
Satisfiability Modulo Theories Solver
Decision procedure

Lecturer: Yu-Fang Chen

Institute of Information Science
Academia Sinica

Based on Reynolds(2017), Tsai(2017)
Thanks to Yi-Fan Lin for making the slides

Yu-Fang Chen FLOLAC 2023 8/20, 8/21 1 / 69

Table of Contents

1 An overview of SMT solver: DPLL(T) algorithm

2 Selected Theory solvers
Equality and Uninterpreted Functions (EUF)
Arrays

3 Combined theories

2 / 69

From SAT to SMT

• We’ve known the decision procedure for SAT problems.
▶ DPLL algorithm

• What happened when it comes to First-Order Logic,

e.g.

(x+ y < 3∨x < 0)∧ (¬(x < 0)∨x = y +3)∧ (y = 4),

is this formula satisfiable under the theory of LIA?

→ We can apply SMT solver

3 / 69

Satisfiability Modulo Theories (SMT) solver

• Rely on DPLL(T) algorithm, an extension of DPLL, where T is a set
of first-order theories.
• A first-order theory is defined by:

▶ Signature(Σ): a set of non-logical symbols
▶ Axioms(must be satisfied): a set of Σ-formula

• SAT solver operations: Propagate, Decide and Backtrack.

Figure 1: Basic architecture of a SMT solver [1]

4 / 69

DPLL(T) Algorithm - An Example

φ := (x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧y = 4

abstraction−−−−−−→ φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧a3

5 / 69

DPLL(T) Algorithm - An Example

φ := (x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3

• Propagate: a3 7→ T

6 / 69

DPLL(T) Algorithm - An Example

φ := (x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3

• Propagate: a3 7→ T
• Decide: a1 7→ T

7 / 69

DPLL(T) Algorithm - An Example

φ := (x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3

• Propagate: a3 7→ T
• Decide: a1 7→ T
• Propagate: a2 7→ T

8 / 69

DPLL(T) Algorithm - An Example

φ := (x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3

• Propagate: a3 7→ T
• Decide: a1 7→ T
• Propagate: a2 7→ T
• Pass assignment α := {a1 7→ T,a2 7→ T,a3 7→ T} to LIA solver,

LIA solver solves (y = 4∧x < 0∧x = y +3) and gets UNSAT

9 / 69

DPLL(T) Algorithm - An Example

φ :=(x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

∧ (¬(y = 4)∨¬(x < 0)∨¬(x = y +3))

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3 ∧ (¬a3∨¬a1∨¬a2)

• Propagate: a3 7→ T
• Decide: a1 7→ T
• Propagate: a2 7→ T
• Pass assignment α := {a1 7→ T,a2 7→ T,a3 7→ T} to LIA solver,

LIA solver solves (y = 4∧¬(x < 0)∧x = y +3) and gets UNSAT.
⇒ Add blocking clause

10 / 69

DPLL(T) Algorithm - An Example

φ :=(x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

∧ (¬(y = 4) ∨ ¬(x < 0) ∨ ¬(x = y +3))

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3 ∧ (¬a3 ∨ ¬a1 ∨ ¬a2)

• Propagate: a3 7→ T
• Decide: a1 7→ T
• Propagate: a2 7→ T
• Pass assignment α := {a1 7→ T,a2 7→ T,a3 7→ T} to LIA solver,

LIA solver solves (y = 4∧x < 0∧x = y +3) and gets UNSAT.
⇒ Add blocking clause
• Conflict! backtrack to the decision

11 / 69

DPLL(T) Algorithm - An Example

φ :=(x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

∧ (¬(y = 4) ∨ ¬(x < 0) ∨ ¬(x = y +3))

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3 ∧ (¬a3 ∨ ¬a1 ∨ ¬a2)

• Propagate: a3 7→ T
• Backtrack: a1 7→ F

12 / 69

DPLL(T) Algorithm - An Example

φ :=(x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

∧ (¬(y = 4) ∨ ¬(x < 0) ∨ ¬(x = y +3))

