

Finite Automata

Schematic of Finite Automata

Figure 1：Schematic of Finite Automata
－A finite automaton has a finite set of control states．
－A finite automaton reads input symbols from left to right．
－A finite automaton accepts or rejects an input after reading the input．

Finite Automaton M_{1}

Figure 2：A Finite Automaton M_{1}

Figure 2 shows the state diagram of a finite automaton $M_{1} . M_{1}$ has
－ 3 states：q_{1}, q_{2}, q_{3} ；
－a start state：q_{1} ；
－an accept state：q_{2} ；
－ 6 transitions：$q_{1} \xrightarrow{0} q_{1}, q_{1} \xrightarrow{1} q_{2}, q_{2} \xrightarrow{1} q_{2}, q_{2} \xrightarrow{0} q_{3}, q_{3} \xrightarrow{0} q_{2}$ ，and $q_{3} \xrightarrow{1} q_{2}$ ．

Accepted and Rejected String

－Consider an input string 1100.
－M_{1} processes the string from the start state q_{1} ．
－It takes the transition labeled by the current symbol and moves to the next state．
－At the end of the string，there are two cases：
－If M_{1} is at an accept state，M_{1} outputs accept；
－Otherwise，M_{1} outputs reject．
－Strings accepted by $M_{1}: 1,01,11,1100,1101, \ldots$.
－Strings rejected by $M_{1}: 0,00,10,010,1010, \ldots$ ．

Finite Automaton－Formal Definition

－A finite automaton is a 5 －tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
－Q is a finite set of states；
－Σ is a finite set called alphabet；
－$\delta: Q \times \Sigma \rightarrow Q$ is the transition function；
－$q_{0} \in Q$ is the start state；and
－$F \subseteq Q$ is the set of accept states．
－The set of strings accepted by M is called the language of machine M（written $L(M)$ ）．
－Hence a language is a set of strings．
－We also say M recognizes（or accepts）$L(M)$ ．

M_{1}－Formal Definition

－The finite automaton $M_{1}=\left(Q, \Sigma, \delta, q_{1}, F\right)$ consists of
－$Q=\left\{q_{1}, q_{2}, q_{3}\right\}$ ；
－$\Sigma=\{0,1\}$ ；

－$\delta: Q \times \Sigma \rightarrow Q$ is | | 0 | 1 |
| :---: | :---: | :---: |
| q_{1} | q_{1} | q_{2} |
| q_{2} | q_{3} | q_{2} |
| q_{3} | q_{2} | q_{2} |

－q_{1} is the start state；and
－$F=\left\{q_{2}\right\}$ ．
－Moreover，we have
$L\left(M_{1}\right)=\{w: \quad w$ contains at least one 1 and an even number of 0 ＇s follow the last 1$\}$

Finite Automaton M_{2}

Figure 3：Finite Automaton M_{2}

－Figure 3 shows $M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right)$ where δ is | | 0 | 1 |
| :---: | :---: | :---: |
| q_{1} | q_{1} | q_{2} |
| q_{2} | q_{1} | q_{2} |

－What is $L\left(M_{2}\right)$ ？
－$L\left(M_{2}\right)=\{w: w$ ends in a 1$\}$ ．

Finite Automaton M_{2}

Figure 3：Finite Automaton M_{2}

－Figure 3 shows $M_{2}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{2}\right\}\right)$ where δ is | | 0 | 1 |
| :---: | :---: | :---: |
| q_{1} | q_{1} | q_{2} |
| q_{2} | q_{1} | q_{2} |

－What is $L\left(M_{2}\right)$ ？
－$L\left(M_{2}\right)=\{w: w$ ends in a 1$\}$ ．

Finite Automaton M_{3}

Figure 4：Finite Automaton M_{3}

－Figure 4 shows $M_{3}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)$ where δ is | | 0 | 1 |
| :---: | :---: | :---: |
| q_{1} | q_{1} | q_{2} |
| q_{2} | q_{1} | q_{2} |

－What is $L\left(M_{3}\right)$ ？
－$L\left(M_{3}\right)=\{w: w$ is the empty string ϵ or ends in a 0$\}$

Finite Automaton M_{3}

Figure 4：Finite Automaton M_{3}

－Figure 4 shows $M_{3}=\left(\left\{q_{1}, q_{2}\right\},\{0,1\}, \delta, q_{1},\left\{q_{1}\right\}\right)$ where δ is | | 0 | 1 |
| :---: | :---: | :---: |
| q_{1} | q_{1} | q_{2} |
| q_{2} | q_{1} | q_{2} |

－What is $L\left(M_{3}\right)$ ？
－$L\left(M_{3}\right)=\{w: w$ is the empty string ϵ or ends in a 0$\}$ ．

