Satisfiability Modulo Theories Solver Decision procedure

Lecturer: Yu-Fang Chen
Institute of Information Science
Academia Sinica

Based on Reynolds(2017), Tsai(2017)
Thanks to Yi-Fan Lin for making the slides

Table of Contents

(1) An overview of SMT solver: $\operatorname{DPLL}(\mathrm{T})$ algorithm
(2) Selected Theory solvers

- Equality and Uninterpreted Functions (EUF)
- Arrays
(3) Combined theories

From SAT to SMT

- We've known the decision procedure for SAT problems.
- DPLL algorithm
- What happened when it comes to First-Order Logic,
e.g.

$$
(x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge(y=4)
$$

is this formula satisfiable under the theory of LIA?
\rightarrow We can apply SMT solver

Satisfiability Modulo Theories (SMT) solver

- Rely on $\operatorname{DPLL}(\mathbf{T})$ algorithm, an extension of DPLL, where \mathbf{T} is a set of first-order theories.
- A first-order theory is defined by:
- Signature(Σ): a set of non-logical symbols
- Axioms(must be satisfied): a set of Σ-formula
- SAT solver operations: Propagate, Decide and Backtrack.

Figure 1: Basic architecture of a SMT solver [1]

DPLL(T) Algorithm - An Example

$$
\begin{gathered}
\phi:=(x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
\xrightarrow{\text { abstraction }} \phi_{p}:=\left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3}
\end{gathered}
$$

DPLL(T) Algorithm - An Example

$$
\begin{gathered}
\phi:=(x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
\phi_{p}:=\left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3}
\end{gathered}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$

DPLL(T) Algorithm - An Example

$$
\begin{gathered}
\phi:=(x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
\phi_{p}:=\left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3}
\end{gathered}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$
- Decide: $a_{1} \mapsto \mathrm{~T}$

DPLL(T) Algorithm - An Example

$$
\begin{gathered}
\phi:=(x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
\phi_{p}:=\left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3}
\end{gathered}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$
- Decide: $a_{1} \mapsto$ T
- Propagate: $a_{2} \mapsto \mathrm{~T}$

DPLL(T) Algorithm - An Example

$$
\begin{gathered}
\phi:=(x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
\phi_{p}:=\left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3}
\end{gathered}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$
- Decide: $a_{1} \mapsto T$
- Propagate: $a_{2} \mapsto T$
- Pass assignment $\alpha:=\left\{a_{1} \mapsto \mathrm{~T}, a_{2} \mapsto \mathrm{~T}, \mathrm{a}_{3} \mapsto \mathrm{~T}\right\}$ to LIA solver, LIA solver solves $(y=4 \wedge x<0 \wedge x=y+3)$ and gets UNSAT

DPLL(T) Algorithm - An Example

$$
\begin{aligned}
\phi:= & (x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
& \wedge(\neg(y=4) \vee \neg(x<0) \vee \neg(x=y+3)) \\
\phi_{p}: & =\left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3} \wedge\left(\neg a_{3} \vee \neg a_{1} \vee \neg a_{2}\right)
\end{aligned}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$
- Decide: $a_{1} \mapsto$ T
- Propagate: $a_{2} \mapsto$ T
- Pass assignment $\alpha:=\left\{a_{1} \mapsto \mathrm{~T}, a_{2} \mapsto \mathrm{~T}, \mathrm{a}_{3} \mapsto \mathrm{~T}\right\}$ to LIA solver, LIA solver solves $(y=4 \wedge \neg(x<0) \wedge x=y+3)$ and gets UNSAT. \Rightarrow Add blocking clause

DPLL(T) Algorithm - An Example

$$
\begin{aligned}
\phi:= & (x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
& \wedge(\neg(y=4) \vee \neg(x<0) \vee \neg(x=y+3)) \\
\phi_{p}: & \left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3} \wedge\left(\neg a_{3} \vee \neg a_{1} \vee \neg a_{2}\right)
\end{aligned}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$
- Decide: $a_{1} \mapsto T$
- Propagate: $a_{2} \mapsto T$
- Pass assignment $\alpha:=\left\{a_{1} \mapsto \mathrm{~T}, a_{2} \mapsto \mathrm{~T}, a_{3} \mapsto \mathrm{~T}\right\}$ to LIA solver, LIA solver solves $(y=4 \wedge x<0 \wedge x=y+3)$ and gets UNSAT. \Rightarrow Add blocking clause
- Conflict! backtrack to the decision

DPLL(T) Algorithm - An Example

$$
\begin{aligned}
\phi:= & (x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
& \wedge(\neg(y=4) \vee \neg(x<0) \vee \neg(x=y+3)) \\
\phi_{p}:= & \left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3} \wedge\left(\neg a_{3} \vee \neg a_{1} \vee \neg a_{2}\right)
\end{aligned}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$
- Backtrack: $a_{1} \mapsto \mathrm{~F}$