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3 ∧ (¬a3 ∨ ¬a1 ∨ ¬a2)

• Propagate: a3 7→ T
• Backtrack: a1 7→ F
• Propagate: a0 7→ T

13 / 69

DPLL(T) Algorithm - An Example

φ :=(x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

∧ (¬(y = 4) ∨ ¬(x < 0) ∨ ¬(x = y +3))

φp := (a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3 ∧ (¬a3 ∨ ¬a1 ∨ ¬a2)

• Propagate: a3 7→ T
• Backtrack: a1 7→ F
• Propagate: a0 7→ T
• Pass assignment α := {a0 7→ T,a1 7→ F,a3 7→ T} to LIA solver,

LIA solver solves (x+ y < 3∧¬(x < 0)∧y = 4) and gets UNSAT.

14 / 69

DPLL(T) Algorithm - An Example

φ :=(x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

∧ (¬(y = 4) ∨ ¬(x < 0) ∨ ¬(x = y +3))

∧ (¬(x+ y < 3)∨ (x < 0)∨¬(y = 4))

φp :=(a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3 ∧ (¬a3 ∨ ¬a1 ∨ ¬a2)

∧ (¬a0∨a1∨¬a3)

• Propagate: a3 7→ T
• Backtrack: a1 7→ F
• Propagate: a0 7→ T
• Pass assignment α := {a0 7→ T,a1 7→ F,a3 7→ T} to LIA solver,

LIA solver solves (x+ y < 3∧¬(x < 0)∧y = 4) and gets UNSAT.
⇒ Add blocking clause

15 / 69

DPLL(T) Algorithm - An Example

φ :=(x+ y < 3 ∨ x < 0)∧ (¬(x < 0) ∨ x = y +3)∧ y = 4

∧ (¬(y = 4) ∨ ¬(x < 0) ∨ ¬(x = y +3))

∧ (¬(x+ y < 3) ∨ x < 0 ∨ ¬(y = 4))

φp :=(a0 ∨ a1)∧ (¬a1 ∨ a2)∧ a3 ∧ (¬a3 ∨ ¬a1 ∨ ¬a2)

∧ (¬a0 ∨ a1 ∨ ¬a3)

• Propagate: a3 7→ T
• Backtrack: a1 7→ F
• Propagate: a0 7→ T
• Pass assignment α := {a0 7→ T,a1 7→ F,a3 7→ T} to LIA solver,

LIA solver solves (x+ y < 3∧¬(x < 0)∧y = 4) and gets UNSAT.
• ⇒ Add blocking clause. No decision to Backtrack, return UNSAT

16 / 69

Satisfiability Modulo Theories (SMT) solver

• Basic Idea:
1 The SAT solver checks whether the propositional abstraction of the

formula is satisfiable
▶ If so, decide an assignment for each literal.
▶ If not, backtrack. If backtracking is unavailable, return

UNSAT(T-unsatisfiable).
2

▶
▶

Figure 2: Interactions inside a SMT solver[1]

17 / 69

Satisfiability Modulo Theories (SMT) solver

• Basic Idea:
1 The SAT solver checks whether the propositional abstraction of the

formula is satisfiable.
▶ If so, decide an assignment for each literal.
▶ If not, backtrack. If backtracking is unavailable, return

UNSAT(T-unsatisfiable).
2 Then, the theory solver checks whether the assignment is satisfiable.

▶ If so, return SAT(T-satisfiable).
▶ If not, add blocking clauses to the formula, go back to step 1.