Finite Automaton M_{5}

Figure 5：Finite Automaton M_{5}
－Figure 5 shows $M_{5}=$ $\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{0,1,2,\langle R E S E T\rangle\}, \delta, q_{0},\left\{q_{0}\right\}\right)$ ．
－Strings accepted by M_{5} ：
$0,00,12,21,012,102,120,021,201$ ， 210，111，222，．．．．
－M_{5} computes the sum of input symbols modulo 3．It resets upon the input symbol $\langle R E S E T\rangle$ ．Hence M_{5} accepts strings whose sum is a multiple of 3 after \langle RESET \rangle ．

Computation－Formal Definition

－Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton and $w=w_{1} w_{2} \cdots w_{n}$ a string where $w_{i} \in \Sigma$ for every $i=1, \ldots, n$ ．
－We say M accepts w if there is a sequence of states $r_{0}, r_{1}, \ldots, r_{n}$ such that
－$r_{0}=q_{0}$ ；
－$\delta\left(r_{i}, w_{i+1}\right)=r_{i+1}$ for $i=0, \ldots, n-1$ ；and
－$r_{n} \in F$ ．
－M recognizes language A if $A=\{w: M$ accepts $w\}$ ．
Definition 1
A language is called a regular language if some finite automaton recognizes it．

Regular Operations

Definition 2
Let A and B be languages．We define the following operations：
－Union：$A \cup B=\{x: x \in A$ or $x \in B\}$ ．
－Concatenation：$A \circ B=\{x y: x \in A$ and $y \in B\}$ ．
－Star：$A^{*}=\left\{x_{1} x_{2} \cdots x_{k}: k \geq 0\right.$ and every $\left.x_{i} \in A\right\}$ ．
－Complementation： $\bar{A}=\left\{x: x \in \Sigma^{*}\right.$ but $\left.x \notin A\right\}$ ．
－Note that $\epsilon \in A^{*}$ for every language A ．

Closure Property－Union

Theorem 3

The class of regular languages is closed under the union operation．That is，$A_{1} \cup A_{2}$ is regular if A_{1} and A_{2} are．

Proof．

Let $M_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right)$ recognize A_{i} for $i=1,2$ ．Construct $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
－$Q=Q_{1} \times Q_{2}=\left\{\left(r_{1}, r_{2}\right): r_{1} \in Q_{1}, r_{2} \in Q_{2}\right\} ;$
－$\delta\left(\left(r_{1}, r_{2}\right), a\right)=\left(\delta_{1}\left(r_{1}, a\right), \delta_{2}\left(r_{2}, a\right)\right)$ ；
－$q_{0}=\left(q_{1}, q_{2}\right)$ ；
－$F=\left(F_{1} \times Q_{2}\right) \cup\left(Q_{1} \times F_{2}\right)=\left\{\left(r_{1}, r_{2}\right): r_{1} \in F_{1}\right.$ or $\left.r_{2} \in F_{2}\right\}$ ．
－Why is $L(M)=A_{1} \cup A_{2}$ ？

Nondeterminism

Nondeterminism

－When a machine is at a given state and reads an input symbol，there is precisely one choice of its next state．
－This is call deterministic computation．
－In nondeterministic machines，multiple choices may exist for the next state．
－A deterministic finite automaton is abbreviated as DFA；a nondeterministic finite automaton is abbreviated as NFA．
－A DFA is also an NFA．
－Since NFA allow more general computation，they can be much smaller than DFA．

NFA N_{4}

Figure 6：NFA N_{4}
－On input string baa，N_{4} has several possible computation：
－$q_{1} \xrightarrow{\mathrm{~b}} q_{2} \xrightarrow{\mathrm{a}} q_{2} \xrightarrow{\mathrm{a}} q_{2} ;$
－$q_{1} \xrightarrow{\text { b }} q_{2} \xrightarrow{a} q_{2} \xrightarrow{a} q_{3}$ ；or
－$q_{1} \xrightarrow{\mathrm{~b}} q_{2} \xrightarrow{\mathrm{a}} q_{3} \xrightarrow{\mathrm{a}} q_{1}$ ．

Nondeterministic Finite Automaton－Formal Definition

－For any set $Q, \mathcal{P}(Q)=\{R: R \subseteq Q\}$ denotes the power set of Q ．
－For any alphabet Σ ，define Σ_{ϵ} to be $\Sigma \cup\{\epsilon\}$ ．
－A nondeterministic finite automaton is a 5 －tuple $\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
－Q is a finite set of states；
－Σ is a finite alphabet；
－$\delta: Q \times \Sigma_{\epsilon} \rightarrow \mathcal{P}(Q)$ is the transition function；
－$q_{0} \in Q$ is the start state；and
－$F \subseteq Q$ is the accept states．
－Note that the transition function accepts the empty string as an input symbol．