DPLL(T) Algorithm - An Example

$$
\begin{aligned}
\phi:= & (x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
& \wedge(\neg(y=4) \vee \neg(x<0) \vee \neg(x=y+3)) \\
\phi_{p}:= & \left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3} \wedge\left(\neg a_{3} \vee \neg a_{1} \vee \neg a_{2}\right)
\end{aligned}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$
- Backtrack: $a_{1} \mapsto F$
- Propagate: $a_{0} \mapsto \mathrm{~T}$

DPLL(T) Algorithm - An Example

$$
\begin{aligned}
\phi:= & (x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
& \wedge(\neg(y=4) \vee \neg(x<0) \vee \neg(x=y+3)) \\
\phi_{p}:= & \left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3} \wedge\left(\neg a_{3} \vee \neg a_{1} \vee \neg a_{2}\right)
\end{aligned}
$$

- Propagate: $a_{3} \mapsto \mathrm{~T}$
- Backtrack: $a_{1} \mapsto F$
- Propagate: $a_{0} \mapsto \mathrm{~T}$
- Pass assignment $\alpha:=\left\{a_{0} \mapsto \mathrm{~T}, a_{1} \mapsto \mathrm{~F}, \mathrm{a}_{3} \mapsto \mathrm{~T}\right\}$ to LIA solver, LIA solver solves $(x+y<3 \wedge \neg(x<0) \wedge y=4)$ and gets UNSAT.

DPLL(T) Algorithm - An Example

$$
\begin{aligned}
\phi:= & (x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
& \wedge(\neg(y=4) \vee \neg(x<0) \vee \neg(x=y+3)) \\
& \wedge(\neg(x+y<3) \vee(x<0) \vee \neg(y=4)) \\
\phi_{p}:= & \left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3} \wedge\left(\neg a_{3} \vee \neg a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg a_{0} \vee a_{1} \vee \neg a_{3}\right)
\end{aligned}
$$

- Propagate: $a_{3} \mapsto T$
- Backtrack: $a_{1} \mapsto F$
- Propagate: $a_{0} \mapsto$ T
- Pass assignment $\alpha:=\left\{a_{0} \mapsto \mathrm{~T}, a_{1} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}\right\}$ to LIA solver, LIA solver solves $(x+y<3 \wedge \neg(x<0) \wedge y=4)$ and gets UNSAT.
\Rightarrow Add blocking clause

DPLL(T) Algorithm - An Example

$$
\begin{aligned}
\phi:= & (x+y<3 \vee x<0) \wedge(\neg(x<0) \vee x=y+3) \wedge y=4 \\
& \wedge(\neg(y=4) \vee \neg(x<0) \vee \neg(x=y+3)) \\
& \wedge(\neg(x+y<3) \vee x<0 \vee \neg(y=4)) \\
\phi_{p}:= & \left(a_{0} \vee a_{1}\right) \wedge\left(\neg a_{1} \vee a_{2}\right) \wedge a_{3} \wedge\left(\neg a_{3} \vee \neg a_{1} \vee \neg a_{2}\right) \\
& \wedge\left(\neg a_{0} \vee a_{1} \vee \neg a_{3}\right)
\end{aligned}
$$

- Propagate: $a_{3} \mapsto T$
- Backtrack: $a_{1} \mapsto F$
- Propagate: $a_{0} \mapsto$ T
- Pass assignment $\alpha:=\left\{a_{0} \mapsto \mathrm{~T}, a_{1} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}\right\}$ to LIA solver, LIA solver solves $(x+y<3 \wedge \neg(x<0) \wedge y=4)$ and gets UNSAT.
$\bullet \Rightarrow$ Add blocking clause. No decision to Backtrack, return UNSAT

Satisfiability Modulo Theories (SMT) solver

- Basic Idea:
(1) The SAT solver checks whether the propositional abstraction of the formula is satisfiable
- If so, decide an assignment for each literal.
- If not, backtrack. If backtracking is unavailable, return UNSAT(T-unsatisfiable).
(2)

Figure 2: Interactions inside a SMT solver[1]

Satisfiability Modulo Theories (SMT) solver

- Basic Idea:
(1) The SAT solver checks whether the propositional abstraction of the formula is satisfiable.
- If so, decide an assignment for each literal.
- If not, backtrack. If backtracking is unavailable, return UNSAT(T-unsatisfiable).
(2) Then, the theory solver checks whether the assignment is satisfiable.
- If so, return SAT(T-satisfiable).
- If not, add blocking clauses to the formula, go back to step 1.