Figure 2: Interactions inside a SMT solver[1]

18 / 69

Propositional Abstraction - Exercise

Perform propositional abstraction:
• F (a) = F (F (b))∧a= 5∧ (¬(b = 5)∨F (b) = 5)

• (a[i]+4 = 5∨ai ← x [j]< 0)∧ (a[0] = a[j]∨a[0] = a[i])∧¬(i = j))

19 / 69

user

Propositional Abstraction - Exercise

Perform propositional abstraction:
• F (a) = F (F (b))∧a= 5∧ (¬(b = 5)∨F (b) = 5)

⇒ a0∧a1∧ (¬a2∨a3)

• (a[i]+4 = 5∨ai ← x [j]< 0)∧ (i = j ∨a[0] = a[i])∧¬(i = j))

⇒ (b0∨b1)∧ (b2∨b3)∧¬b2

20 / 69

DPLL(T) - Exercise

Perform DPLL(LIA) Algorithm to solve the formula:
(you can omit the decision procedure of LIA solver)
• (x > 0∨x+ y < 1)∧ (x+ y = 2∨y = 5)∧ (x > 3∨¬(x+ y = 2))

• (x < y ∨x = z ∨x+ z > 7)∧x > 5∧ z = 4∧y + z < 3

21 / 69

Table of Contents

1 An overview of SMT solver: DPLL(T) algorithm

2 Selected Theory solvers
Equality and Uninterpreted Functions (EUF)
Arrays

3 Combined theories

22 / 69

Theory solvers

• We’ve provided a walkthrough of DPLL(T) with an example, but one
may ask: How do theory solvers work?
• Formally, a theory solver should(assuming φ is the input formula):

▶ Return SAT only if φ is T-satisfiable.
▶ Return UNSAT only if φ is T-unsatisfiable.
▶ Terminate.

• In practice, a theory solver supports following features:
▶ Return an interpretation when φ is T-satisfiable.
▶ Return a conflict clause when φ is T-unsatisfiable.

23 / 69

Theory solvers

Here we focus on the decision procedure for the quantifier-free fragment
of first-order theories.
• Equality and Uninterpreted Functions
• Arrays
• Linear Integer Arithmetic (Simplex method)
• Bit Vectors
• Recursive Datatypes
• ...

24 / 69

Table of Contents

1 An overview of SMT solver: DPLL(T) algorithm

2 Selected Theory solvers
Equality and Uninterpreted Functions (EUF)
Arrays

3 Combined theories

25 / 69

Theory of EUF

Signature:
Σ := {=,a,b,c , . . . ,A,B,C , . . .}

where {a,b,c , . . . ,A,B,C , . . .} are symbols of uninterpreted sorts and
uninterpreted functions

Axioms:
• Reflexivity: ∀x . x = x

• Symmetry: ∀x ,y . x = y → y = x

• Transitivity: ∀x ,y ,z . x = y ∧y = z → x = z

• Congruence:
∀t1, . . . , tn, t ′1, . . . , t ′n.

∧n
i=1 ti = t ′i → F (t1, . . . , tn) = F (t ′1, . . . , t

′
n)

26 / 69

Decision procedure for EUF - An example

φ
UF := x1 = x2∧x2 = x3∧F (x1) = F (x3)∧¬(F (F (x1)) = F (F (x2)))

27 / 69

Decision procedure for EUF - An example

φ
UF := x1 = x2∧x2 = x3∧F (x1) = F (x3)∧¬(F (F (x1)) = F (F (x2)))

• {{x1,x2},{x2,x3},{F (x1),F (x3)},{F (x2)},{F (F (x1))},{F (F (x2))}}

28 / 69

Decision procedure for EUF - An example

φ
UF := x1 = x2∧x2 = x3∧F (x1) = F (x3)∧¬(F (F (x1)) = F (F (x2)))

•
{{x1, x2 },{ x2 ,x3},{F (x1),F (x3)},{F (x2)},{F (F (x1))},{F (F (x2))}}

• { {x1,x2,x3} ,{F (x1),F (x3)},{F (x2)},{F (F (x1))},{F (F (x2))}}

29 / 69

Decision procedure for EUF - An example

φ
UF := x1 = x2∧x2 = x3∧F (x1) = F (x3)∧¬(F (F (x1)) = F (F (x2)))