NFA N_{4}－Formal Definition

－$N_{4}=\left(Q, \Sigma, \delta, q_{1},\left\{q_{1}\right\}\right)$ is a nondeterministic finite automaton where
－$Q=\left\{q_{1}, q_{2}, q_{3}\right\} ;$
－Its transition function δ is

	ϵ	a	b
q_{1}	$\left\{q_{3}\right\}$	\emptyset	$\left\{q_{2}\right\}$
q_{2}	\emptyset	$\left\{q_{2}, q_{3}\right\}$	$\left\{q_{3}\right\}$
q_{3}	\emptyset	$\left\{q_{1}\right\}$	\emptyset

Nondeterministic Computation－Formal Definition

－Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA and w a string over Σ ．We say N accepts w if w can be rewritten as $w=y_{1} y_{2} \cdots y_{m}$ with $y_{i} \in \Sigma_{\epsilon}$ and there is a sequence of states $r_{0}, r_{1}, \ldots, r_{m}$ such that
－$r_{0}=q_{0}$ ；
－$r_{i+1} \in \delta\left(r_{i}, y_{i+1}\right)$ for $i=0, \ldots, m-1$ ；and
－$r_{m} \in F$ ．
－Note that finitely many empty strings can be inserted in w ．
－Also note that one sequence satisfying the conditions suffices to show the acceptance of an input string．
－Strings accepted by N_{4} ：a，baa，．．．．

Equivalence of NFA＇s and DFA＇s

Theorem 4
Every nondeterministic finite automaton has an equivalent deterministic finite automaton．
That is，for every NFA N ，there is a DFA M such that $L(M)=L(N)$ ．
Proof．
Let $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be an NFA．For $R \subseteq Q$ ，define
$E(R)=\{q: q$ can be reached from R along 0 or more ϵ transitions $\}$ ．Construct a DFA $M=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ where
－$Q^{\prime}=\mathcal{P}(Q)$ ；
－$\delta^{\prime}(R, a)=\{q \in Q: q \in E(\delta(r, a))$ for some $r \in R\} ;$
－$q_{0}^{\prime}=E\left(\left\{q_{0}\right\}\right)$ ；
－$F^{\prime}=\left\{R \in Q^{\prime}: R \cap F \neq \emptyset\right\}$ ．
－Why is $L(M)=L(N)$ ？

A DFA Equivalent to N_{4}

Figure 7：A DFA Equivalent to N_{4}

Closure Properties－Revisited

Theorem 5
The class of regular languages is closed under the union operation．
Proof．
Let $N_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right)$ recognize A_{i} for $i=1,2$ ．Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
－$Q=\left\{q_{0}\right\} \cup Q_{1} \cup Q_{2}$ ；
－$F=F_{1} \cup F_{2}$ ；and
－$\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \\ \delta_{2}(q, a) & q \in Q_{2} \\ \left\{q_{1}, q_{2}\right\} & q=q_{0} \text { and } a=\epsilon \\ \emptyset & q=q_{0} \text { and } a \neq \epsilon\end{cases}$
－Why is $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$ ？

Closure Properties－Revisited

Theorem 6
The class of regular languages is closed under the concatenation operation．
Proof．
Let $N_{i}=\left(Q_{i}, \Sigma, \delta_{i}, q_{i}, F_{i}\right)$ recognize A_{i} for $i=1,2$ ．Construct $N=\left(Q, \Sigma, \delta, q_{1}, F_{2}\right)$ where
－$Q=Q_{1} \cup Q_{2}$ ；and
－$\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{2}\right\} & q \in F_{1} \text { and } a=\epsilon \\ \delta_{2}(q, a) & q \in Q_{2}\end{cases}$
－Why is $L(N)=L\left(N_{1}\right) \circ L\left(N_{2}\right)$ ？

Closure Properties－Revisited

Theorem 7

The class of regular languages is closed under the star operation．
Proof．
Let $N_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ recognize A_{1} ．Construct $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
－$Q=\left\{q_{0}\right\} \cup Q_{1}$ ；
－$F=\left\{q_{0}\right\} \cup F_{1}$ ；and
－$\delta(q, a)= \begin{cases}\delta_{1}(q, a) & q \in Q_{1} \text { and } q \notin F_{1} \\ \delta_{1}(q, a) & q \in F_{1} \text { and } a \neq \epsilon \\ \delta_{1}(q, a) \cup\left\{q_{1}\right\} & q \in F_{1} \text { and } a=\epsilon \\ \left\{q_{1}\right\} & q=q_{0} \text { and } a=\epsilon \\ \emptyset & q=q_{0} \text { and } a \neq \epsilon\end{cases}$
－Why is $L(N)=\left[L\left(N_{1}\right)\right]^{*}$ ？

