Chih-Duo Hong FLOLAC 2023 ### **Transition system** - A transition system is a triple (S, I, T), where - S is the set of states - $I \subseteq S$ is the set of initial states - $T \subseteq S \times S$ is the set of transitions - A trace of (S, I, T) is a sequence $\sigma = \sigma_0 \sigma_1 \sigma_2 \dots \in S^{\omega}$ such that - $-\sigma_0 \in I$ - for all $i \ge 0$, $(\sigma_i, \sigma_{i+1}) \in T$ - That is, a trace is a finite/infinite sequence of consecutive transitions starting from an initial state. ### **Safety property** - Safety properties are concerned with the assurance that certain undesirable behaviors will never occur in a system - Typical safety properties of software: - 1. Division by zero: A program will never divide a number by zero - 2. Null dereference: A program will never dereference a null or uninitialized pointer - 3. Data race: A shared variable will never be updated simultaneously - Safety of a transition system - Does every trace never reach a bad state? - Model checking a liveness property - Yes + proof - No + counterexample (a system trace that reaches a bad state) ### **Liveness property** - Liveness properties are concerned with the assurance that certain desirable behaviors will eventually occur in a system - Typical liveness properties of software: - 1. Termination: A program will eventually terminate - 2. Response: A system will respond to an input event within a bounded time frame - 3. Progress: A thread will eventually make progress and not get stuck in a deadlock - Liveness of a transition system - Does every trace eventually reach a good state? - Model checking a liveness property - Yes + proof - No + counterexample (a system trace that never reaches a good state) #### Symbolic transition system - We usually specify and reason about a transition system using a *symbolic representation* - In this lecture, we will introduce two symbolic representations for infinite-state transition systems: - 1. Logical formulas (over a background theory) - 2. Regular languages #### Formulas as symbolic representation - A symbolic transition system is a tuple (V, I, T), where - V is a set of variables, - *I* is a formula over variables *V* - T is a formula over variables V ∪ V' (E.g., i' = i + 1 is a formula over {i} ∪ {i'} that increments i by 1) - A state $\sigma \in A$ is a type-consistent assignment to variables in V - A trace of (V, I, T) is a sequence $\sigma = \sigma_0 \ \sigma_1 \ \sigma_2 \dots \in A^{\omega}$, where - $-\sigma_0 \models I(V)$ - $-\sigma_i, \sigma'_{i+1} \models T(V, V') \text{ for all } i \geq 0$ ### **Example: the Collatz transition system** - Consider the following operation on a natural number: - If the number is even, divide it by two. - If the number is odd, triple it and add one. - Applying this operation to a number repeatedly will generate a sequence, for example: $21 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ - The corresponding symbolic transition system is (V, I, T), where $V := \{x\}$, $I := (x \ge 1)$, and T is defined in Presburger arithmetic as $$(\exists k. x = 2k \land x' = k) \lor (\exists k. x = 2k + 1 \land x' = 3x + 1)$$ ### **Example: the Collatz transition system** - Consider the following operation on a natural number: - If the number is even, divide it by two. - If the number is odd, triple it and add one. - Applying this operation to a number repeatedly will generate a sequence, for example: $21 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$ An example safety property: "Every sequence starting from a power of 2 will reach no odd numbers but 1." An example liveness property: "Every sequence will eventually reach 1." # Forward reachability analysis $$T(A) := \{ s' : s \in A \text{ and } (s, s') \in T \}$$ #### **Inductive invariant** A set of states Inv is an **inductive invariant** if it satisfies the following three conditions: - Initiation: I⊆Inv - Consecution: T(Inv) ⊆ Inv - Safety: Inv \cap B = \emptyset When I, F, B, Inv are expressed in formulas, these conditions are equivalent to $$I(V) \Rightarrow Inv(V)$$ $Inv(V) \wedge T(V, V') \Rightarrow Inv(V')$ $Inv(V) \Rightarrow \neg B(V)$ ### **Inductive invariant (cont'd)** - Initiation: I⊆Inv - Consecution: T(Inv) ⊆ Inv - Safety: Inv \cap B = \emptyset #### state space A system is safe iff it has an inductive invariant # **Example: inductive invariant** • Consider a symbolic transition system (V, I, T), where $$V := \{x, y\}$$ $$I := x = 1 \land y = 1$$ $$T := (x' = x + y) \land (y' = y + x)$$ • We want to prove the safety property $P := y \ge 1$. ### **Example: inductive invariant (cont'd)** $P := y \ge 1$ is not an inductive invariant - $I \Rightarrow P$: - $(x = 1 \land y = 1) \Rightarrow y \ge 1$ - But $P \wedge T \not\Rightarrow P'$: $$-y \ge 1 \land (x' = x + y \land y' = x + y) \not\Rightarrow y' \ge 1$$ $$V := \{x, y\}$$ $$I := x = 1 \land y = 1$$ $$T := (x' = x + y) \land (y' = y + x)$$ $$P := y \ge 1$$ $$I(V) \Rightarrow Inv(V)$$ $Inv(V) \wedge T(V, V') \Rightarrow Inv(V')$ $Inv(V) \Rightarrow \neg B(V)$ ### **Example: inductive invariant (cont'd)** $P := y \ge 1$ is not an inductive invariant • $$I \Rightarrow P$$: $$- (x = 1 \land y = 1) \Rightarrow y \ge 1$$ • But $$P \wedge T \not\Rightarrow P'$$: $$-y \ge 1 \land (x' = x + y \land y' = x + y) \not\Rightarrow y' \ge 1$$ Consider Inv $:= x \ge 0 \land y \ge 1$ $$- (x = 1 \land y = 1) \Rightarrow x \ge 0 \land y \ge 1$$ $$- x \ge 0 \land y \ge 1 \land (x' = x + y \land y' = x + y) \Rightarrow x' \ge 0 \land y' \ge 1$$ $$- x \ge 0 \land y \ge 1 \Rightarrow y \ge 1$$ Property proved! $$I(V) \Rightarrow Inv(V)$$ $Inv(V) \wedge T(V, V') \Rightarrow Inv(V')$ $Inv(V) \Rightarrow \neg B(V)$ $$V := \{x, y\}$$ $$I := x = 1 \land y = 1$$ $$T := (x' = x + y) \land (y' = y + x)$$ $$P := y \ge 1$$ ### **Example: inductive invariant (cont'd)** #### Induction hypothesis $$P \coloneqq y \geq 1 \text{ is } n^{\wedge} \quad \text{Base case} \quad \text{nvariant} \qquad V \coloneqq \{x,y\}$$ $$I \Rightarrow P : \qquad I \coloneqq x = 1 \land y = 1$$ $$- (x = 1 \land y = 1) \qquad \text{Induction step} \qquad P \coloneqq y \geq 1$$ $$\text{But } P \land T \not\Rightarrow P' : \qquad \text{Strengthening the induction hypothesis}$$ $$\text{Consider Inv} \coloneqq \mathbf{x} \geq \mathbf{0} \land y \geq 1$$ $$- (x = 1 \land y = 1) \Rightarrow \mathbf{x} \geq 0 \land y \geq 1$$ $$- \mathbf{x} \geq 0 \land y \geq 1 \land (\mathbf{x}' = \mathbf{x} + \mathbf{y} \land \mathbf{y}' = \mathbf{x} + \mathbf{y}) \Rightarrow \mathbf{x}' \geq 0 \land \mathbf{y}' \geq 1$$ $$- \mathbf{x} \geq 0 \land y \geq 1 \Rightarrow y \geq 1$$ Property proved! ### Symbolic transition system - We usually specify and reason about a transition system using a *symbolic representation* - In this lecture, we introduce two common symbolic representation for infinite transition systems: - 1. Logical formulas (over a background theory) - 2. Regular languages #### Regular language as symbolic representation - For a finite alphabet Σ , define $\Sigma_{\#} := \Sigma \uplus \{\#\}$ with padding symbol #. - A regular language $L \subseteq \Sigma_{\#}^*$ encodes a set of words $$\llbracket L \rrbracket \coloneqq \{ w : w \#^k \in L \text{ for all } k \ge 0 \} \subseteq \Sigma^*$$ #### Regular language as symbolic representation - For a finite alphabet Σ , define $\Sigma_{\#} := \Sigma \uplus \{\#\}$ with padding symbol #. - A regular language $L \subseteq \Sigma_{\#}^*$ encodes a set of words $$\llbracket L \rrbracket \coloneqq \{w : w \#^k \in L \text{ for all } k \ge 0\} \subseteq \Sigma^*$$ • The *convolution* of two words u and v in Σ^* is defined as $u \otimes v := \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} \cdots \begin{bmatrix} u_n \\ v_n \end{bmatrix} \in (\Sigma_\# \times \Sigma_\#)^*$, where $n = \max\{|u|, |v|\}$ and $$u_k = \begin{cases} u[k], & k < |u| \\ \#, & k \ge |u| \end{cases}$$ and $v_k = \begin{cases} v[k], & k < |v| \\ \#, & k \ge |v| \end{cases}$ for $0 \le k < n$. #### Regular language as symbolic representation - For a finite alphabet Σ , define $\Sigma_{\#} := \Sigma \cup \{\#\}$ with padding symbol #. - A regular language $L \subseteq \Sigma_{\#}^*$ encodes a set of words $$\llbracket L \rrbracket \coloneqq \{w : w \#^k \in L \text{ for all } k \ge 0\} \subseteq \Sigma^*$$ • The *convolution* of two words u and v in Σ^* is defined as $u \otimes v = \begin{bmatrix} u_1 \\ v_1 \end{bmatrix} \cdots \begin{bmatrix} u_n \\ v_n \end{bmatrix} \in (\Sigma_\# \times \Sigma_\#)^*$, where $n = \max\{|u|, |v|\}$ and $$u_k = \begin{cases} u[k], & k < |u| \\ \#, & k \ge |u| \end{cases}$$ and $v_k = \begin{cases} v[k], & k < |v| \\ \#, & k \ge |v| \end{cases}$ for $0 \le k < n$. • A regular language $L \subseteq (\Sigma_{\#} \times \Sigma_{\#})^*$ encodes a binary relation $$\llbracket L \rrbracket \coloneqq \{(u, v) : u \otimes v \begin{bmatrix} \# \\ \# \end{bmatrix}^k \in L \text{ for all } k \ge 0\} \subseteq \Sigma^* \times \Sigma^*$$ • We use L_E to denote the minimal language L satisfying $[\![L]\!] = E$ #### Example: regular language as symbolic representation - We can encode the structure $(\mathbb{N}, 0, 1, +, <)$ in regular languages by representing natural numbers in binary with the least significant bit first and without tailing zeros. - We can define $L_{\mathbb{N}} \coloneqq (\varepsilon + (0+1)^*1) \#^*$, $L_{zero} \coloneqq \#^*$, $L_{one} \coloneqq 1 \#^*$. The language $L_+ = L(\{(x,y,z): x+y=z\})$ can be defined by intersecting $L_{\mathbb{N}} \times L_{\mathbb{N}} \times L_{\mathbb{N}}$ with the language of • In fact, every relation definable in FO(N, 0, 1, +, <), which is equivalent to Presburger arithmetic, can be represented by a regular language under this encoding! ### Regular transition system A **regular transition system** (RTS) is a triple (Σ, I, T) , where I is a regular language over alphabet $\Sigma_{\#}$, and T is a regular language over alphabet $\Sigma_{\#} \times \Sigma_{\#}$. An RTS (Σ, I, T) induces a transition system $(\Sigma^*, [I], [T])$: - Each state is a finite word over the alphabet Σ - The set of initial states is a regular set $\llbracket I \rrbracket \subseteq Σ^*$ - The transition relation is regular relation $[T] \subseteq \Sigma^* \times \Sigma^*$ #### Regular transition system (cont'd) A **regular transition system** (RTS) is a triple (Σ, I, T) , where I is a regular language over alphabet $\Sigma_{\#}$, and T is a regular language