• {{x1,x2},{x2,x3},{F (x1),F (x3)},{F (x2)},{F (F (x1))},{F (F (x2))}}
• {{ x1 , x2 ,x3},{ F (x1) ,F (x3)},{ F (x2) },{F (F (x1))},{F (F (x2))}}

• {{x1,x2,x3}, {F (x1),F (x2),F (x3)} ,{F (F (x1))},{F (F (x2))}}

30 / 69

Decision procedure for EUF - An example

φ
UF := x1 = x2∧x2 = x3∧F (x1) = F (x3)∧¬(F (F (x1)) = F (F (x2)))

• {{x1,x2},{x2,x3},{F (x1),F (x3)},{F (x2)},{F (F (x1))},{F (F (x2))}}
• {{x1,x2,x3},{F (x1),F (x3)},{F (x2)},{F (F (x1))},{F (F (x2))}}
• {{x1,x2,x3},{ F (x1) , F (x2) ,F (x3)},{ F (F (x1)) },{ F (F (x2)) }}

• {{x1,x2,x3},{F (x1),F (x2),F (x3)}, {F (F (x1)),F (F (x2))} }

31 / 69

Decision procedure for EUF - An example

φ
UF := x1 = x2∧x2 = x3∧F (x1) = F (x3)∧ ¬(F (F (x1)) = F (F (x2)))

• {{x1,x2},{x2,x3},{F (x1),F (x3)},{F (x2)},{F (F (x1))},{F (F (x2))}}
• {{x1,x2,x3},{F (x1),F (x3)},{F (x2)},{F (F (x1))},{F (F (x2))}}
• {{x1,x2,x3},{F (x1),F (x2),F (x3)},{F (F (x1))},{F (F (x2))}}
• {{x1,x2,x3},{F (x1),F (x2),F (x3)}, {F (F (x1)),F (F (x2))} }
• Contradict! Return UNSAT.

32 / 69

Decision procedure for EUF - Congruence Closure

Input: φ
UF := conjunction of equality literals

1 Compute the congruence closure
a Put two terms t1, t2 in an equivalence class if t1 = t2 is in φUF .
b Merge two equivalence classes C1,C2 if
∃t. t ∈ C1∧ t ∈ C2.

c Merge two equivalence classes C1,C2 if
∃t1, t2,C3. t1 ∈ C3∧ t2 ∈ C3∧F (t1) ∈ C1∧F (t2) ∈ C2.

2 For every literal ¬(ti = tj) in φUF , if ti , tj are in the same equivalence
class, return UNSAT. Otherwise, return SAT.

33 / 69

Decision procedure for EUF - Exercise

1 Apply the decision procedure for EUF, how many equivalence classes
are left after execution?
▶ φUF := x1 = x2∧F 4(x2) = F 5(x3)∧F (x3) = x1
▶ φUF := F (x1) = x2∧¬(F 3(x1) = F 4(x3))∧F 3(x3) = F (x2)

2 Apply DPLL(EUF) (including the decision procedure for EUF):
▶ φ := (¬(F (b) = c) ∨ F (a) = F 2(b)) ∧ a= c

∧ (¬(F 4(b) = F 3(c)) ∨ F (b) = c)

34 / 69

Application - Prove Program Equivalence

• Scheme: Two programs a,b with bounded loops
• Basic idea:

1 Unroll the loops, and for each assignment instruction, replace the
left-hand side with an auxiliary variable and then join them.

2 Replace each interpreted function with an uninterpreted function in
order to acquire φUF

a and φUF
b .