Closure Properties－Revisited

Theorem 8
The class of regular languages is closed under complementation．
Proof．
Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA recognizing A ．Consider $\bar{M}=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$ ．We have $w \in L(M)$ if and only if $w \notin L(\bar{M})$ ．That is，$L(\bar{M})=\bar{A}$ as required．

Regular Expressions

Regular Expressions i

Definition 9
R is a regular expression if R is
－a for some $a \in \Sigma$ ；
－ϵ ；
－$\emptyset ;$
－$\left(R_{1} \cup R_{2}\right)$ where R_{i}＇s are regular expressions；
－$\left(R_{1} \circ R_{2}\right)$ where R_{i}＇s are regular expressions；or
－$\left(R_{1}^{*}\right)$ where R_{1} is a regular expression．

Regular Expressions ii

－We write R^{+}for $R \circ R^{*}$ ．Hence $R^{*}=R^{+} \cup \epsilon$ ．
－Moreover，write R^{k} for $\overbrace{R \circ R \circ \cdots \circ R}^{k}$ ．
－Define $R^{0}=\epsilon$ ．We have $R^{*}=R^{0} \cup R^{1} \cup \cdots \cup R^{n} \cup \cdots$ ．
－$L(R)$ denotes the language described by the regular expression R ．
－Note that $\emptyset \neq\{\epsilon\}$ ．

Examples of Regular Expressions

－For convenience，we write $R S$ for $R \circ S$ ．
－We may also write the regular expression R to denote its language $L(R)$ ．
－$L\left(0^{*} 10^{*}\right)=$
－$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$ ．
－$L\left((\Sigma \Sigma)^{*}\right)=$ $\{w: w$ is a string of even length $\}$
－$(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$
－ $1^{*} \emptyset=$
－$\emptyset^{*}=$
－For any regular expression R ，we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$ ．

Examples of Regular Expressions

－For convenience，we write $R S$ for $R \circ S$ ．
－We may also write the regular expression R to denote its language $L(R)$ ．
－$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$ ．
－$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$ ．
－$L\left((\Sigma \Sigma)^{*}\right)=$
－$(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$
－ $1^{*} \emptyset=$
－$\emptyset^{*}=$
－For any regular expression R ，we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$ ．

Examples of Regular Expressions

－For convenience，we write $R S$ for $R \circ S$ ．
－We may also write the regular expression R to denote its language $L(R)$ ．
－$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$ ．
－$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$ ．
－$L\left((\Sigma \Sigma)^{*}\right)=$ $\{z: w$ is a string of even length $\}$
－$(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$
－ $1^{*} \emptyset=$
－$\emptyset^{*}=$
－For any regular expression R ，we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$ ．

Examples of Regular Expressions

－For convenience，we write $R S$ for $R \circ S$ ．
－We may also write the regular expression R to denote its language $L(R)$ ．
－$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$ ．
－$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$ ．
－$L\left((\Sigma \Sigma)^{*}\right)=\{w: w$ is a string of even length $\}$ ．
－$(0 \cup \epsilon)(1 \cup \epsilon)=$
－ $1^{*} \emptyset=$
－$\emptyset^{*}=$
－For any regular expression R ，we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$ ．

Examples of Regular Expressions

－For convenience，we write $R S$ for $R \circ S$ ．
－We may also write the regular expression R to denote its language $L(R)$ ．
－$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$ ．
－$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$ ．
－$L\left((\Sigma \Sigma)^{*}\right)=\{w: w$ is a string of even length $\}$ ．
－$(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$ ．
－ $1^{*} \emptyset=$
－$\emptyset^{*}=$
－For any regular expression R ，we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$ ．

Examples of Regular Expressions

－For convenience，we write $R S$ for $R \circ S$ ．
－We may also write the regular expression R to denote its language $L(R)$ ．
－$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$ ．
－$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$ ．
－$L\left((\Sigma \Sigma)^{*}\right)=\{w: w$ is a string of even length $\}$ ．
－$(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$ ．
－ $1^{*} \emptyset=\emptyset$ ．
－$\emptyset^{*}=$
－For any regular expression R ，we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$ ．