over alphabet $\Sigma_{\#} \times \Sigma_{\#}$. Example The Collatz transition system is (isomorphic to) an RTS. Presburger definable relations can be encoded in regular languages. Example The configuration graph of a Turing machine is an RTS. A TM with a two-sided tape can be simulated by a TM with a one-sided tape. A configuration of a one-sided TM can be encoded as a regular language $usaw\#^*$, where u is the tape content before the head, s is the control state, a is the tape symbol at the head position, and w is the tape content after the head. ### Safety of regular transition systems Fix an RTS (Σ, I, T) . Let $B \subseteq \Sigma_{\#}^*$ denote the language representation of a set of bad states. - The RTS (Σ, I, T) is *safe* if [B] cannot be reached from [I] - A **safety proof** is a regular language *P* satisfying - $-I \subseteq P$ - $-P \cap B = \emptyset$ - $-T(P) \subseteq P$ - A regular transition system is safe iff it has a safety proof ### **Example: the Collatz transition system** The Collatz system applies the following operation on natural numbers: - If the number is even, divide it by two. - If the number is odd, triple it and add one. We can specify the Collatz transition system as an RTS (Σ, I, T) by encoding natural numbers in binary with the least significant bit first without tailing zeros. Consider the safety property: "Every sequence starting from a power of 2 will reach no odd numbers but 1." We set $I := 0^*1\#^*$ as the initial states and $B := 1(0+1)(0+1)^*\#^*$ as the bad states. Observe that $T(\underbrace{0\cdots 0}_{n \text{ zeros}})\#^* = \underbrace{0\cdots 0}_{n-1 \text{ zeros}})\#^*$ for each $n \ge 1$. We therefore have $I \cap B = \emptyset$ and $T(I) \subseteq I$. Namely, I is itself a safety proof. #### Regular model checking - The **regular model checking** problem is to find a *regular* safety proof for a regular transition system - A RTS may not have a regular proof even if it is safe! - For some subclass of RTSs, a regular proof is guaranteed to exist when the system is safe - For example, the set of reachable states is regular for RTSs like Petri nets, pushdown systems, and lossy-channel systems - Such systems have a regular safety proof whenever they are safe ### Regular model checking (cont'd) • If an RTS has a regular proof when it is safe, then safety checking of the system is decidable. Idea: launch two procedures as follows at the same time ``` Procedure A: while true do i := 1 let A_i be the i-th DFA, and let P := L_A if I \subseteq P and P \cap B = \emptyset and T(P) \subseteq P then terminate and report "safe" i := i + 1 Procedure B: while true do i := 0 if B is reachable from I in i step then terminate and report "unsafe" i := i + 1 ``` Eventually one of the two procedures will terminate! #### Learning proofs for regular model checking - In the rest of this lecture, we will look at two methods to find a regular proof for an RTS: - SAT-based learning - L*-based learning - The SAT-based method is less scalable (i.e. it is not effective when all regular proofs are large). However, it has the same termination guarantee as brute-force enumeration. - The L^* -based method is more scalable and is capable of finding very large regular proofs in practice. However, it is not guaranteed to find a regular proof even if one exists. ### Learning proofs for regular model checking - In the rest of this lecture, we will look at two methods to find a regular proof for an RTS: - SAT-based learning - L*-based learning - The SAT-based method is less scalable (i.e. it is not effective when all regular proofs are large). However, it has the same termination guarantee as brute-force enumeration. - The L^* -based method is more scalable and is capable of finding very large regular proofs in practice. However, it is not guaranteed to find a regular proof even if one exists. ### **SAT-based learning for safety proofs** Fix a regular system (Σ, I, T) and a set of bad states B For each $n \ge 1$, we construct a Boolean formula Φ_n such that a model of Φ_n corresponds to a DFA A of n states and vice versa SAT-based learning of regular proofs: ``` n := 1, C := \emptyset while true do construct \Phi_n while \Phi_n \wedge \Phi_C has a model \alpha do construct a DFA A from \alpha if L_A is a safety proof then return A let cex be a witness of the violation C := C \cup \{cex\} n := n + 1 ``` # **SAT-based learning for safety proofs** Fix a regular system (Σ, I, T) and a set of bad states B For each $n \ge 1$, we construct a Boolean formula Φ_n such that a model of Φ_n corresponds to a DFA A of n states and vice versa SAT-based learning of regular proofs: ``` n := 1, C := \emptyset while true do construct \Phi_n while \Phi_n \wedge \Phi_C has a model \alpha do construct a DFA A from \alpha if L_A is a safety proof then return A let cex be a witness of the violation C := C \cup \{cex\} n := n + 1 ``` $$I \subseteq L_A$$ $$L_A \cap B = \emptyset$$ $$T(L_A) \subseteq L_A$$ #### **SAT-based learning for safety proofs** ``` Fix a regular system (\Sigma, I, T) and a set of bad states B For each n \ge 1, we construct a Boolean formula \sigma such that a model of \Phi_n corresponds to a DFA ' \alpha \models \Phi_C iff