Figure 2: Interactions inside a SMT solver[1]

Propositional Abstraction - Exercise

Perform propositional abstraction:

- $F(a)=F(F(b)) \wedge a=5 \wedge(\neg(b=5) \vee F(b)=5)$
- $(a[i]+4=5$

$$
\text { 1) } \wedge(a[0]=a[j] \vee a[0]=a[i]) \wedge \neg(i=j))
$$

Propositional Abstraction - Exercise

Perform propositional abstraction:

- $F(a)=F(F(b)) \wedge a=5 \wedge(\neg(b=5) \vee F(b)=5)$
$\Rightarrow a_{0} \wedge a_{1} \wedge\left(\neg a_{2} \vee a_{3}\right)$
- $(a[i]+4=5 \vee a i \leftarrow x[j]<0) \wedge(i=j \vee a[0]=a[i]) \wedge \neg(i=j))$
$\Rightarrow\left(b_{0} \vee b_{1}\right) \wedge\left(b_{2} \vee b_{3}\right) \wedge \neg b_{2}$

DPLL(T) - Exercise

Perform DPLL(LIA) Algorithm to solve the formula: (you can omit the decision procedure of LIA solver)

- $(x>0 \vee x+y<1) \wedge(x+y=2 \vee y=5) \wedge(x>3 \vee \neg(x+y=2))$
- $(x<y \vee x=z \vee x+z>7) \wedge x>5 \wedge z=4 \wedge y+z<3$

Table of Contents

(1) An overview of SMT solver: $\operatorname{DPLL}(T)$ algorithm

(2) Selected Theory solvers

- Equality and Uninterpreted Functions (EUF)
- Arrays

Theory solvers

- We've provided a walkthrough of $\operatorname{DPLL}(T)$ with an example, but one may ask: How do theory solvers work?
- Formally, a theory solver should(assuming ϕ is the input formula):
- Return SAT only if ϕ is T-satisfiable.
- Return UNSAT only if ϕ is T-unsatisfiable.
- Terminate.
- In practice, a theory solver supports following features:
- Return an interpretation when ϕ is T-satisfiable.
- Return a conflict clause when ϕ is T-unsatisfiable.

Theory solvers

Here we focus on the decision procedure for the quantifier-free fragment of first-order theories.

- Equality and Uninterpreted Functions
- Arrays
- Linear Integer Arithmetic (Simplex method)
- Bit Vectors
- Recursive Datatypes
- ...

Table of Contents

(1) An overview of SMT solver: $\operatorname{DPLL}(T)$ algorithm

(2) Selected Theory solvers

- Equality and Uninterpreted Functions (EUF)
- Arrays

3 Combined theories

Theory of EUF

Signature:

$$
\Sigma:=\{=, a, b, c, \ldots, A, B, C, \ldots\}
$$

where $\{a, b, c, \ldots, A, B, C, \ldots\}$ are symbols of uninterpreted sorts and uninterpreted functions

Axioms:

- Reflexivity: $\forall x . x=x$
- Symmetry: $\forall x, y . x=y \rightarrow y=x$
- Transitivity: $\forall x, y, z . x=y \wedge y=z \rightarrow x=z$
- Congruence:

$$
\forall t_{1}, \ldots, t_{n}, t_{1}^{\prime}, \ldots, t_{n}^{\prime} \cdot \bigwedge_{i=1}^{n} t_{i}=t_{i}^{\prime} \rightarrow F\left(t_{1}, \ldots, t_{n}\right)=F\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)
$$

Decision procedure for EUF - An example

$$
\phi^{U F}:=x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge F\left(x_{1}\right)=F\left(x_{3}\right) \wedge \neg\left(F\left(F\left(x_{1}\right)\right)=F\left(F\left(x_{2}\right)\right)\right)
$$

Decision procedure for EUF - An example

$$
\phi^{U F}:=x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge F\left(x_{1}\right)=F\left(x_{3}\right) \wedge \neg\left(F\left(F\left(x_{1}\right)\right)=F\left(F\left(x_{2}\right)\right)\right)
$$

- $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$

Decision procedure for EUF - An example

$$
\phi^{U F}:=x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge F\left(x_{1}\right)=F\left(x_{3}\right) \wedge \neg\left(F\left(F\left(x_{1}\right)\right)=F\left(F\left(x_{2}\right)\right)\right)
$$

$\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$

- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$

Decision procedure for EUF - An example

$$
\phi^{U F}:=x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge F\left(x_{1}\right)=F\left(x_{3}\right) \wedge \neg\left(F\left(F\left(x_{1}\right)\right)=F\left(F\left(x_{2}\right)\right)\right)
$$

- $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{2}\right), F\left(x_{3}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$

Decision procedure for EUF - An example

$$
\phi^{U F}:=x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge F\left(x_{1}\right)=F\left(x_{3}\right) \wedge \neg\left(F\left(F\left(x_{1}\right)\right)=F\left(F\left(x_{2}\right)\right)\right)
$$

- $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{2}\right), F\left(x_{3}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{2}\right), F\left(x_{3}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right), F\left(F\left(x_{2}\right)\right)\right\}\right\}$

Decision procedure for EUF - An example

$$
\phi^{U F}:=x_{1}=x_{2} \wedge x_{2}=x_{3} \wedge F\left(x_{1}\right)=F\left(x_{3}\right) \wedge \neg\left(F\left(F\left(x_{1}\right)\right)=F\left(F\left(x_{2}\right)\right)\right)
$$

- $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{3}\right)\right\},\left\{F\left(x_{2}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{2}\right), F\left(x_{3}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right)\right\},\left\{F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- $\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{F\left(x_{1}\right), F\left(x_{2}\right), F\left(x_{3}\right)\right\},\left\{F\left(F\left(x_{1}\right)\right), F\left(F\left(x_{2}\right)\right)\right\}\right\}$
- Contradict! Return UNSAT.