Examples of Regular Expressions

－For convenience，we write $R S$ for $R \circ S$ ．
－We may also write the regular expression R to denote its language $L(R)$ ．
－$L\left(0^{*} 10^{*}\right)=\{w: w$ contains a single 1$\}$ ．
－$L\left(\Sigma^{*} 1 \Sigma^{*}\right)=\{w: w$ has at least one 1$\}$ ．
－$L\left((\Sigma \Sigma)^{*}\right)=\{w: w$ is a string of even length $\}$ ．
－$(0 \cup \epsilon)(1 \cup \epsilon)=\{\epsilon, 0,1,01\}$ ．
－ $1^{*} \emptyset=\emptyset$ ．
－$\emptyset^{*}=\{\epsilon\}$ ．
－For any regular expression R ，we have $R \cup \emptyset=R$ and $R \circ \epsilon=R$ ．

Regular Expressions and Finite Automata

Lemma 10
If a language is described by a regular expression，it is regular．
Proof．
We prove by induction on the regular expression R ．
－$R=a$ for some $a \in \Sigma$ ．Consider the NFA $N_{a}=\left(\left\{q_{1}, q_{2}\right\}, \Sigma, \delta, q_{1},\left\{q_{2}\right\}\right)$ where $\delta(r, y)= \begin{cases}\left\{q_{2}\right\} & r=q_{1} \text { and } y=a \\ \emptyset & \text { otherwise }\end{cases}$
－$R=\epsilon$ ．Consider the NFA $N_{\epsilon}=\left(\left\{q_{1}\right\}, \Sigma, \delta, q_{1},\left\{q_{1}\right\}\right)$ where $\delta(r, y)=\emptyset$ for any r and y ．
－$R=\emptyset$ ．Consider the NFA $N_{\emptyset}=\left(\left\{q_{1}\right\}, \Sigma, \delta, q_{1}, \emptyset\right)$ where $\delta(r, y)=\emptyset$ for any r and y ．
－$R=R_{1} \cup R_{2}, R=R_{1} \circ R_{2}$ ，or $R=R_{1}^{*}$ ．By inductive hypothesis and the closure properties of finite automata．

Regular Expressions and Finite Automata

Regular Expressions and Finite Automata

Lemma 11
If a language is regular，it is described by a regular expression．
For the proof，we introduce a generalization of finite automata．

Generalized Nondeterministic Finite Automata i

Definition 12
A generalized nondeterministic finite automaton is a 5－tuple（ $Q, \Sigma, q_{\text {start }}, q_{\text {accept }}$ ）where
－Q is the finite set of states；
－Σ is the input alphabet；
－$\delta: Q \times Q \rightarrow \mathcal{R}$ is the transition function，where \mathcal{R} denotes the set of regular expressions；
－$q_{\text {start }}$ is the start state；and
－$q_{\text {accept }}$ is the accept state．

Generalized Nondeterministic Finite Automata ii

A GNFA accepts a string $w \in \Sigma^{*}$ if $w=w_{1} w_{2} \cdots w_{k}$ where $w_{i} \in \Sigma^{*}$ and there is a sequence of states $r_{0}, r_{1}, \ldots, r_{k}$ such that
－$r_{0}=q_{\text {start }} ;$
－$r_{k}=q_{\text {accept }}$ ；and
－for every $i, w_{i} \in L\left(R_{i}\right)$ where $R_{i}=\delta\left(q_{i-1}, q_{i}\right)$ ．

Regular Expressions and Finite Automata

Proof of Lemma．
Let M be the DFA for the regular language．Construct an equivalent GNFA G by adding $q_{\text {start }}, q_{\text {accept }}$ and necessary ϵ－transitions．
CONVERT（G）：
1．Let k be the number of states of G ．
2．If $k=2$ ，then return the regular expression R labeling the transition from $q_{\text {start }}$ to $q_{\text {accept }}$ ．
3．If $k>2$ ，select $q_{\text {rip }} \in Q \backslash\left\{q_{\text {start }}, q_{\text {accept }}\right\}$ ．Construct $G^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{\text {start }}, q_{\text {accept }}\right)$ where
－$Q^{\prime}=Q \backslash\left\{q_{\text {rip }}\right\} ;$
－for any $q_{i} \in Q^{\prime} \backslash\left\{q_{\text {accept }}\right\}$ and $q_{j} \in Q^{\prime} \backslash\left\{q_{\text {start }}\right\}$ ，define $\delta^{\prime}\left(q_{i}, q_{j}\right)=\left(R_{1}\right)\left(R_{2}\right)^{*}\left(R_{3}\right) \cup R_{4}$ where $R_{1}=\delta\left(q_{i}, q_{\text {rip }}\right), R_{2}=\delta\left(q_{\text {rip }}, q_{\text {rip }}\right), R_{3}=\delta\left(q_{\text {rip }}, q_{j}\right)$ ，and $R_{4}=\delta\left(q_{i}, q_{j}\right)$ ．
4．return CONVERT（ G^{\prime} ）．

