

Automata Theory

Bow-Yaw Wang 王柏堯

FLOLAC 2023

1/57

Finite Automata

Institute of Information Science, Academia Sinica

Schematic of Finite Automata

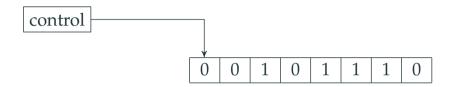


Figure 1: Schematic of Finite Automata

- A finite automaton has a finite set of control states.
- A finite automaton reads input symbols from left to right.
- A finite automaton accepts or rejects an input after reading the input.

Finite Automaton M₁

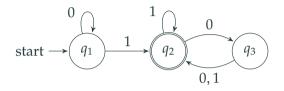
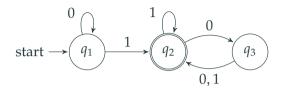


Figure 2: A Finite Automaton M₁

Figure 2 shows the state diagram of a finite automaton M_1 . M_1 has

- 3 **states**: *q*₁, *q*₂, *q*₃;
- a start state: *q*₁;
- an accept state: *q*₂;
- 6 transitions: $q_1 \xrightarrow{0} q_1, q_1 \xrightarrow{1} q_2, q_2 \xrightarrow{1} q_2, q_2 \xrightarrow{0} q_3, q_3 \xrightarrow{0} q_2$, and $q_3 \xrightarrow{1} q_2$.

Accepted and Rejected String



- Consider an input string 1100.
- M_1 processes the string from the start state q_1 .
- It takes the transition labeled by the current symbol and moves to the next state.
- At the end of the string, there are two cases:
 - If *M*₁ is at an accept state, *M*₁ outputs accept;
 - Otherwise, *M*₁ outputs reject.
- Strings accepted by *M*₁: 1, 01, 11, 1100, 1101,
- Strings rejected by *M*₁: 0, 00, 10, 010, 1010,

Finite Automaton – Formal Definition

- A finite automaton is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - *Q* is a finite set of **states**;
 - Σ is a finite set called alphabet;
 - $\delta : Q \times \Sigma \rightarrow Q$ is the transition function;
 - $q_0 \in Q$ is the start state; and
 - $F \subseteq Q$ is the set of accept states.
- The set of strings accepted by *M* is called the language of machine *M* (written *L*(*M*)).
 - Hence a language is a set of strings.
- We also say *M* recognizes (or accepts) *L*(*M*).

M_1 – Formal Definition

• The finite automaton $M_1 = (Q, \Sigma, \delta, q_1, F)$ consists of

•
$$Q = \{q_1, q_2, q_3\};$$

• $\Sigma = \{0, 1\};$
• $\delta : Q \times \Sigma \rightarrow Q$ is $\begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ \hline q_2 & q_3 & q_2 \\ \hline q_3 & q_2 & q_3 \end{array}$

- q_1 is the start state; and
- $F = \{q_2\}.$
- Moreover, we have

 $L(M_1) = \{w : w \text{ contains at least one 1 and an even number of 0's follow the last 1}\}$

Finite Automaton M₂

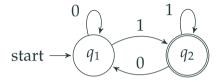


Figure 3: Finite Automaton M_2

• Figure 3 shows
$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$
 where δ is $\begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ \hline q_2 & q_1 & q_2 \end{array}$

- What is $L(M_2)$?
 - $L(M_2) = \{w : w \text{ ends in a } 1\}.$

Finite Automaton M₂

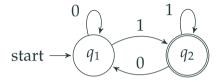


Figure 3: Finite Automaton M₂

• Figure 3 shows
$$M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$$
 where δ is $\begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ \hline q_2 & q_1 & q_2 \end{array}$

- What is $L(M_2)$?
 - $L(M_2) = \{w : w \text{ ends in a } 1\}.$

Finite Automaton M₃

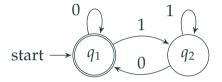


Figure 4: Finite Automaton M₃

• Figure 4 shows
$$M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$$
 where δ is $\begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ \hline q_2 & q_1 & q_2 \end{array}$