Decision procedure for EUF - Congruence Closure

Input: $\phi^{U F}:=$ conjunction of equality literals
(1) Compute the congruence closure
(a) Put two terms t_{1}, t_{2} in an equivalence class if $t_{1}=t_{2}$ is in $\phi^{U F}$.
(b) Merge two equivalence classes C_{1}, C_{2} if $\exists t . t \in C_{1} \wedge t \in C_{2}$.
(c) Merge two equivalence classes C_{1}, C_{2} if

$$
\exists t_{1}, t_{2}, C_{3} . t_{1} \in C_{3} \wedge t_{2} \in C_{3} \wedge F\left(t_{1}\right) \in C_{1} \wedge F\left(t_{2}\right) \in C_{2}
$$

(2) For every literal $\neg\left(t_{i}=t_{j}\right)$ in $\phi^{U F}$, if t_{i}, t_{j} are in the same equivalence class, return UNSAT. Otherwise, return SAT.

Decision procedure for EUF - Exercise

(1) Apply the decision procedure for EUF, how many equivalence classes are left after execution?

$$
\begin{aligned}
& >\phi^{U F}:=x_{1}=x_{2} \wedge F^{4}\left(x_{2}\right)=F^{5}\left(x_{3}\right) \wedge F\left(x_{3}\right)=x_{1} \\
& \phi^{U F}:=F\left(x_{1}\right)=x_{2} \wedge \neg\left(F^{3}\left(x_{1}\right)=F^{4}\left(x_{3}\right)\right) \wedge F^{3}\left(x_{3}\right)=F\left(x_{2}\right)
\end{aligned}
$$

(2) Apply $\operatorname{DPLL}(E U F)$ (including the decision procedure for EUF):
$\begin{aligned} \wedge \phi:= & \left(\neg(F(b)=c) \vee F(a)=F^{2}(b)\right) \wedge a=c \\ & \wedge\left(\neg\left(F^{4}(b)=F^{3}(c)\right) \vee F(b)=c\right)\end{aligned}$

Application - Prove Program Equivalence

- Scheme: Two programs a, b with bounded loops
- Basic idea:
(1) Unroll the loops, and for each assignment instruction, replace the left-hand side with an auxiliary variable and then join them.
(2) Replace each interpreted function with an uninterpreted function in order to acquire $\phi_{a}^{U F}$ and $\phi_{b}^{U F}$.
(3) Prove program equivalence by solving:

$$
\text { input }_{a}=\text { input }_{b} \wedge \phi_{a}^{U F} \wedge \phi_{b}^{U F} \rightarrow \text { output }_{a}=\text { output }_{b}
$$

```
int power3(int in)
{
    int i, out_a;
    out_a = in;
    for (i = 0; i < 2; i++)
        out_a =out_a * in;
    return out_a;
}
```

```
int power3_new(int in)
{
    int out_b;
    out_b = (in * in) * in;
```

 return out_b;
 \}

Application - Prove Program Equivalence

Unroll the loop in power3(),

$$
\begin{aligned}
& \text { out } 0_{_} a=i n 0_{a} \\
& \text { out1_a }=\text { out } 0_{_} a * i n 0_{a} \wedge \\
& \text { out } 2_{_} a=\text { out } 1 _a * i n 0_{a}
\end{aligned}
$$

$$
\text { out } 0_{-} b=\left(i n 0_{b} * i n 0_{b}\right) * i n 0_{b}
$$

Replace ' * ' with uninterpreted function ' G ',

$$
\begin{aligned}
& \text { out } 0 _a=\text { in0_ } a \\
& \text { out } 1 _a=G\left(\text { out } 0 _a, \text { in0_ } a\right) \wedge \\
& \text { out } 2 _a=G\left(\text { out } 1 _a, \text { in0_ } a\right)
\end{aligned}
$$

$$
\text { out } 0 _b=G\left(G\left(i n 0 _b, i n 0 _b\right), i n 0 _b\right)
$$

Then we obtain:

$$
i n 0_{_} a=i n 0_{_} b \wedge \phi_{a}^{U F} \wedge \phi_{b}^{U F} \rightarrow o u t 2_{_} a=o u t 2_{-} b
$$

Table of Contents

(1) An overview of SMT solver: $\operatorname{DPLL}(\mathrm{T})$ algorithm

(2) Selected Theory solvers

- Equality and Uninterpreted Functions (EUF)
- Arrays

(3) Combined theories

Theory of Arrays

Signature:

$$
\Sigma:=\{=, \cdot[\cdot], \cdot\{\cdot \leftarrow \cdot\}\}
$$

- $a[i]$ (Read) represents the value of array a at index i
- $a\{i \leftarrow x\}$ (Write) represents the copy of array a with the value at index i replaced by x

Axioms:

- Reflexivity, Symmetry and Transitivity axioms from Equality theory
- Array Congruence: $\forall a_{1}, a_{2}, i, j . a_{1}=a_{2} \wedge i=j \rightarrow a_{1}[i]=a_{2}[j]$
- Read-Over-Write: $\forall a, x, i, j . a\{i \leftarrow x\}[j]=\left\{\begin{array}{rll}x & \text { for } & i=j \\ a[j] & \text { for } & \neg(i=j)\end{array}\right.$

Decision procedure for Arrays - An Example

$$
\phi^{A}:=a\left\{i_{1} \leftarrow x\right\}\left[j_{1}\right]=u \wedge a\left\{i_{2} \leftarrow y\right\}\left[j_{2}\right]=v \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v)
$$

Decision procedure for Arrays - An Example

$$
\begin{aligned}
\phi^{A}:= & a\left\{i_{1} \leftarrow x\right\}\left[j_{1}\right]=u \wedge a\left\{i_{2} \leftarrow y\right\}\left[j_{2}\right]=v \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v) \\
\phi_{\text {rewrite }}^{A}:= & \left(\left(i_{1}=j_{1} \wedge x=u\right) \vee\left(\neg\left(i_{1}=j_{1}\right) \wedge a\left[j_{1}\right]=u\right)\right) \wedge \\
& \left(\left(i_{2}=j_{2} \wedge y=v\right) \vee\left(\neg\left(i_{2}=j_{2}\right) \wedge a\left[j_{2}\right]=v\right)\right) \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v)
\end{aligned}
$$

Decision procedure for Arrays - An Example

$$
\begin{aligned}
& \phi^{A}:= a\left\{i_{1} \leftarrow x\right\}\left[j_{1}\right]=u \wedge a\left\{i_{2} \leftarrow y\right\}\left[j_{2}\right]=v \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v) \\
& \phi_{\text {rewrite }}^{A}:=\left(\left(i_{1}=j_{1} \wedge x=u\right) \vee\left(\neg\left(i_{1}=j_{1}\right) \wedge a\left[j_{1}\right]=u\right)\right) \wedge \\
&\left(\left(i_{2}=j_{2} \wedge y=v\right) \vee\left(\neg\left(i_{2}=j_{2}\right) \wedge a\left[j_{2}\right]=v\right)\right) \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v) \\
& \phi^{\prime}:=\left(\left(i_{1}=j_{1} \wedge x=u\right) \vee\left(\neg\left(i_{1}=j_{1}\right) \wedge F_{a}\left(j_{1}\right)=u\right)\right) \wedge \\
& \quad\left(\left(i_{2}=j_{2} \wedge y=v\right) \vee\left(\neg\left(i_{2}=j_{2}\right) \wedge F_{a}\left(j_{2}\right)=v\right)\right) \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v)
\end{aligned}
$$

Decision procedure for Arrays - An Example

$$
\begin{aligned}
\phi^{\prime}:= & \left(\left(i_{1}=j_{1} \wedge x=u\right) \vee\left(\neg\left(i_{1}=j_{1}\right) \wedge F_{a}\left(j_{1}\right)=u\right)\right) \wedge \\
& \left(\left(i_{2}=j_{2} \wedge y=v\right) \vee\left(\neg\left(i_{2}=j_{2}\right) \wedge F_{a}\left(j_{2}\right)=v\right)\right) \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v) \\
\phi_{p}^{\prime}:= & \left(\left(a_{0} \wedge a_{1}\right) \vee\left(\neg a_{0} \wedge a_{2}\right)\right) \wedge\left(\left(a_{3} \wedge a_{4}\right) \vee\left(\neg a_{3} \wedge a_{5}\right)\right) \wedge \neg a_{0} \wedge \neg a_{4}
\end{aligned}
$$

Decision procedure for Arrays - An Example

$$
\begin{aligned}
\phi^{\prime}:= & \left(\left(i_{1}=j_{1} \wedge x=u\right) \vee\left(\neg\left(i_{1}=j_{1}\right) \wedge F_{a}\left(j_{1}\right)=u\right)\right) \wedge \\
& \left(\left(i_{2}=j_{2} \wedge y=v\right) \vee\left(\neg\left(i_{2}=j_{2}\right) \wedge F_{a}\left(j_{2}\right)=v\right)\right) \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v) \\
\phi_{p}^{\prime}:= & \left(\left(a_{0} \wedge a_{1}\right) \vee\left(\neg a_{0} \wedge a_{2}\right)\right) \wedge\left(\left(a_{3} \wedge a_{4}\right) \vee\left(\neg a_{3} \wedge a_{5}\right)\right) \wedge \neg a_{0} \wedge \neg a_{4}
\end{aligned}
$$