Regular Expressions and Finite Automata

Lemma 13
For any GNFA G ，CONVERT (G) is equivalent to G ．
Proof．
We prove by induction on the number k of states of G ．
－$k=2$ ．Trivial．
－Assume the lemma holds for $k-1$ states．We first show G^{\prime} is equivalent to G ． Suppose G accepts an input w ．Let $q_{\text {start }}, q_{1}, q_{2}, \ldots, q_{\text {accept }}$ be an accepting computation of G．We have $q_{\text {start }} \xrightarrow{w_{1}} q_{1} \cdots q_{i-1} \xrightarrow{w_{i}} q_{i} \xrightarrow{w_{i+1}} q_{\text {rip }} \cdots q_{\text {rip }} \xrightarrow{w_{j-1}} q_{\text {rip }} \xrightarrow{w_{j}} q_{j} \cdots q_{\text {accept }}$ ． Hence $q_{\text {start }} \xrightarrow{w w_{1}} q_{1} \cdots q_{i-1} \xrightarrow{w_{i}} q_{i} \xrightarrow{w_{i+1} \cdots w_{j}} q_{j} \cdots q_{\text {accept }}$ is a computation of G^{\prime} ．Conversely， any string accepted by G^{\prime} is also accepted by G since the transition between q_{i} and q_{j} in G^{\prime} describes the strings taking q_{i} to q_{j} in G ．Hence G^{\prime} is equivalent to G ．By inductive hypothesis，CONVERT $\left(G^{\prime}\right)$ is equivalent to G^{\prime} ．

Regular Expressions and Finite Automata

（a）DFA M

（b）GNFA G

（c）GNFA

（d）GNFA

Figure 8：Finite Automaton to Regular Expression

Regular Expressions and Finite Automata

Theorem 14
A language is regular if and only if some regular expression describes it．

Equivalence and Minimization

Equivalence of Descriptions

－Let M be a DFA，N an NFA，and R a regular expression．
－We would like to answer the following questions：
－Is $L(M)=L(N)$ ？
－Is $L(M)=L(R)$ ？
－Is $L(N)=L(R)$ ？
－Recall that there are DFA＇s M_{N} and M_{R} such that $L\left(M_{N}\right)=L(N)$ and $L\left(M_{R}\right)=L(R)$ ．
－It suffices to solve the following problem：
Given two DFA＇s M_{0} and M_{1} ，is $L\left(M_{0}\right)=L\left(M_{1}\right)$ ？

Equivalence of States

－Let us start with a simpler question．
－Give a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ and $p, q \in Q$ ，is it true that $p \xrightarrow{w} p^{\prime} \in F$ if and only if $q \xrightarrow{w} q^{\prime} \in F$ for all $w \in \Sigma^{*}$ ？
－Note that p^{\prime} need not be q^{\prime} ．
－We only ask if p^{\prime} and q^{\prime} are both in F or not．
－If the answer is＂yes，＂then p and q are equivalent．
－Otherwise，p and q are distinguishable．

Table－Filling Algorithm i

－Consider the DFA on the left．
－Since $q_{1} \notin F$ but $q_{2} \in F$ ，we know q_{1} and q_{2} are distinguishable．
－Similarly，$\left\{q_{1}, q_{4}\right\},\left\{q_{3}, q_{2}\right\},\left\{q_{3}, q_{4}\right\}$ are all distinguishable．
－Moreover，q_{2} and q_{4} all have self loops labeled by $0,1 .\left\{q_{2}, q_{4}\right\}$ are equivalent．
－What about q_{1} and q_{3} ？

Table－Filling Algorithm ii

－Here is an algorithm to find all equivalent states．
－（Basis）If $p \in F$ but $q \notin F$ ，then $\{p, q\}$ is distinguishable；
－（Inductive）Let $p, q \in Q, a \in \Sigma, r=\delta(p, a)$ ，and $s=\delta(q, a)$ ．If $\{r, s\}$ is distinguishable，then $\{p, q\}$ is distinguishable．
－Proof sketch：
－If $p \in F$ but $q \notin F, p=\delta(p, \epsilon) \in F$ and $q=\delta(q, \epsilon) \notin F$ ．$\{p, q\}$ is distinguishable．
－By inductive hypothesis，there is a w such that $r \xrightarrow{w} r^{\prime} \in F$ but $s \xrightarrow{w} s^{\prime} \notin F$（the other case is symmetric）．Then $p \xrightarrow{a w} r^{\prime} \in F$ and $q \xrightarrow{a w} s^{\prime} \notin F .\{p, q\}$ is distinguishable．