3 Prove program equivalence by solving:

inputa = inputb ∧φ
UF
a ∧φ

UF
b → outputa = outputb

35 / 69

Application - Prove Program Equivalence

Unroll the loop in power3(),

Replace ’ * ’ with uninterpreted function ’ G ’,

Then we obtain:

in0_a= in0_b∧φ
UF
a ∧φ

UF
b → out2_a= out2_b

36 / 69

Table of Contents

1 An overview of SMT solver: DPLL(T) algorithm

2 Selected Theory solvers
Equality and Uninterpreted Functions (EUF)
Arrays

3 Combined theories

37 / 69

Theory of Arrays

Signature:
Σ := {=, ·[·], ·{· ← ·}}

• a[i] (Read) represents the value of array a at index i

• a{i ← x} (Write) represents the copy of array a with the value at
index i replaced by x

Axioms:
• Reflexivity, Symmetry and Transitivity axioms from Equality theory
• Array Congruence: ∀a1,a2, i , j . a1 = a2∧ i = j → a1[i] = a2[j]

• Read-Over-Write: ∀a,x , i , j . a{i ← x}[j] =
{

x for i = j
a[j] for ¬(i = j)

38 / 69

Decision procedure for Arrays - An Example

φ
A := a{i1← x}[j1] = u∧a{i2← y}[j2] = v ∧¬(i1 = j1)∧¬(y = v)

39 / 69

Decision procedure for Arrays - An Example

φ
A := a{i1← x}[j1] = u ∧ a{i2← y}[j2] = v ∧¬(i1 = j1)∧¬(y = v)

φ
A
rewrite := ((i1 = j1∧x = u)∨ (¬(i1 = j1)∧a[j1] = u)) ∧

((i2 = j2∧y = v)∨ (¬(i2 = j2)∧a[j2] = v)) ∧¬(i1 = j1)∧¬(y = v)

40 / 69

Decision procedure for Arrays - An Example

φ
A := a{i1← x}[j1] = u ∧ a{i2← y}[j2] = v ∧¬(i1 = j1)∧¬(y = v)

φ
A
rewrite :=((i1 = j1∧x = u)∨ (¬(i1 = j1)∧ a[j1] = u))∧

((i2 = j2∧y = v)∨ (¬(i2 = j2)∧ a[j2] = v))∧¬(i1 = j1)∧¬(y = v)

φ
′ :=((i1 = j1∧x = u)∨ (¬(i1 = j1)∧ Fa(j1) = u))∧

((i2 = j2∧y = v)∨ (¬(i2 = j2)∧ Fa(j2) = v))∧¬(i1 = j1)∧¬(y = v)

41 / 69

Decision procedure for Arrays - An Example

φ
′ :=((i1 = j1∧x = u)∨ (¬(i1 = j1)∧Fa(j1) = u))∧

((i2 = j2∧y = v)∨ (¬(i2 = j2)∧Fa(j2) = v))∧¬(i1 = j1)∧¬(y = v)

φ
′
p := ((a0∧a1)∨ (¬a0∧a2))∧ ((a3∧a4)∨ (¬a3∧a5))∧¬a0∧¬a4

42 / 69

Decision procedure for Arrays - An Example

φ
′ :=((i1 = j1∧x = u)∨ (¬(i1 = j1)∧Fa(j1) = u))∧

((i2 = j2∧y = v)∨ (¬(i2 = j2)∧Fa(j2) = v))∧¬(i1 = j1)∧¬(y = v)

φ
′
p := ((a0 ∧a1)∨ (¬a0 ∧a2))∧ ((a3∧ a4)∨ (¬a3∧a5))∧ ¬a0 ∧ ¬a4

• Propagate: a0 7→ F,a4 7→ F

43 / 69

Decision procedure for Arrays - An Example

φ
′ :=((i1 = j1∧x = u)∨ (¬(i1 = j1)∧Fa(j1) = u))∧

((i2 = j2∧y = v)∨ (¬(i2 = j2)∧Fa(j2) = v))∧¬(i1 = j1)∧¬(y = v)