- What is $L(M_3)$?
 - $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a } 0\}.$

Finite Automaton M₃

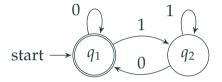


Figure 4: Finite Automaton M₃

• Figure 4 shows
$$M_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_1\})$$
 where δ is $\begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ \hline q_2 & q_1 & q_2 \end{array}$

- What is $L(M_3)$?
 - $L(M_3) = \{w : w \text{ is the empty string } \epsilon \text{ or ends in a } 0\}.$

Finite Automaton M₅

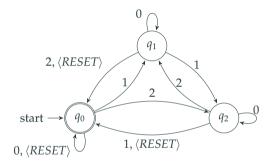


Figure 5: Finite Automaton M_5

- Figure 5 shows $M_5 = (\{q_0, q_1, q_2\}, \{0, 1, 2, \langle RESET \rangle\}, \delta, q_0, \{q_0\}).$
- Strings accepted by M₅:
 0,00,12,21,012,102,120,021,201,
 210,111,222,....
- *M*₅ computes the sum of input symbols modulo 3. It resets upon the input symbol (*RESET*). Hence *M*₅ accepts strings whose sum is a multiple of 3 after (*RESET*).

Computation – Formal Definition

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton and $w = w_1 w_2 \cdots w_n$ a string where $w_i \in \Sigma$ for every i = 1, ..., n.
- We say *M* accepts *w* if there is a sequence of states $r_0, r_1, ..., r_n$ such that
 - $r_0 = q_0;$
 - $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n 1; and
 - $r_n \in F$.
- *M* recognizes language *A* if *A* = {*w* : *M* accepts *w*}.

Definition 1 A language is called a regular language if some finite automaton recognizes it.

Regular Operations

Definition 2 Let *A* and *B* be languages. We define the following operations:

- Union: $A \cup B = \{x : x \in A \text{ or } x \in B\}.$
- Concatenation: $A \circ B = \{xy : x \in A \text{ and } y \in B\}.$
- Star: $A^* = \{x_1 x_2 \cdots x_k : k \ge 0 \text{ and every } x_i \in A\}.$
- Complementation: $\overline{A} = \{x : x \in \Sigma^* \text{ but } x \notin A\}.$
- Note that $\epsilon \in A^*$ for every language *A*.

Closure Property – Union

Theorem 3 The class of regular languages is closed under the union operation. That is, $A_1 \cup A_2$ is regular if A_1 and A_2 are.

Proof. Let $M_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for i = 1, 2. Construct $M = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = Q_1 \times Q_2 = \{(r_1, r_2) : r_1 \in Q_1, r_2 \in Q_2\};$
- $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a));$
- $q_0 = (q_1, q_2);$
- $F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) : r_1 \in F_1 \text{ or } r_2 \in F_2\}.$
- Why is $L(M) = A_1 \cup A_2$?

Nondeterminism

Institute of Information Science, Academia Sinica

Nondeterminism

- When a machine is at a given state and reads an input symbol, there is precisely one choice of its next state.
- This is call deterministic computation.
- In nondeterministic machines, multiple choices may exist for the next state.
- A deterministic finite automaton is abbreviated as DFA; a nondeterministic finite automaton is abbreviated as NFA.
- A DFA is also an NFA.
- Since NFA allow more general computation, they can be much smaller than DFA.

NFA N_4

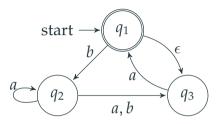


Figure 6: NFA N₄

• On input string baa, N₄ has several possible computation:

•
$$q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_2 \xrightarrow{a} q_2;$$

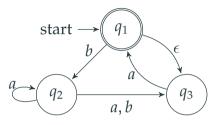
•
$$q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_2 \xrightarrow{a} q_3$$
; or