- Propagate: $a_{0} \mapsto F, a_{4} \mapsto F$

Decision procedure for Arrays - An Example

$$
\begin{aligned}
\phi^{\prime}:= & \left(\left(i_{1}=j_{1} \wedge x=u\right) \vee\left(\neg\left(i_{1}=j_{1}\right) \wedge F_{a}\left(j_{1}\right)=u\right)\right) \wedge \\
& \left(\left(i_{2}=j_{2} \wedge y=v\right) \vee\left(\neg\left(i_{2}=j_{2}\right) \wedge F_{a}\left(j_{2}\right)=v\right)\right) \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v) \\
\phi_{p}^{\prime}:= & \left(\left(a_{0} \wedge a_{1}\right) \vee\left(\neg a_{0} \wedge a_{2}\right)\right) \wedge\left(\left(a_{3} \wedge a_{4}\right) \vee\left(\neg a_{3} \wedge a_{5}\right)\right) \wedge \neg a_{0} \wedge \neg a_{4}
\end{aligned}
$$

- Propagate: $a_{0} \mapsto F, a_{4} \mapsto F$
- Decide: $a_{3} \mapsto T$

Decision procedure for Arrays - An Example

$$
\begin{aligned}
\phi^{\prime}:= & \left(\left(i_{1}=j_{1} \wedge x=u\right) \vee\left(\neg\left(i_{1}=j_{1}\right) \wedge F_{a}\left(j_{1}\right)=u\right)\right) \wedge \\
& \left(\left(i_{2}=j_{2} \wedge y=v\right) \vee\left(\neg\left(i_{2}=j_{2}\right) \wedge F_{a}\left(j_{2}\right)=v\right)\right) \wedge \neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v) \\
\phi_{p}^{\prime}:= & \left(\left(a_{0} \wedge a_{1}\right) \vee\left(\neg a_{0} \wedge a_{2}\right)\right) \wedge\left(\left(a_{3} \wedge a_{4}\right) \vee\left(\neg a_{3} \wedge a_{5}\right)\right) \wedge \neg a_{0} \wedge \neg a_{4}
\end{aligned}
$$

- Propagate: $a_{0} \mapsto F, a_{4} \mapsto F$
- Decide: $a_{3} \mapsto$ T
- Solve: $\left(\neg\left(i_{1}=j_{1}\right) \wedge \neg(y=v) \wedge i_{2}=j_{2}\right)$, SAT \Rightarrow Return SAT

Decision procedure for Arrays

Input: $\phi^{A}:=$ conjunction of array literals
Basic idea:
(1) According to Read-Over-Write axiom, we can branch a Write term $a\{i \leftarrow x\}[j]$ into two cases:

- x for $i=j$
- $a[j]$ for $\neg(i=j)$
(2) Recursive on step 1 until ϕ^{A} contains only Read terms, then replace each term $a[i]$ with an uninterpreted function term $F_{a}(i)$ to obtain ϕ^{\prime}.
(3) The remaining part is same as solving an EUF formula.

Decision procedure for Arrays - Exercise

(1) Apply the decision procedure for arrays:

- $\phi^{A}:=\neg(i=j) \wedge \neg(i=k) \wedge a\{j \leftarrow v\}[i]=a\{k \leftarrow w\}[j]$
(2) Apply $\operatorname{DPLL}($ Arrays) (including the decision procedure for arrays):
- $\phi:=(i=j \vee \neg(i=j)) \wedge(i=k \vee \neg(i=k)) \wedge a\{j \leftarrow v\}[i]=a\{k \leftarrow w\}[j]$

Table of Contents

(1) An overview of SMT solver: $\mathrm{DPLL}(\mathrm{T})$ algorithm

(2) Selected Theory solvers

- Equality and Uninterpreted Functions (EUF)
- Arrays
(3) Combined theories

Combined theories

- In the previous example, we only invoked one theory solver.

But in practice, we often encounter a combination of theories.

- For example:

$$
\begin{aligned}
\phi:= & (\neg(u=G(v) \vee \neg(u=v)) \wedge \neg(a[u]=a[G(u)]) \\
& \wedge a[G(u)]=a\{G(v) \leftarrow x\}[u]
\end{aligned}
$$

- Purify(EUF/ARRAY):

$$
\begin{aligned}
\phi_{\text {purified }}:= & (\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v)
\end{aligned}
$$

Combined theories - An Example

$$
\begin{aligned}
\phi_{\text {purified }}:= & (\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5}
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$

Combined theories - An Example

$$
\begin{aligned}
& \phi_{\text {purified }}:=(\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5}
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Decide: $a_{0} \mapsto F$

Combined theories - An Example

$$
\begin{aligned}
& \phi_{\text {purified }}:=(\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5}
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Decide: $a_{0} \mapsto F$
- Pass assignment $\alpha_{1}:=\left\{a_{0} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}\right\}$ to EUF solver, and assignment $\alpha_{2}:=\left\{a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}\right\}$ to ARRAY solver

Combined theories - An Example

$$
\begin{aligned}
& \phi_{\text {purified }}:=(\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5}
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Decide: $a_{0} \mapsto F$
- Pass assignment $\alpha_{1}:=\left\{a_{0} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}\right\}$ to EUF solver, assignment $\alpha_{2}:=\left\{a_{2} \mapsto F, a_{3} \mapsto T\right\}$ to ARRAY solver,
- EUF: solves $\left(\neg(u=G(v)) \wedge y_{1}=G(u) \wedge y 2=G(v)\right)$, gets SAT, ARRAY: solves $\left(\neg\left(a[u]=a\left[y_{1}\right]\right) \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u]\right)$, gets SAT.