φ
′
p := ((a0 ∧a1)∨ (¬a0 ∧a2))∧ ((a3 ∧ a4)∨ (¬a3 ∧a5))∧ ¬a0 ∧ ¬a4

• Propagate: a0 7→ F,a4 7→ F
• Decide: a3 7→ T

44 / 69

Decision procedure for Arrays - An Example

φ
′ :=((i1 = j1∧x = u)∨ (¬(i1 = j1)∧Fa(j1) = u))∧

((i2 = j2∧y = v)∨ (¬(i2 = j2)∧Fa(j2) = v))∧¬(i1 = j1)∧¬(y = v)

φ
′
p := ((a0 ∧a1)∨ (¬a0 ∧a2))∧ ((a3 ∧ a4)∨ (¬a3 ∧a5))∧ ¬a0 ∧ ¬a4

• Propagate: a0 7→ F,a4 7→ F
• Decide: a3 7→ T
• Solve: (¬(i1 = j1)∧¬(y = v)∧ i2 = j2) , SAT
⇒ Return SAT

45 / 69

Decision procedure for Arrays

Input: φ
A := conjunction of array literals

Basic idea:
1 According to Read-Over-Write axiom, we can branch a Write term

a{i ← x}[j] into two cases:
▶ x for i = j
▶ a[j] for ¬(i = j)

2 Recursive on step 1 until φA contains only Read terms, then replace
each term a[i] with an uninterpreted function term Fa(i) to obtain φ ′.

3 The remaining part is same as solving an EUF formula.

46 / 69

Decision procedure for Arrays - Exercise

1 Apply the decision procedure for arrays:
▶ φA := ¬(i = j)∧¬(i = k)∧a{j ← v}[i] = a{k ← w}[j]

2 Apply DPLL(Arrays) (including the decision procedure for arrays):
▶ φ := (i = j ∨¬(i = j))∧ (i = k ∨¬(i = k))∧a{j ← v}[i] = a{k ← w}[j]

47 / 69

Table of Contents

1 An overview of SMT solver: DPLL(T) algorithm

2 Selected Theory solvers
Equality and Uninterpreted Functions (EUF)
Arrays

3 Combined theories

48 / 69

Combined theories

• In the previous example, we only invoked one theory solver.
But in practice, we often encounter a combination of theories.

• For example:

φ :=(¬(u = G (v)∨¬(u = v))∧¬(a[u] = a[G (u)])

∧a[G (u)] = a{G (v)← x}[u]

• Purify(EUF/ARRAY):

φpurified :=(¬(u = G (v)) ∨ ¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

49 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v))∨¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

φp := (¬a0∨¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T

50 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

φp := (¬a0 ∨¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Decide: a0 7→ F

51 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

φp := (¬a0 ∨¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Decide: a0 7→ F
• Pass assignment α1 := {a0 7→ F,a3 7→ T,a4 7→ T} to EUF solver, and

assignment α2 := {a2 7→ F,a3 7→ T} to ARRAY solver

52 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

φp := (¬a0 ∨¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Decide: a0 7→ F
• Pass assignment α1 := {a0 7→ F,a3 7→ T,a4 7→ T} to EUF solver,

assignment α2 := {a2 7→ F,a3 7→ T} to ARRAY solver,
• EUF: solves (¬(u = G (v))∧y1 = G (u)∧y2 = G (v)), gets SAT,

ARRAY: solves (¬(a[u] = a[y1])∧a[y1] = a{y2← x}[u]), gets SAT.

53 / 69

Combined theories - An Example

• Both theory solvers got SAT, but can we conclude that φ is SAT?

54 / 69

Combined theories - An Example

• Both theory solvers get SAT, but can we conclude that φ is SAT?

Not yet, theory solvers must agree on shared variables!
(u,y1,y2 in this case)

55 / 69

Combined theories - An Example

• Both theory solvers get SAT, but can we conclude that φ is SAT?

Not yet, theory solvers must agree on shared variables!
(u,y1,y2 in this case)

• For EUF, (¬(u = G (v))∧y1 = G (u)∧y2 = G (v)) implies ¬(u = y2).
For ARRAY, (¬(a[u] = a[y1])∧a[y1] = a{y2← x}[u]) implies u = y2.