for all c \in C, SAT-based learning c is not a witness of A_{\alpha} violating the proof rules n := 1, C := \emptyset while true do construct \Phi_n while \Phi_n \wedge \Phi_C has a model \alpha do construct a DFA A from \alpha if L_A is a safety proof then return A let cex be a witness of the violation C \coloneqq C \cup \{cex\} n \coloneqq n+1 ``` ### **SAT encoding of DFA** #### Encoding of a DFA $(\Sigma, S, s_0, \delta, F)$ - Given Σ and S, it suffices to fix s_0 and define only δ and F. - For each $i, j \in S$ and $a \in \Sigma$, we define a Boolean variable $t_{i,a,j}$ such that " $t_{i,a,j}$ is true" corresponds to " $\delta(i,a) = j$ ". - For each $i \in S$, we define a Boolean variable f_i such that " f_i is true" corresponds to " $i \in F$ ". - We use the following constraint to ensure that the DFA is deterministic and complete: $$\left(\bigwedge_{i,j,k\in\mathcal{S},\ j\neq k,\ a\in\Sigma}\neg(t_{i,a,j}\wedge t_{i,a,k})\right)\wedge\left(\bigwedge_{i\in\mathcal{S},\ a\in\Sigma}\bigvee_{j\in\mathcal{S}}t_{i,a,j}\right)$$ ## SAT encoding of DFA (cont'd) #### **Encoding of a DFA** $(\Sigma, S, s_0, \delta, F)$ • For each $n \ge 1$, we define a propositional formula $\phi_{DFA}^n(\bar{t}, \bar{f})$ as $$\left(\bigwedge\nolimits_{1\leq i,j,k\leq n,\; j\neq k,\; a\in\Sigma} \neg \left(t_{i,a,j} \wedge t_{i,a,k}\right)\right) \wedge \left(\bigwedge\nolimits_{1\leq i\leq n,\; a\in\Sigma} \bigvee\nolimits_{1\leq j\leq n} t_{i,a,j}\right)$$ with free variables $$\{t_{i,a,j}: 1 \le i, j \le n, a \in \Sigma\}$$ and $\{f_i: 1 \le i \le n\}$. - Any $\alpha \models \phi_{\mathrm{DFA}}^{n}(\bar{t}, \bar{f})$ corresponds to a DFA $A_{\alpha} \coloneqq (\Sigma, S, s_{0}, \delta, F)$: - $S = \{1, ..., n\}, s_0 = 1$ - For $i \in S$ and $a \in \Sigma$, $\delta(i, a) = j$ iff $\alpha(t_{i,a,j}) = \text{true}$ - $F = \{ i : \alpha(f_i) = \text{true} \}$ # **Counterexample refinement** SAT-based learning of regular proofs: ``` n := 1, C := \emptyset while true construct \Phi_n while \Phi_n \wedge \Phi_C has a model \alpha construct a DFA A from <math>\alpha if L_A is a safety proof then return A let cex be a witness of the violation C := C \cup \{cex\} n := n + 1 ``` ### Counterexample refinement (cont'd) #### Positive counterexample $I \subseteq L_A$ A positive cex is a word supposed to be accepted by A. $L_A \cap B = \emptyset$ - We obtain a positive cex $w \in I \setminus L_A$ when $I \nsubseteq L_A$. $T(L_A) \subseteq L_A$ #### • Negative counterexample - A negative cex is a word not supposed to be accepted by A. - We obtain a negative cex $w \in L_A \cap B$ when $L_A \cap B \neq \emptyset$. #### Implication counterexample - An implication cex is a pair of words (w, w') such that "w is in L_A " implies "w' is in L_A " - We obtain an implication cex when $T(L_A) \not\subseteq L_A$. In such case, we can find a pair of words (w, w') such that $w \in L_A$ and $w' \in T(w) \setminus L_A$. ### **SAT** encoding of positive counterexample #### **Encoding the membership of a word** - Suppose we got a positive counterexample w - We give a formula ϕ_w^n such that if $$\alpha \models \phi_{\mathrm{DFA}}^n \land \phi_w^n$$, then A_α accepts w • We introduce variables $\{v_{k,i}: 0 \le k \le |w|, 1 \le i \le n\}$ and let $$\phi_{w}^{n} \coloneqq v_{0,1} \wedge \left(\bigwedge_{1 \leq k \leq |w|} \bigvee_{1 \leq i \leq n} v_{k,i} \right) \wedge \left(\bigwedge_{1 \leq i \leq n} (v_{|w|,i} \Rightarrow f_{i}) \right)$$ $$\wedge \left(\bigwedge_{1 \leq k \leq |w|} \bigwedge_{1 \leq i,j \leq n} (v_{k-1,i} \wedge v_{k,j} \Rightarrow t_{i,a_{k},j}) \right)$$ Intuitively, $\alpha(v_{k,i})$ = true iff the DFA A_{α} reaches state i after reading the prefix $a_1 \cdots a_k$ of the word w. ## **SAT** encoding of negative counterexample #### **Encoding the non-membership of a word** - Suppose we got a negative counterexample w - We give a formula ψ_w^n such that if $$\alpha \models \phi_{DFA}^n \land \psi_w^n$$, then A_α does not accept w • We introduce variables $\{u_{k,i}: 0 \le k \le |w|, 1 \le i \le n\}$ and let $$\psi_{w}^{n} \coloneqq u_{0,1} \wedge \left(\bigwedge_{1 \leq k \leq |w|} \bigvee_{1 \leq i \leq n} u_{k,i} \right) \wedge \left(\bigwedge_{1 \leq i \leq n} (u_{|w|,i} \Rightarrow \neg f_{i}) \right)$$ $$\wedge \left(\bigwedge_{1 \leq k \leq |w|} \bigwedge_{1 \leq i,j \leq n} (u_{k-1,i} \wedge u_{k,j} \Rightarrow t_{i,a_{k},j}) \right)$$ Intuitively, $\alpha(u_{k,i})$ = true iff the DFA A_{α} reaches state i after reading the prefix $a_1 \cdots a_k$ of the word w. ## **SAT** encoding of negative counterexample #### **Encoding the non-membership of a word** - Suppose we got a negative counterexample w - We give a formula ψ_w^n such that if $$\alpha \models \text{works only if } A_{\alpha} \text{ is a complete DFA}$$ $$\text{a complete DFA}$$ $$|w|, 1 \leq i \leq n \text{ and let}$$ We introduce var... $$|w|$$, $1 \le i \le n$ and let $$\psi_{w}^{n} \coloneqq u_{0,1} \wedge \left(\bigwedge_{1 \leq k \leq |w|} \bigvee_{1 \leq i \leq n} u_{k,i} \right) \wedge \left(\bigwedge_{1 \leq i \leq n} (u_{|w|,i} \Rightarrow \neg f_{i}) \right)$$ $$\wedge \left(\bigwedge_{1 \leq k \leq |w|} \bigwedge_{1 \leq i,j \leq n} (u_{k-1,i} \wedge u_{k,j} \Rightarrow