•
$$q_1 \xrightarrow{b} q_2 \xrightarrow{a} q_3 \xrightarrow{a} q_1.$$

Nondeterministic Finite Automaton – Formal Definition

- For any set Q, $\mathcal{P}(Q) = \{R : R \subseteq Q\}$ denotes the power set of Q.
- For any alphabet Σ , define Σ_{ϵ} to be $\Sigma \cup \{\epsilon\}$.
- A nondeterministic finite automaton is a 5-tuple (Q, Σ , δ , q_0 , F) where
 - *Q* is a finite set of states;
 - Σ is a finite alphabet;
 - $\delta : Q \times \Sigma_{\epsilon} \to \mathcal{P}(Q)$ is the transition function;
 - $q_0 \in Q$ is the start state; and
 - $F \subseteq Q$ is the accept states.
- Note that the transition function accepts the empty string as an input symbol.

NFA N_4 – Formal Definition



- $N_4 = (Q, \Sigma, \delta, q_1, \{q_1\})$ is a nondeterministic finite automaton where
 - $Q = \{q_1, q_2, q_3\};$

• Its transition function
$$\delta$$
 is $\begin{array}{c|c} \epsilon & a & b \\ \hline q_1 & \{q_3\} & \emptyset & \{q_2\} \\ \hline q_2 & \emptyset & \{q_2,q_3\} & \{q_3\} \\ \hline q_3 & \emptyset & \{q_1\} & \emptyset \end{array}$

FLOLAC 2023 Bow-Yaw Wang 王柏堯

Nondeterministic Computation - Formal Definition

- Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA and w a string over Σ . We say N accepts w if w can be rewritten as $w = y_1y_2 \cdots y_m$ with $y_i \in \Sigma_{\epsilon}$ and there is a sequence of states r_0, r_1, \ldots, r_m such that
 - $r_0 = q_0;$
 - $r_{i+1} \in \delta(r_i, y_{i+1})$ for i = 0, ..., m 1; and
 - $r_m \in F$.
- Note that finitely many empty strings can be inserted in *w*.
- Also note that one sequence satisfying the conditions suffices to show the acceptance of an input string.
- Strings accepted by N₄: a, baa,

Equivalence of NFA's and DFA's

Theorem 4 Every nondeterministic finite automaton has an equivalent deterministic finite automaton. That is, for every NFA N, there is a DFA M such that L(M) = L(N).

Proof. Let $N = (Q, \Sigma, \delta, q_0, F)$ be an NFA. For $R \subseteq Q$, define $E(R) = \{q : q \text{ can be reached from } R \text{ along } 0 \text{ or more } \epsilon \text{ transitions } \}$. Construct a DFA $M = (Q', \Sigma, \delta', q'_0, F')$ where

- $Q' = \mathcal{P}(Q);$
- $\delta'(R, a) = \{q \in Q : q \in E(\delta(r, a)) \text{ for some } r \in R\};$
- $q'_0 = E(\{q_0\});$
- $F' = \{ R \in Q' : R \cap F \neq \emptyset \}.$
- Why is L(M) = L(N)?

A DFA Equivalent to N_4

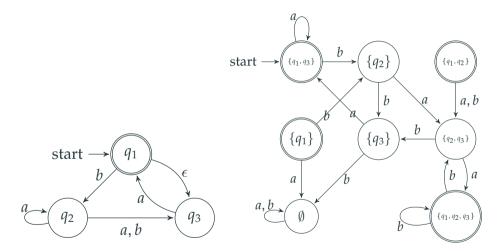


Figure 7: A DFA Equivalent to N₄

FLOLAC 2023 Bow-Yaw Wang 王柏堯

Institute of Information Science, Academia Sinica

Theorem 5 The class of regular languages is closed under the union operation.

Proof. Let $N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for i = 1, 2. Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{q_0\} \cup Q_1 \cup Q_2;$
- $F = F_1 \cup F_2$; and

•
$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \epsilon \\ \emptyset & q = q_0 \text{ and } a \neq \epsilon \end{cases}$$

• Why is $L(N) = L(N_1) \cup L(N_2)$?

Theorem 6 The class of regular languages is closed under the concatenation operation.