56 / 69

Combined theories - An Example

• Both theory solvers get SAT, but can we conclude that φ is SAT?

Not yet, theory solvers must agree on shared variables!
(u,y1,y2 in this case)

• For EUF, (¬(u = G (v))∧y1 = G (u)∧y2 = G (v)) implies ¬(u = y2).
For ARRAY, (¬(a[u] = a[y1])∧a[y1] = a{y2← x}[u]) implies u = y2.

⇒The solvers do not agree on share variables.

57 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

∧ (u = y2∨¬(u = y2))

φp := (¬a0 ∨¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5 ∧ (a6∨¬a6)

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Decide: a0 7→ F
• Pass assignment α1 := {a0 7→ F,a4 7→ T,a5 7→ T} to EUF solver,

assignment α2 := {a2 7→ F,a3 7→ T} to ARRAY solver,
• EUF: solves (¬(u = G (v))∧y1 = G (u)∧y2 = G (v)) and get SAT,

ARRAY: solves (¬(a[u] = a[y1])∧a[y1] = a{y2← x}[u]) and get SAT.
The solvers do not agree on share variables, add blocking clauses.

58 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

∧ (u = y2∨¬(u = y2))

φp := (¬a0 ∨¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5 ∧ (a6∨¬a6)

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Decide: a0 7→ F
• Pass assignment α1 := {a0 7→ F,a4 7→ T,a5 7→ T} to EUF solver,

assignment α2 := {a2 7→ F,a3 7→ T} to ARRAY solver,
• EUF: solves (¬(u = G (v))∧y1 = G (u)∧y2 = G (v)) and get SAT,

ARRAY: solves (¬(a[u] = a[y1])∧a[y1] = a{y2← x}[u]) and get SAT.
The solvers does not agree on share variables, add blocking clauses.
• Conflict! Backtrack to the decision.

59 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨ ¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

∧ (u = y2∨¬(u = y2))

φp := (¬a0 ∨ ¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5 ∧ (a6∨¬a6)

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Backtrack: a1 7→ F

60 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨ ¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

∧ (u = y2 ∨ ¬(u = y2))

φp := (¬a0 ∨ ¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5 ∧ (a6 ∨ ¬a6)

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Backtrack: a1 7→ F
• Decide: a6 7→ T

61 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨ ¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

∧ (u = y2 ∨ ¬(u = y2))

φp := (¬a0 ∨ ¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5 ∧ (a6 ∨ ¬a6)

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Backtrack: a1 7→ F
• Decide: a6 7→ T
• Pass assignment α1 := {a1 7→ F,a4 7→ T,a5 7→ T,a6 7→ T} to EUF

solver, assignment α2 := {a2 7→ F,a3 7→ T} to ARRAY solver,

62 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨ ¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

∧ (u = y2 ∨ ¬(u = y2))

φp := (¬a0 ∨ ¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5 ∧ (a6 ∨ ¬a6)

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Backtrack: a1 7→ F
• Decide: a6 7→ T
• Pass assignment α1 := {a1 7→ F,a4 7→ T,a5 7→ T,a6 7→ T} to EUF

solver, assignment α2 := {a2 7→ F,a3 7→ T} to ARRAY solver,
• EUF: solves (¬(u = v)∧y1 = G (u)∧y2 = G (v)∧u = G (v)), gets

SAT,
ARRAY: solves (¬(a[u] = a[y1])∧a[y1] = a{y2← x}[u]) ,gets SAT

63 / 69

Combined theories - An Example

φpurified :=(¬(u = G (v)) ∨ ¬(u = v))∧ ¬(a[u] = a[y1])

∧ a[y1] = a{y2← x}[u] ∧ y1 = G (u) ∧ y2 = G (v)

∧ (u = y2 ∨ ¬(u = y2))

φp := (¬a0 ∨ ¬a1)∧ ¬a2 ∧ a3 ∧ a4 ∧ a5 ∧ (a6 ∨ ¬a6)