Table－Filling Algorithm iii

－By the algorithm，we see $\left\{q_{1}, q_{3}\right\}$ and $\left\{q_{2}, q_{4}\right\}$ are equivalent．
－We know how to find equivalent states in a DFA．

Equivalence of DFA＇s i

－Now consider two DFA＇s M_{0} and M_{1} ．
－How do we know if $L\left(M_{0}\right)=L\left(M_{1}\right)$ ？
－Put M_{0} and M_{1} together and check if the start states are equivalent．

Equivalence of DFA＇s ii

－Since q_{1} and p_{1} are equivalent，both
 DFA＇s accept the same language．
－Moreover，we know $\left\{q_{1}, q_{3}, p_{1}\right\}$ are equivalent and $\left\{q_{2}, q_{4}, p_{2}\right\}$ are equivalent．

Minimization of DFA＇s i

－Given a DFA M ，can we find a DFA M^{\prime} with the minimum number of states and $L(M)=L\left(M^{\prime}\right)$ ？
－Surprisingly，the table－filling algorithm can solve the minimization problem．
－Here is the algorithm：
－Remove all states unreachable from the initial state；
－Use the table－filling algorithm to find equivalent states；
－Construct M^{\prime} with equivalent classes as states．

Minimization of DFA＇s ii

Nonregular Languages

Pumping Lemma

Lemma 15

If A is a regular language，then there is a number p such that for any $s \in A$ of length at least p ，there is a partition $s=x y z$ with
1．for each $i \geq 0, x y^{i} z \in A$ ；
2．$|y|>0$ ；and
3．$|x y| \leq p$ ．
Proof．
Let $M=\left(Q, \Sigma, \delta, q_{1}, F\right)$ be a DFA recognizing A and $p=|Q|$ ．
Consider any string $s=s_{1} s_{2} \cdots s_{n} \in L(M)$ of length $n \geq p$ ．Let $r_{1}=q_{1}, \ldots, r_{n+1}$ be the sequence of states such that $r_{i+1}=\delta\left(r_{i}, s_{i}\right)$ for $1 \leq i \leq n$ ．Since $n+1 \geq p+1=|Q|+1$ ，there are $1 \leq j<l \leq p+1$ such that $r_{j}=r_{l}$（why？）．Choose $x=s_{1} \cdots s_{j-1}, y=s_{j} \cdots s_{l-1}$ ，and $z=s_{l} \cdots s_{n}$ ．Note that $r_{1} \xrightarrow{x} r_{j}, r_{j} \xrightarrow{y} r_{l}$ ，and $r_{l} \xrightarrow{z} r_{n+1} \in F$ ．Thus M accepts $x y^{i} z$ for $i \geq 0$ ． Since $j \neq l,|y|>0$ ．Finally，$|x y| \leq p$ for $l \leq p+1$ ．

Applications of Pumping Lemma

Example 16
$B=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not a regular language．

Proof．

Suppose B is regular．Let p be the pumping length given by the pumping lemma．Choose $s=0^{p} 1^{p}$ ．Then $s \in B$ and $|s| \geq p$ ，there is a partition $s=x y z$ such that $x y^{i} z \in B$ for $i \geq 0$ ．
Since $|x y| \leq p$ and $|y|>0, y \in 0^{+} . x z \notin B$ ．A contradiction．
Corollary 17
$C=\{w: w$ has an equal number of 0 ＇s and 1＇s $\}$ is not a regular language．
Proof．
Suppose C is regular．Then $B=C \cap 0^{*} 1^{*}$ is regular．

Applications of Pumping Lemma

Example 18
$F=\left\{w w: w \in\{0,1\}^{*}\right\}$ is not a regular language．
Proof．
Suppose F is a regular language and p the pumping length．Choose $s=0^{p} 10^{p} 1$ ．By the pumping lemma，there is a partition $s=x y z$ such that $|x y| \leq p$ and $x y^{i} z \in F$ for $i \geq 0$ ．Since $|x y| \leq p, y \in 0^{+}$．But then $x z \notin F$ ．A contradiction．

Applications of Pumping Lemma

Example 19

$D=\left\{1^{n^{2}}: n \geq 0\right\}$ is not a regular language．
Proof．
Suppose D is a regular language and p the pumping length．Choose $s=1^{p^{2}}$ ．By the pumping lemma，there is a partition $s=x y z$ such that $|y|>0,|x y| \leq p$ ，and $x y^{i} z \in D$ for $i \geq 0$ ．Consider the strings $x y z$ and $x y^{2} z$ ．We have $|x y z|=p^{2}$ and
$\left|x y^{2} z\right|=p^{2}+|y| \leq p^{2}+p<p^{2}+2 p+1=(p+1)^{2}$ ．Since $|y|>0$ ，we have $p^{2}=|x y z|<\left|x y^{2} z\right|<(p+1)^{2}$ ．Thus $x y^{2} z \notin D$ ．A contradiction．