Proof. Let $N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$ recognize A_i for i = 1, 2. Construct $N = (Q, \Sigma, \delta, q_1, F_2)$ where

•
$$Q = Q_1 \cup Q_2$$
; and
• $\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \epsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$

• Why is
$$L(N) = L(N_1) \circ L(N_2)$$
?

Theorem 7 The class of regular languages is closed under the star operation.

Proof. Let $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ recognize A_1 . Construct $N = (Q, \Sigma, \delta, q_0, F)$ where

- $Q = \{q_0\} \cup Q_1;$
- $F = \{q_0\} \cup F_1$; and

•
$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \epsilon \\ \delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon \\ \{q_1\} & q = q_0 \text{ and } a = \epsilon \\ \emptyset & q = q_0 \text{ and } a \neq \epsilon \end{cases}$$

• Why is $L(N) = [L(N_1)]^*$?

Theorem 8 The class of regular languages is closed under complementation.

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A. Consider $\overline{M} = (Q, \Sigma, \delta, q_0, Q \setminus F)$. We have $w \in L(M)$ if and only if $w \notin L(\overline{M})$. That is, $L(\overline{M}) = \overline{A}$ as required.

Regular Expressions

Institute of Information Science, Academia Sinica

Regular Expressions i

Definition 9 *R* is a regular expression if *R* is

- *a* for some $a \in \Sigma$;
- *ϵ*;
- Ø;
- $(R_1 \cup R_2)$ where R_i 's are regular expressions;
- $(R_1 \circ R_2)$ where R_i 's are regular expressions; or
- (R_1^*) where R_1 is a regular expression.

Regular Expressions ii

- We write R^+ for $R \circ R^*$. Hence $R^* = R^+ \cup \epsilon$.
- Moreover, write R^k for $\overline{R \circ R \circ \cdots \circ R}$.
 - Define $R^0 = \epsilon$. We have $R^* = R^0 \cup R^1 \cup \cdots \cup R^n \cup \cdots$.
- *L*(*R*) denotes the language described by the regular expression *R*.
- Note that $\emptyset \neq \{\epsilon\}$.

- For convenience, we write RS for $R \circ S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- For convenience, we write *RS* for $R \circ S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* 1 \Sigma^*) = \{w : w \text{ has at least one } 1\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- For convenience, we write *RS* for $R \circ S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* \mathbb{1}\Sigma^*) = \{w : w \text{ has at least one } \mathbb{1}\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- For convenience, we write *RS* for $R \circ S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* \mathbb{1}\Sigma^*) = \{w : w \text{ has at least one } \mathbb{1}\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- For convenience, we write *RS* for $R \circ S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* \mathbb{1}\Sigma^*) = \{w : w \text{ has at least one } \mathbb{1}\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

- For convenience, we write *RS* for $R \circ S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* \mathbb{1}\Sigma^*) = \{w : w \text{ has at least one } \mathbb{1}\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

Examples of Regular Expressions

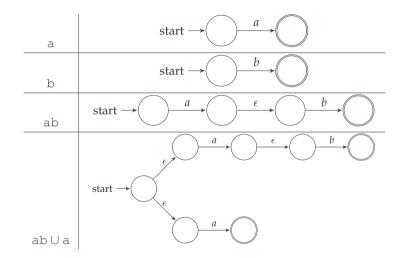
- For convenience, we write *RS* for $R \circ S$.
- We may also write the regular expression *R* to denote its language *L*(*R*).
- $L(0^*10^*) = \{w : w \text{ contains a single } 1\}.$
- $L(\Sigma^* \mathbb{1}\Sigma^*) = \{w : w \text{ has at least one } \mathbb{1}\}.$
- $L((\Sigma\Sigma)^*) = \{w : w \text{ is a string of even length } \}.$
- $(0 \cup \epsilon)(1 \cup \epsilon) = \{\epsilon, 0, 1, 01\}.$
- $1^* \emptyset = \emptyset$.
- $\emptyset^* = \{\epsilon\}.$
- For any regular expression *R*, we have $R \cup \emptyset = R$ and $R \circ \epsilon = R$.