• Propagate: a2 7→ F,a3 7→ T,a4 7→ T,a5 7→ T
• Backtrack: a1 7→ F
• Decide: a6 7→ T
• Pass assignment α1 := {a1 7→ F,a4 7→ T,a5 7→ T,a6 7→ T} to EUF

solver, assignment α2 := {a2 7→ F,a3 7→ T} to ARRAY solver,

64 / 69

Combined theories - An Example

• EUF: solves (¬(u = v)∧y1 = G (u)∧y2 = G (v)∧u = G (v)), gets
SAT,
ARRAY: solves (¬(a[u] = a[y1])∧a[y1] = a{y2← x}[u]) , gets SAT

• Both solvers agree on share variables, return SAT.

65 / 69

Implementation for Combined theories

• Main ideas:
1 Purify the literals(each literal contains one theory).
2 Once the SAT solver finds an assignment, pass the corresponding part

to each theory solver.
3 If any of the solvers gets UNSAT, then return UNSAT.
4 If every theory solver gets SAT, then check if they agree on shared

variables. If so, return SAT, otherwise, backtrack and go to step 2.
• The decision procedure above requires the theories to satisfy several

properties:
1 First-order, quantifier-free, decidable theories with equality.
2 Have disjoint signatures, except "=".
3 Interpreted over an infinite domain.

66 / 69

Combined theories - Exercise

Apply the decision procedure for combined theories to solve the formula:
(you may omit the decision procedure for each theory solver, but must
include the discussion of whether they agree on shared variables)
• φ := G (F (x1−2)) = x1+2∧G (F (x2)) = x2−2∧ (x2+1 = x1−1)

67 / 69

Key Takeaways

• The basic architecture and algorithm of an SMT solver
• The elementary decision procedure for the theory of EUF and Arrays
• The implementation of an SMT solver for combined theories

68 / 69

Reference

[1] Nikolaj Bjørner. “Satisfiability Modulo Theories”.
https://www.microsoft.com/en-us/research/wp-
content/uploads/2017/02/MOD-12-8-2015.pptx. 2015.

[2] Ofer Strichman Daniel Kroening. Decision Procedures, An Algorithmic Point
of View (2nd ed.) Springer, 2016.

[3] Andrew Reynolds. “DPLL(T) for SMT”.
https://resources.mpi-inf.mpg.de/departments/rg1/
conferences/vtsa17/slides/reynolds-vtsa-part1.pdf. 2017.

[4] Ming-Hsien Tsai. “Software Verification with Satisfiability Modulo Theories -
Decision Procedures”. https://flolac.iis.sinica.edu.tw/flolac17/
lib/exe/fetch.php%3Fmedia=course:02_euf.pdf. 2017.

[5] Ming-Hsien Tsai. “Software Verification with Satisfiability Modulo Theories -
Introduction”. https://flolac.iis.sinica.edu.tw/flolac17/lib/
exe/fetch.php%3Fmedia=course:01_smt.pdf. 2017.

69 / 69

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/02/MOD-12-8-2015.pptx
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/02/MOD-12-8-2015.pptx
https://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa17/slides/reynolds-vtsa-part1.pdf
https://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa17/slides/reynolds-vtsa-part1.pdf
https://flolac.iis.sinica.edu.tw/flolac17/lib/exe/fetch.php%3Fmedia=course:02_euf.pdf
https://flolac.iis.sinica.edu.tw/flolac17/lib/exe/fetch.php%3Fmedia=course:02_euf.pdf
https://flolac.iis.sinica.edu.tw/flolac17/lib/exe/fetch.php%3Fmedia=course:01_smt.pdf
https://flolac.iis.sinica.edu.tw/flolac17/lib/exe/fetch.php%3Fmedia=course:01_smt.pdf

	An overview of SMT solver: DPLL(T) algorithm
	Selected Theory solvers
	Equality and Uninterpreted Functions (EUF)
	Arrays

	Combined theories
	References