Combined theories - An Example

- Both theory solvers got SAT, but can we conclude that ϕ is SAT?

Combined theories - An Example

- Both theory solvers get SAT, but can we conclude that ϕ is SAT?

Not yet, theory solvers must agree on shared variables! (u, y_{1}, y_{2} in this case)

Combined theories - An Example

- Both theory solvers get SAT, but can we conclude that ϕ is SAT?

Not yet, theory solvers must agree on shared variables! (u, y_{1}, y_{2} in this case)

- For EUF, $\left(\neg(u=G(v)) \wedge y_{1}=G(u) \wedge y^{2}=G(v)\right)$ implies $\neg\left(u=y_{2}\right)$. For ARRAY, $\left(\neg\left(a[u]=a\left[y_{1}\right]\right) \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u]\right)$ implies $u=y_{2}$.

Combined theories - An Example

- Both theory solvers get SAT, but can we conclude that ϕ is SAT?

Not yet, theory solvers must agree on shared variables! (u, y_{1}, y_{2} in this case)

- For EUF, $\left(\neg(u=G(v)) \wedge y_{1}=G(u) \wedge y^{2}=G(v)\right)$ implies $\neg\left(u=y_{2}\right)$. For ARRAY, $\left(\neg\left(a[u]=a\left[y_{1}\right]\right) \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u]\right)$ implies $u=y_{2}$.
\Rightarrow The solvers do not agree on share variables.

Combined theories - An Example

$$
\begin{aligned}
\phi_{\text {purified }}:= & (\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \wedge\left(u=y_{2} \vee \neg\left(u=y_{2}\right)\right) \\
\phi_{p}:= & \left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5} \wedge\left(a_{6} \vee \neg a_{6}\right)
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Decide: $a_{0} \mapsto F$
- Pass assignment $\alpha_{1}:=\left\{a_{0} \mapsto \mathrm{~F}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}\right\}$ to EUF solver, assignment $\alpha_{2}:=\left\{a_{2} \mapsto F, a_{3} \mapsto \mathrm{~T}\right\}$ to ARRAY solver,
- EUF: solves $\left(\neg(u=G(v)) \wedge y_{1}=G(u) \wedge y 2=G(v)\right)$ and get SAT, ARRAY: solves $\left(\neg\left(a[u]=a\left[y_{1}\right]\right) \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u]\right)$ and get SAT. The solvers do not agree on share variables, add blocking clauses.

Combined theories - An Example

$$
\begin{aligned}
\phi_{\text {purified }}:= & (\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \wedge\left(u=y_{2} \vee \neg\left(u=y_{2}\right)\right) \\
\phi_{p}:= & \left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5} \wedge\left(a_{6} \vee \neg a_{6}\right)
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Decide: $a_{0} \mapsto F$
- Pass assignment $\alpha_{1}:=\left\{a_{0} \mapsto \mathrm{~F}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}\right\}$ to EUF solver, assignment $\alpha_{2}:=\left\{a_{2} \mapsto F, a_{3} \mapsto T\right\}$ to ARRAY solver,
- EUF: solves $\left(\neg(u=G(v)) \wedge y_{1}=G(u) \wedge y 2=G(v)\right)$ and get SAT, ARRAY: solves $\left(\neg\left(a[u]=a\left[y_{1}\right]\right) \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u]\right)$ and get SAT. The solvers does not agree on share variables, add blocking clauses.
- Conflict! Backtrack to the decision.

Combined theories - An Example

$$
\begin{aligned}
& \phi_{\text {purified }}:=(\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \wedge\left(u=y_{2} \vee \neg\left(u=y_{2}\right)\right) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5} \wedge\left(a_{6} \vee \neg a_{6}\right)
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Backtrack: $a_{1} \mapsto F$

Combined theories - An Example

$$
\begin{aligned}
& \phi_{\text {purified }}:=(\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \wedge\left(u=y_{2} \vee \neg\left(u=y_{2}\right)\right) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5} \wedge\left(a_{6} \vee \neg a_{6}\right)
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Backtrack: $a_{1} \mapsto F$
- Decide: $a_{6} \mapsto \mathrm{~T}$

Combined theories - An Example

$$
\begin{aligned}
& \phi_{\text {purified }}:=(\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \wedge\left(u=y_{2} \vee \neg\left(u=y_{2}\right)\right) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5} \wedge\left(a_{6} \vee \neg a_{6}\right)
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Backtrack: $a_{1} \mapsto F$
- Decide: $a_{6} \mapsto$ T
- Pass assignment $\alpha_{1}:=\left\{a_{1} \mapsto \mathrm{~F}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}, a_{6} \mapsto \mathrm{~T}\right\}$ to EUF solver, assignment $\alpha_{2}:=\left\{a_{2} \mapsto F, a_{3} \mapsto T\right\}$ to ARRAY solver,

