learning for safety proofs

We introduce below how to use the L* algorithm to learn a safety proof
for a regular transition system (X, 1, T).

We need a target language for L*. We cannot use the proof to learn
as the target language since safety proof is not unique.

Instead, we set (the language representation of) the reachable states
T*(I) as the target language.

Recall that T*(1) is unique, and is a proof when the system is safe.

We will design a teacher for L* such that when the system is safe
and T* (1) 1s regular, the learner is guaranteed to find a proof.

L*-based learning for safety proofs (cont’d)

We set the reachable states T* (1) as the target language.

We will design a teacher for L* such that when the system is safe
and T*(I) is regular, the learner is guaranteed to find a regular
proof.

Resolving Mem(w):
- w € T*(I) iff w is reachable from I.
Resolving Eq(A4):
It suffices to check the proof rules for safety:
- 1S L,
- L,NB=¢
- T(La) € Ly

L*-based learning: resolving equivalence query

* We check the proof rules for safety to resolve Eq(A):

_Icl,
—LAﬂB=(D
- T(Ly) € Ly

« If any of the checks fails:
- I &£ Ly:anyw €[\ Ly is a positive cex
- LyNB #@:anyw € L, N B 1s a negative cex
— T(Ly) € Ly :thereisw € Lyand T(w) \ L, # Q.
If Mem(w) is “no”, then w & T*(I) and thus is a negative cex

If Mem(w) is “yes”, then any w € T(w) \ L, is a positive cex

L*-based learning: resolving equivalence query

* We check the proof rules for safety to resolve Eq(A):

— 1 Elly
CL.NB=0¢ AllWeLAGT(I)

when the system 1is safe
- T(L,)) € L,

« If any of the checks fails:
- I &£ Ly:anyw € I\ Ly is a positive cex
- LyNB # @ :anyw € Ly N B is a negative cex
— T(Ly) € Ly :thereisw € Lyand T(w) \ L, # Q.
If Mem(w) is “no”, then w & T*(I) and thus is a negative cex

If Mem(w) is “yes”, then any w € T(w) \ Ly is a positive cex

L*-based learning: an example

Consider Israeli-Jalfon’s leader election protocol.

1.
8
3.
4.

Processes 1, ..., n are organized 1n a ring
At the beginning, at least rwo processes hold a token
At each step, a process can pass its token to the right or left

When a process receives two tokens, it discards one of them

Safety condition: there 1s at least one token in the ring.

L*-based learning: an example

Consider Israeli-Jalfon’s leader election protocol.
1. Processes 1, ...,n are organized in a ring
2. At the beginning, at least two processes hold a token
3. At each step, a process can pass its token to the right or left

4. When a process receives two tokens, it discards one of them
Safety condition: there 1s at least one token in the ring.

We model the protocol with an RTS (%, I, T) and bad states B, where

I (14+0)*1(1+ 0)*1(1 + 0)*
T: [(i) + (e + @ ([+ Dl + (G +EDa o) + [le (] +[D)

o = ([+[3)

L*-based learning: an example (cont’d)

I[: (1+0)1(1+0)*1(1+0)*
1,0
The first closed table:
- e
€ F
1 F
0 F

Counterexample: 11 € I \ L4. Add a new distinguishing word 1.

L*-based learning: an example (cont’d)

[+ (1+40)"1(1+0)"1(1+0) 1,0
. iiF L0~ 10 =

B:0 € 1) J@

The second closed table:

|
I

& F F
1 F T
11 T T
0 F T
10 T T
111 T T
110 T T

Counterexample: 000 € L, N B. Add a new distinguishing word 0.

L*-based learning: an example (cont’d)

I: (1+0)*1(1+0)*1(1+0)

D
D - U

The third closed table leads to a regular proof. What is the DFA?

e | 1 | 0

£ F : F

F T T

0 - T F

11 T T T

10 T T T

01 T T T

00 - T F

111 T T T

110 T T T

Active learning algorithms for DFAs

Algorithm Publication
Angluins et al. Angluin's L* Learning regular sets from queries and counterexamples
1987
Rivest and Schapire R&S's Inference of Finite Automata Using Homing Sequences
1993 Algorithm
Kearns and Vazirani K&V's An introduction to computational learning theory
1994 Algorithm
Parekh et al. ID and IID A polynomial time incremental algorithm for regular
1997 grammar inference
Denis et al. DeLeTe2 Learning regular languages using RFSAs
2001
Bongard et al. Estimation- Active Coevolutionary Learning of Deterministic Finite
2005 Exploration Automata
Isberner et al. The TTT The TTT Algorithm: A Redundancy-Free Approach to
2014 Algorithm Active Automata Learning
Volpato et al. Learnl’T'S Approximate Active Learning of Nondeterministic Input
2015 Output Transition Systems