Applications of Pumping Lemma

Example 20
$E=\left\{0^{i} 1^{j}: i>j\right\}$ is not a regular language．
Proof．
Suppose E is a regular language and p the pumping length．Choose $s=0^{p+1} 1^{p}$ ．By the pumping lemma，there is a partition $s=x y z$ such that $|y|>0,|x y| \leq p$ ，and $x y^{i} z \in E$ for $i \geq 0$ ．Since $|x y| \leq p, y \in 0^{+}$．But then $x z \notin E$ for $|y|>0$ ．A contradiction．

To Infinity and Beyond

ω－Automata

－We would like to generalize inputs to finite automata．
－Instead of finite input strings，let us consider an infinite input strings $\alpha=a_{1} a_{2} \cdots a_{n} \cdots$ over Σ ．
－Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a finite automaton．
－As before，define a run $\rho=q_{0} q_{1} \cdots q_{n} \cdots$ on α to be an infinite sequence of states such that

$$
\text { for all } i \geq 0,\left(q_{i}, a_{i+1}, q_{i+1}\right) \in \delta
$$

－What is an accepting run then？
－Problem：there is no＂final＂state in an infinite run．
－We cannot reuse the old definition．

Büchi Acceptance

－Let $\rho=q_{0} q_{1} \cdots q_{n} \cdots$ be an infinite run．
－Define

$$
\operatorname{Inf}(\rho)=\{q \in Q: q \text { occurs infinitely many times in } \rho\} .
$$

－An infinite run ρ over α on $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is accepting if $\operatorname{Inf}(\rho) \cap F \neq \emptyset$ ．
－This is called Büchi acceptance
－An infinite input string α is accepted by M if there is an accepting infinite run ρ over α on M．
－Finally，define

$$
L_{\omega}(M)=\{\alpha: \alpha \text { is an infinite input string accepted by } M\} .
$$

Example

Figure 9：NFA N_{6}
－$L_{\omega}\left(N_{6}\right)=\left\{\alpha: \alpha\right.$ has only finitely many $\left.0^{\prime} s\right\}$ ．
－If there are infintiely many $0^{\prime} s, N_{6}$ has to stay in q_{1} ．It cannot pass q_{2} infinitely many times．
－We will write the expression $(0+1)^{*} 1^{\omega}$ to denote $L\left(N_{6}\right)$ ．

Nondeterminism

－For finite automata over finite input strings，we know nondeterminism does not give us more expressive power．
－However，nondeterministic finite automata over infinite input strings can recognize more languages than deterministic ones．

Theorem 21
$(0+1)^{*} 1^{\omega}$ cannot be accepted by any deterministic finite automata．
Proof．
Suppose $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is a DFA and $L(D)=(0+1)^{*} 1^{\omega}$ ．Consider 1^{ω} ．There is n_{0} such that $1^{n_{0}}$ causes D to reach an accepting state．Now consider $1^{n_{0}} 01^{\omega}$ ．There is n_{1} such that $1^{n_{0}} 01^{n_{2}}$ causes D to reach an accepting state．We can therefore construct $1^{n_{0}} 01^{n_{1}} 01^{n_{2}} 0 \cdots$ to cause D to pass through F infinitely many times．A contradiction．

Remark

Figure 10：NFA N_{6}
－The proof does not work for NFA．
－Consider again the NFA N_{6} ．
－ 1 causes N_{6} to reach q_{2} ． 101 causes N_{6} to reach q_{2} ，etc．There is no problem．
－However， 101 passes q_{2} only once．Similarly，10101，1010101，．．．pass q_{2} only once．
－Because N_{6} is nondeterministic，infinite runs may not be the＂limit＂of their finite prefixes．

The Class of Regular ω－Languages

－Define

$$
\mathcal{R}_{\omega}=\left\{L_{\omega}(M): M \text { is an NFA with Büchi acceptance }\right\} .
$$

－ \mathcal{R}_{ω} is called the class of regular ω－languages．
－Moreover，it is known the class of regular ω－language is closed under intersection， union，and complement．
－Under Büchi acceptance，nondeterminism increases the expressive power．We have

$$
\left\{L_{\omega}(D): D \text { is a DFA with Büchi acceptance }\right\} \subsetneq \mathcal{R}_{\omega} .
$$

Concluding Remarks

Where to Go

－Automata theory is a rich field．
－It is widely studied in computational complexity，formal verification，and natural language processing．
－You will see applications of automata theory in formal verification later．