t_{i,a_{k},j}) \right)$$ Intuitively, $\alpha(u_{k,i})$ = true iff the DFA A_{α} reaches state *i* after reading the prefix $a_1 \cdots a_k$ of the word w. ## **SAT-based learning for safety proofs** SAT-based learning with counterexample refinement: $$n := 1$$, $Pos := \emptyset$, $Neg := \emptyset$, $Imp := \emptyset$ while true do while $\phi_{DFA}^n \wedge \Gamma_n$ has a satisfying assignment α do construct a DFA A from α if A is a safety proof then return A add a new counterexample to either Pos , Neg , or Imp $n := n + 1$ $$\boldsymbol{\varGamma}_n \coloneqq \left(\bigwedge\nolimits_{w \in \boldsymbol{Pos}} \phi_w^n \right) \land \left(\bigwedge\nolimits_{w \in \boldsymbol{Neg}} \psi_w^n \right) \land \left(\bigwedge\nolimits_{(w,v) \in \boldsymbol{Imp}} \psi_w^n \lor \phi_v^n \right)$$ ## Learning proofs for regular model checking - In the rest of this lecture, we will look at two methods to find a regular proof for an RTS: - SAT-based learning - L*-based learning - The SAT-based method is less scalable (i.e. it is not effective when all regular proofs are large). However, it has the same termination guarantee as the brute-force enumeration. - The L^* -based method is more scalable and can find very large regular proofs in practice. However, it is not guaranteed to find a regular proof even if one exists. ### **Myhill-Nerode Theorem** Given a language $L \subseteq \Sigma^*$, we can define an equivalence relation \equiv_L over Σ^* such that $x \equiv_L y$ if and only if $$\forall z \in \Sigma^*, \ xz \in L \Leftrightarrow yz \in L.$$ We will call \equiv_L the *Nerode congruence*. Fact $x \not\equiv_L y$ if and only if there exists $z \in \Sigma^*$ such that either $xz \in L \land yz \notin L$, or $xz \notin L \land yz \in L$. In such case, we say z is a distinguishing word for x and y. Given a language $L \subseteq \Sigma^*$, we can define an equivalence relation \equiv_L over Σ^* such that $x \equiv_L y$ if and only if $$\forall z \in \Sigma^*, \ xz \in L \Leftrightarrow yz \in L.$$ We will call \equiv_L the *Nerode congruence*. #### Example 1 Consider $\Sigma := \{a, b\}$ and $L := (aa)^*$. Is $\varepsilon \equiv_L aa$? Is $a \equiv_L aa$? Is $ab \equiv_L ba$? What are the equivalence classes induced by \equiv_L ? Given a language $L \subseteq \Sigma^*$, we can define an equivalence relation \equiv_L over Σ^* such that $x \equiv_L y$ if and only if $$\forall z \in \Sigma^*, \ xz \in L \Leftrightarrow yz \in L.$$ We will call \equiv_L the *Nerode congruence*. #### Example 1 Consider $\Sigma := \{a, b\}$ and $L := (aa)^*$. Is $\varepsilon \equiv_L aa$? Is $a \equiv_L aa$? Is $ab \equiv_L ba$? What are the equivalence classes induced by \equiv_L ? Given a language $L \subseteq \Sigma^*$, we can define an equivalence relation \equiv_L over Σ^* such that $x \equiv_L y$ if and only if $$\forall z \in \Sigma^*, \ xz \in L \Leftrightarrow yz \in L.$$ We will call \equiv_L the *Nerode congruence*. #### Example 2 Consider $\Sigma := \{a, b\}$ and $L := \{a^n b^n : n \ge 0\}$. What are the equivalence classes induced by \equiv_L ? Given a language $L \subseteq \Sigma^*$, we can define an equivalence relation \equiv_L over Σ^* such that $x \equiv_L y$ if and only if $$\forall z \in \Sigma^*, \ xz \in L \Leftrightarrow yz \in L.$$ We will call \equiv_L the Nerode congruence. #### **Myhill-Nerode Theorem** L is regular iff \equiv_L induces a finite number of equivalence classes. #### **Key observation** When L is regular, the set of the equivalence classes is isomorphic to the set of states of the minimal DFA that recognizes L. # Nerode congruence vs DFA When L is regular, the set of equivalence classes induced by \equiv_L is isomorphic to the set of states of the minimal DFA that recognizes L. When L is regular, the set of equivalence classes induced by \equiv_L is isomorphic to the set of states of the minimal DFA that recognizes L. #### DFA to equivalence classes Suppose $A := (\Sigma, s_0, S, \delta, F)$ is the minimal DFA recognizing L. Let $L_s \subseteq \Sigma^*$ be the language accepted by $A_s := (\Sigma, s_0, S, \delta, \{s\})$. Then $\{L_s : s \in S\}$ is the set of equivalence classes induced by \equiv_L . When L is regular, the set of equivalence classes induced by \equiv_L is isomorphic to the set of states of the minimal DFA that recognizes L. #### DFA to equivalence classes Suppose $A := (\Sigma, s_0, S, \delta, F)$ is the minimal DFA recognizing L. Let $L_s \subseteq \Sigma^*$ be the language accepted by $A_s := (\Sigma, s_0, S, \delta, \{s\})$. Then $\{L_s : s \in S\}$ is the set of equivalence classes induced by \equiv_L . $\{L_s: s \in S\}$ forms a partitioning of Σ^* (by determinism of A) If $x, y \in L_s$ for some $s \in S$, then $x \equiv_L y$ (by def. of L_s and \equiv_L) If $x \equiv_L y$, then $x, y \in L_s$ for some $s \in S$ (by minimality of A) When L is regular, the set of equivalence classes induced by \equiv_L is isomorphic to the set of states of the minimal DFA that recognizes L. #### DFA to equivalence classes Suppose $A := (\Sigma, s_0, S, \delta, F)$ is the minimal DFA recognizing L. Let $L_s \subseteq \Sigma^*$ be the language accepted by $A_s := (\Sigma, s_0, S, \delta, \{s\})$. Then $\{L_s : s \in S\}$ is the set of equivalence classes induced by \equiv_L . #### Equivalence classes to DFA Let $\{[x]_L : x \in \Sigma^*\}$ be the set of equivalence classes induced by \equiv_L . Define an automaton $A_L := (\Sigma, s_0, S, \delta, F)$ as follows: $$s_0 \coloneqq [\varepsilon]_L$$ $$S \coloneqq \{[x]_L : x \in \Sigma^*\}$$ $$\delta \coloneqq \{([x]_L, a, [xa]_L) : x \in \Sigma^*, a \in \Sigma\}$$ $$F \coloneqq \{[x]_L : x \in L\}$$ When L is regular, the set of equivalence classes induced by \equiv_L is isomorphic to the set of states of the minimal DFA that recognizes L. #### DFA to equivalence classes Suppose $A := (\Sigma, s_0, S, \delta, F)$ is the minimal DFA recognizing L. Let $L_S \subseteq \Sigma^*$ be the language accepted by $A_S := (\Sigma, s_0, S, \delta, \{s\})$. Then $\{L_S : s \in S\}$ is the set of equivalence classes induced by \equiv_L . #### Equivalence classes to DFA Let $\{[x]_L : x \in \Sigma^*\}$ be the set of equivalence classes induced by \equiv_L . Define an automaton $A_L := (\Sigma, s_0, S, \delta, F)$ as follows: $$s_0 \coloneqq [\varepsilon]_L$$ $S \coloneqq \{[x]_L : x \in \Sigma^*\}$ $\delta \coloneqq \{([x]_L, a, [xa]_L) : x \in \Sigma^*, a \in \Sigma\}$ $A_L \text{ is finite}$ $A_L \text{ is deterministic}$ $A_L \text{ is minimal}$ Let $L \subseteq \Sigma^*$ be a language. Define an automaton $A_L := (\Sigma, s_0, S, \delta, F)$ as: $$s_0 \coloneqq [\varepsilon]_L$$ $$S \coloneqq \{[x]_L : x \in \Sigma^*\}$$ $$\delta \coloneqq \{([x]_L, a, [xa]_L) : x \in \Sigma^*, \ a \in \Sigma\}$$ $$F \coloneqq \{[x]_L : x \in L\}$$ <u>Key observation</u> When *L* is regular, **there is a finite** $D \subseteq \Sigma^*$ such that A_L is isomorphic to a DFA $A_{D,L} := (\Sigma, s_0, S, \delta, F)$ defined as follows: $$s_0 \coloneqq [\varepsilon]_{D,L}$$ $$S \coloneqq \{ [x]_{D,L} : x \in \Sigma^* \}$$ $$\delta \coloneqq \{ ([x]_{D,L}, a, [xa]_{D,L}) : x \in \Sigma^*, a \in \Sigma \}$$ $$F \coloneqq \{ [x]_{D,L} : x \in L \}$$ Here, $y \in [x]_{D,L}$ iff x, y cannot be distinguished by any word in D w.r.t. L. Let $L \subseteq \Sigma^*$ be a language. Define an automaton $A_L := (\Sigma, s_0, S, \delta, F)$ as: $$s_0 \coloneqq [\varepsilon]_L$$ $$S \coloneqq \{[x]_L : x \in \Sigma^*\}$$ $$\delta \coloneqq \{([x]_L, a, [xa]_L) : x \in \Sigma^*, \ a \in \Sigma\}$$ $$F \coloneqq \{[x]_L : x \in L\}$$ <u>Key observation</u> When *L* is regular, **there is a finite** $D \subseteq \Sigma^*$ such that A_L is isomorphic to a DFA $A_{D,L} := (\Sigma, s_0, S, \delta, F)$ defined as follows: $$s_0 \coloneqq [\varepsilon]_{D,L}$$ $$S \coloneqq \{[x]_{D,L} : x \in \Sigma^*\}$$ $$\delta \coloneqq \{([x]_{D,L}, a, [xa]_{D,L}) : x \in \Sigma^*, a \in \Sigma\}$$ $$F \coloneqq \{[x]_{D,L} : x \in L\}$$ Question: what's the relationship between $A_{D,L}$ and A_L in general? ## L^* automata learning algorithm L^* was proposed by Dana Angluin in 1987 and later improved by Rivest and Schapire in 1993. We will introduce R&S's version in this lecture. # L^* automata learning algorithm (cont'd) Goal: learn a minimal DFA $A := (\Sigma, s_0, S, \delta, F)$ for a language L such that $s_0 \coloneqq [\varepsilon]_L$ $S \coloneqq \{[x]_L : x \in \Sigma^*\}$ $\delta \coloneqq \{([x]_L, a, [xa]_L) : x \in \Sigma^*, \ a \in \Sigma\}$ $F \coloneqq \{[x]_L : x \in L\}$ ## L^* automata learning algorithm (cont'd) Goal: learn a minimal DFA $A := (\Sigma, s_0, S, \delta, F)$ and $\mathbf{D} \subseteq \mathbf{\Sigma}^*$ for L such that $s_0 \coloneqq [\varepsilon]_{D,L}$ $S \coloneqq \{[x]_{D,L} : x \in \Sigma^*\}$ $\delta \coloneqq \{([x]_{D,L}, a, [xa]_{D,L}) : x \in \Sigma^*, \ a \in \Sigma\}$ $F \coloneqq \{[x]_{D,L} : x \in L\}$ ## L^* automata learning algorithm (cont'd) Goal: learn a minimal DFA $A := (\Sigma, s_0, S, \delta, F)$ and $\mathbf{D} \subseteq \Sigma^*$ for L such that $$s_0 := [\varepsilon]_{D,L}$$ $$S := \{ [x]_{D,L} : x \in \Sigma^* \}$$ $$\delta := \{ ([x]_{D,L}, a, [xa]_{D,L}) : x \in \Sigma^*, a \in \Sigma \}$$ $$F := \{ [x]_{D,L} : x \in L \}$$ The learner maintains an **observation table**: $[w]_{D,L} \xrightarrow{a} [wa]_{D,L}$ | | | u_1 | ••• | u_m | |-----------------------|----------|--------------------|-----|----------------| | Each w is a candidate | w_1 | $w_1u_1 \in_? L$ | ••• | $w_1u_m \in ?$ | | representative | | : | | | | of state $[w]_{D,L}$ | W_n | | | | | Successors of the | w_1a_1 | $w_1a_1u_1\in_? L$ | | | | representatives: { | • | : | | | $D \coloneqq \{u_1, ..., u_m\}$ is a set of distinguishing words for the representatives $w_1, ..., w_n$ # L^* algorithm: the initial table Fix $\Sigma := \{a, b\}$ and suppose that the target language is $L := (ab + aab)^*$. The learner creates an initial table: | | ε | |---|---| | ε | | | a | | | b | | In the initial table, the column is indexed by ε , while the rows are indexed by $\{\varepsilon\} \cup \Sigma$. # L^* algorithm: the initial table Fix $\Sigma := \{a, b\}$ and suppose that the target language is $L := (ab + aab)^*$. The learner creates an initial table: | | ε | |---|---| | ε | Т | | а | F | | b | F | The learner then fills the table by making membership queries. Now we know that the state $[\varepsilon]_L$ differs from its successors $[a]_L$ and $[b]_L$. We