Combined theories - An Example

$$
\begin{aligned}
& \phi_{\text {purified }}:=(\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \wedge\left(u=y_{2} \vee \neg\left(u=y_{2}\right)\right) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5} \wedge\left(a_{6} \vee \neg a_{6}\right)
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Backtrack: $a_{1} \mapsto F$
- Decide: $a_{6} \mapsto$ T
- Pass assignment $\alpha_{1}:=\left\{a_{1} \mapsto \mathrm{~F}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}, a_{6} \mapsto \mathrm{~T}\right\}$ to EUF solver, assignment $\alpha_{2}:=\left\{a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}\right\}$ to ARRAY solver,
- EUF: solves $\left(\neg(u=v) \wedge y_{1}=G(u) \wedge y 2=G(v) \wedge u=G(v)\right)$, gets SAT,
ARRAY: solves $\left(\neg\left(a[u]=a\left[y_{1}\right]\right) \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u]\right)$, gets SAT

Combined theories - An Example

$$
\begin{aligned}
& \phi_{\text {purified }}:=(\neg(u=G(v)) \vee \neg(u=v)) \wedge \neg\left(a[u]=a\left[y_{1}\right]\right) \\
& \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u] \wedge y_{1}=G(u) \wedge y_{2}=G(v) \\
& \wedge\left(u=y_{2} \vee \neg\left(u=y_{2}\right)\right) \\
& \phi_{p}:=\left(\neg a_{0} \vee \neg a_{1}\right) \wedge \neg a_{2} \wedge a_{3} \wedge a_{4} \wedge a_{5} \wedge\left(a_{6} \vee \neg a_{6}\right)
\end{aligned}
$$

- Propagate: $a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}$
- Backtrack: $a_{1} \mapsto \mathrm{~F}$
- Decide: $a_{6} \mapsto$ T
- Pass assignment $\alpha_{1}:=\left\{a_{1} \mapsto \mathrm{~F}, a_{4} \mapsto \mathrm{~T}, a_{5} \mapsto \mathrm{~T}, \mathrm{a}_{6} \mapsto \mathrm{~T}\right\}$ to EUF solver, assignment $\alpha_{2}:=\left\{a_{2} \mapsto \mathrm{~F}, a_{3} \mapsto \mathrm{~T}\right\}$ to ARRAY solver,

Combined theories - An Example

- EUF: solves $\left(\neg(u=v) \wedge y_{1}=G(u) \wedge y 2=G(v) \wedge u=G(v)\right)$, gets SAT,
ARRAY: solves $\left(\neg\left(a[u]=a\left[y_{1}\right]\right) \wedge a\left[y_{1}\right]=a\left\{y_{2} \leftarrow x\right\}[u]\right)$, gets SAT
- Both solvers agree on share variables, return SAT.

Implementation for Combined theories

- Main ideas:
(1) Purify the literals(each literal contains one theory).
(2) Once the SAT solver finds an assignment, pass the corresponding part to each theory solver.
(3) If any of the solvers gets UNSAT, then return UNSAT.
(4) If every theory solver gets SAT, then check if they agree on shared variables. If so, return SAT, otherwise, backtrack and go to step 2.
- The decision procedure above requires the theories to satisfy several properties:
(1) First-order, quantifier-free, decidable theories with equality.
(2) Have disjoint signatures, except "=".
(3) Interpreted over an infinite domain.

Combined theories - Exercise

Apply the decision procedure for combined theories to solve the formula: (you may omit the decision procedure for each theory solver, but must include the discussion of whether they agree on shared variables)

- $\phi:=G\left(F\left(x_{1}-2\right)\right)=x_{1}+2 \wedge G\left(F\left(x_{2}\right)\right)=x_{2}-2 \wedge\left(x_{2}+1=x_{1}-1\right)$

Key Takeaways

- The basic architecture and algorithm of an SMT solver
- The elementary decision procedure for the theory of EUF and Arrays
- The implementation of an SMT solver for combined theories

Reference

[1] Nikolaj Bjørner. "Satisfiability Modulo Theories". https://www.microsoft.com/en-us/research/wp-content/uploads/2017/02/MOD-12-8-2015.pptx. 2015.
[2] Ofer Strichman Daniel Kroening. Decision Procedures, An Algorithmic Point of View (2nd ed.) Springer, 2016.
[3] Andrew Reynolds. "DPLL(T) for SMT". https://resources.mpi-inf.mpg.de/departments/rg1/ conferences/vtsa17/slides/reynolds-vtsa-part1.pdf. 2017.
[4] Ming-Hsien Tsai. "Software Verification with Satisfiability Modulo Theories Decision Procedures". https://flolac.iis.sinica.edu.tw/flolac17/ lib/exe/fetch.php\%3Fmedia=course:02_euf.pdf. 2017.
[5] Ming-Hsien Tsai. "Software Verification with Satisfiability Modulo Theories Introduction". https://flolac.iis.sinica.edu.tw/flolac17/lib/ exe/fetch.php\%3Fmedia=course:01_smt.pdf. 2017.