extend the table by adding a (or b) to the state space. ## L^* algorithm: extending the table Fix $\Sigma := \{a, b\}$ and suppose that the target language is $L := (ab + aab)^*$. After extending the state space with a, we obtain the table | | ε | |----|---| | ε | Т | | а | F | | b | F | | aa | | | ab | | The learner then extends the table with the successors of a, b and fills the table by making membership queries. ## L^* algorithm: extending the table Fix $\Sigma := \{a, b\}$ and suppose that the target language is $L := (ab + aab)^*$. After extending the state space with a, we obtain the table | | $oldsymbol{arepsilon}$ | |----|------------------------| | ε | Т | | а | F | | b | F | | aa | F | | ab | Т | Now every successor class has a representative in the table with respect to the current set of distinguishing words. We say that the table is *closed*. # L^* algorithm: making a conjecture Fix $\Sigma := \{a, b\}$ and suppose that the target language is $L := (ab + aab)^*$. The table is closed. We construct a DFA $A_{D,L}$ from the table with $D = \{\varepsilon\}$. | | $oldsymbol{arepsilon}$ | |----|------------------------| | ε | Т | | a | F | | b | F | | aa | F | | ab | Т | $$s_0 \coloneqq [\varepsilon]_{D,L}$$ $$S \coloneqq \{[x]_{D,L} : x \in \Sigma^*\}$$ $$\delta \coloneqq \{([x]_{D,L}, a, [xa]_{D,L}) : x \in \Sigma^*, a \in \Sigma\}$$ $$F \coloneqq \{[x]_{D,L} : x \in L\}$$ ## L^* algorithm: making a conjecture Fix $\Sigma := \{a, b\}$ and suppose that the target language is $L := (ab + aab)^*$. | | ε | |----|---| | ε | Т | | а | F | | b | F | | aa | F | | ab | Т | The learner then makes an equivalence query $Eq(A_D)$ to the teacher. The teacher replies "No" and provides a counterexample $w \in L_{A_D} \ominus L$. Then this word w contains a suffix that is a valid distinguishing word. # L^* algorithm: making a conjecture Fix $\Sigma := \{a, b\}$ and suppose that the target language is $L := (ab + aab)^*$. | | ε | |----|---| | ε | Т | | а | F | | b | F | | aa | F | | ab | Т | The learner then makes an equivalence query $Eq(A_D)$ to the teacher. The teacher replies "No" and provides a counterexample $w \in L_{A_D} \ominus L$. Suppose that the teacher returns *bb*. Then *b* is a distinguishing word for at least two *D*-equivalent states. # L^* algorithm: the 2^{nd} iteration Fix $\Sigma := \{a, b\}$. Suppose that the language to learn is $L := (ab + aab)^*$. | | ε | b | |----|---|---| | ε | Т | F | | а | F | Т | | b | F | F | | aa | F | Т | | ab | Т | F | We include *b* in the state space and extend the table accordingly. The representatives *a* and *b* are separated by the new distinguishing word! ## L^* algorithm: the 2^{nd} iteration Fix $\Sigma := \{a, b\}$. Suppose that the language to learn is $L := (ab + aab)^*$. | | ε | b | |----------|---|---| | ε | T | F | | a | F | Т | | b | F | F | | aa | F | Т | | ab | Т | F | | ba
bb | F | F | | bb | F | F | The table is now closed. The learner makes an equivalence query to the teacher. The teacher replies "No", and we obtain a new distinguishing word *ab* after analyzing the counterexample. # L^* algorithm: the 3^{rd} iteration Fix $\Sigma := \{a, b\}$. Suppose that the language to learn is $L := (ab + aab)^*$. | | 3 | b | ab | |-----|---|---|----| | ε | Т | F | Т | | а | F | Т | Т | | b | F | F | F | | aa | F | Т | F | | ab | Т | F | Т | | ba | F | F | F | | bb | F | F | F | | aaa | F | F | F | | aab | Т | F | Т | The learner successfully learns a minimal DFA A for L in the 3^{rd} iteration. ## L^* algorithm: counterexample analysis Claim If the teacher returns a counterexample $w \in L(A) \ominus L$ for an equivalence query Eq(A), then one can make $\log |w|$ membership queries to find a word that distinguish two states of A. Recall that a hypothesis automaton $A := (\Sigma, s_0, S, \delta, F)$ is defined as $$s_0 \coloneqq [\varepsilon]_{D,L}$$ $$S \coloneqq \{[x]_{D,L} : x \in \Sigma^*\}$$ $$\delta \coloneqq \{([x]_{D,L}, a, [xa]_{D,L}) : x \in \Sigma^*, a \in \Sigma\}$$ $$F \coloneqq \{[x]_{D,L} : x \in L\}$$ Consider a counterexample word $w := a_1 \dots a_m$. Then A will reach state $[a_1 \dots a_k]_{D,L}$ after reading the prefix $a_1 \dots a_k$ of w. If $w \in L(A) \ominus L$, then there exists $1 \le k \le m$ such that $a_{k+1} \dots a_m$ is a distinguishing word for some $x, y \in [a_1 \dots a_k]_{D,L}$. We can locate this k using binary search with $\log |w|$ membership queries. Adding $a_{k+1} \dots a_m$ to D will identify at least one new state. # L^* algorithm: complexity #### Complexity result of L^* If the minimal DFA recognizing the target language has n states, then - 1. The learner needs at most n equivalence queries - 2. The learner needs $O(|\Sigma|n^2 + n \log m)$ membership queries where m is the maximum size of counterexample returned by the teacher. #### L^* -based learning for safety proofs We introduce below how to use the L^* algorithm to learn a safety proof for a regular transition system (Σ, I, T) . - We need a target language for L^* . We cannot use the proof to learn as the target language since safety proof is not unique. - Instead, we set (the language representation of) the reachable states $T^*(I)$ as the target language. - Recall that $T^*(I)$ is unique, and is a proof when the system is safe. - We will design a teacher for L^* such that when the system is safe and $T^*(I)$ is regular, the learner is guaranteed to find a proof. #### L^* -based learning for safety proofs (cont'd) - We set the reachable states $T^*(I)$ as the target language. - We will design a teacher for L^* such that when the system is safe and $T^*(I)$ is regular, the learner is guaranteed to find a regular proof. - Resolving Mem(w): - $w \in T^*(I)$ iff w is reachable from I. - Resolving Eq(A): It suffices to check the proof rules for safety: - $-I\subseteq L_A$ - $-L_A \cap B = \emptyset$ - $-T(L_A)\subseteq L_A$ #### L^* -based learning: resolving equivalence query - We check the proof rules for safety to resolve Eq(A): - $-I\subseteq L_A$ - $-L_A \cap B = \emptyset$ - $-T(L_A)\subseteq L_A$ - If any of the checks fails: - $I \nsubseteq L_A$: any $w ∈ I \setminus L_A$ is a **positive cex** - $L_A \cap B \neq \emptyset$: any $w \in L_A \cap B$ is a **negative cex** - $T(L_A) \nsubseteq L_A$: there is $w \in L_A$ and $T(w) \setminus L_A \neq \emptyset$. If Mem(w) is "no", then $w \notin T^*(I)$ and thus is a **negative cex** If Mem(w) is "yes", then any $w \in T(w) \setminus L_A$ is a **positive cex** #### L^* -based learning: resolving equivalence query - We check the proof rules for safety to resolve Eq(A): - $-I\subseteq L_A$ - $-L_A \cap B = \emptyset$ - $-T(L_A)\subseteq L_A$ All $w \in L_A \ominus T^*(I)$ when the system is safe - If any of the checks fails: - $I \nsubseteq L_A$: any $w ∈ I \setminus L_A$ is a positive cex - $L_A \cap B \neq \emptyset$: any $w \in L_A \cap B$ is a negative cex - $T(L_A) \nsubseteq L_A$: there is $w \in L_A$ and $T(w) \setminus L_A \neq \emptyset$. If Mem(w) is "no", then $w \notin T^*(I)$ and thus is a negative cex If Mem(w) is "yes", then any $w \in T(w) \setminus L_A$ is a positive cex #### L^* -based learning: an example Consider Israeli-Jalfon's leader election protocol. - 1. Processes 1, ..., n are organized in a ring - 2. At the beginning, at least *two* processes hold a token - 3. At each step, a process can pass its token to the right or left - 4. When a process receives two tokens, it discards one of them Safety condition: there is at least one token in the ring. #### L^* -based learning: an example Consider Israeli-Jalfon's leader election protocol. - 1. Processes 1, ..., n are organized in a ring - 2. At the beginning, at least *two* processes hold a token - 3. At each step, a process can pass its token to the right or left - 4. When a process receives two tokens, it discards one of them Safety condition: there is at least one token in the ring. We model the protocol with an RTS (Σ, I, T) and bad states B, where $$I: (1+0)^*1(1+0)^*1(1+0)^*$$ $$T: \qquad id^* \begin{bmatrix} 1 \\ 0 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \ + \ id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) \begin{bmatrix} 1 \\ 0 \end{bmatrix} id^* \ + \ \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \begin{bmatrix} 1 \\ 0 \end{bmatrix} \ + \ \begin{bmatrix} 1 \\ 0 \end{bmatrix} id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right) id^* \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0$$ $$B: \qquad 0^*$$ $$Id \coloneqq \left(\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right)$$ #### L^* -based learning: an example (cont'd) $$I: (1+0)^* 1 (1+0)^* 1 (1+0)^*$$ $B : 0^*$ The first closed table: | | ε | |---|---| | ε | F | | 1 | F | | 0 | F | Counterexample: $11 \in I \setminus L_A$. Add a new distinguishing word 1. #### L^* -based learning: an example (cont'd) $$I: (1+0)^* 1 (1+0)^* 1 (1+0)^*$$ $B : 0^*$ The second closed table: | | ε | 1 | |-----|---|---| | ε | F | F | | 1 | F | Т | | 11 | Т | Т | | 0 | F | Т | | 10 | Т | Т | | 111 | Т | Т | | 110 | Т | Т | Counterexample: $000 \in L_A \cap B$. Add a new distinguishing word 0. #### L^* -based learning: an example (cont'd) $I: (1+0)^* 1 (1+0)^* 1 (1+0)^*$ $B : 0^*$ The third closed table leads to a regular proof. What is the DFA? | | 3 | 1 | 0 | |-----|---|---|---| | ε | F | F | F | | 1 | F | Т | Т | | 0 | F | Т | F | | 11 | Т | Т | Т | | 10 | Т | Т | Т | | 01 | Т | Т | Т | | 00 | F | Т | F | | 111 | Т | Т | Т | | 110 | Т | Т | Т | # **Active learning algorithms for DFAs** | | Algorithm | Publication | |-----------------------------|----------------------------|---| | Angluins et al. 1987 | Angluin's L* | Learning regular sets from queries and counterexamples | | Rivest and Schapire 1993 | R & S 's
Algorithm | Inference of Finite Automata Using Homing Sequences | | Kearns and Vazirani
1994 | K & V 's
Algorithm | An introduction to computational learning theory | | Parekh et al.
1997 | ID and IID | A polynomial time incremental algorithm for regular grammar inference | | Denis et al.
2001 | DeLeTe2 | Learning regular languages using RFSAs | | Bongard et al. 2005 | Estimation-
Exploration | Active Coevolutionary Learning of Deterministic Finite Automata | | Isberner et al. 2014 | The TTT
Algorithm | The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning | | Volpato et al. 2015 | LearnLTS | Approximate Active Learning of Nondeterministic Input Output Transition Systems |