Lemma 10 If a language is described by a regular expression, it is regular.

Proof.

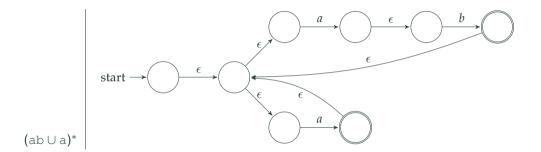
We prove by induction on the regular expression *R*.

- R = a for some $a \in \Sigma$. Consider the NFA $N_a = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$ where $\delta(r, y) = \begin{cases} \{q_2\} & r = q_1 \text{ and } y = a \\ \emptyset & \text{otherwise} \end{cases}$
- $R = \epsilon$. Consider the NFA $N_{\epsilon} = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ where $\delta(r, y) = \emptyset$ for any r and y.
- $R = \emptyset$. Consider the NFA $N_{\emptyset} = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ where $\delta(r, y) = \emptyset$ for any *r* and *y*.
- $R = R_1 \cup R_2$, $R = R_1 \circ R_2$, or $R = R_1^*$. By inductive hypothesis and the closure properties of finite automata.



FLOLAC 2023 Bow-Yaw Wang 王柏乡

Institute of Information Science, Academia Sinica



Lemma 11 If a language is regular, it is described by a regular expression.

For the proof, we introduce a generalization of finite automata.

Generalized Nondeterministic Finite Automata i

Definition 12

A generalized nondeterministic finite automaton is a 5-tuple (Q, Σ , q_{start} , q_{accept}) where

- *Q* is the finite set of states;
- Σ is the input alphabet;
- $\delta: Q \times Q \to \mathcal{R}$ is the transition function, where \mathcal{R} denotes the set of regular expressions;
- q_{start} is the start state; and
- q_{accept} is the accept state.

31/57

Generalized Nondeterministic Finite Automata ii

A GNFA accepts a string $w \in \Sigma^*$ if $w = w_1 w_2 \cdots w_k$ where $w_i \in \Sigma^*$ and there is a sequence of states r_0, r_1, \ldots, r_k such that

- $r_0 = q_{\text{start}};$
- $r_k = q_{\text{accept}}$; and
- for every $i, w_i \in L(R_i)$ where $R_i = \delta(q_{i-1}, q_i)$.

Proof of Lemma. Let *M* be the DFA for the regular language. Construct an equivalent GNFA *G* by adding $q_{\text{start}}, q_{\text{accept}}$ and necessary ϵ -transitions.

CONVERT (G):

- 1. Let k be the number of states of G.
- 2. If k = 2, then return the regular expression *R* labeling the transition from q_{start} to q_{accept} .
- 3. If k > 2, select $q_{rip} \in Q \setminus \{q_{start}, q_{accept}\}$. Construct $G' = (Q', \Sigma, \delta', q_{start}, q_{accept})$ where
 - $Q' = Q \setminus \{q_{\operatorname{rip}}\};$
 - for any $q_i \in Q' \setminus \{q_{\text{accept}}\}$ and $q_j \in Q' \setminus \{q_{\text{start}}\}$, define $\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup R_4$ where $R_1 = \delta(q_i, q_{\text{rip}}), R_2 = \delta(q_{\text{rip}}, q_{\text{rip}}), R_3 = \delta(q_{\text{rip}}, q_j)$, and $R_4 = \delta(q_i, q_j)$.
- 4. return CONVERT (G').

Lemma 13 For any GNFA *G*, CONVERT (*G*) is equivalent to *G*.

Proof. We prove by induction on the number k of states of G.

- k = 2. Trivial.
- Assume the lemma holds for k 1 states. We first show G' is equivalent to G. Suppose G accepts an input w. Let $q_{\text{start}}, q_1, q_2, \dots, q_{\text{accept}}$ be an accepting computation of G. We have $q_{\text{start}} \xrightarrow{w_1} q_1 \cdots q_{i-1} \xrightarrow{w_i} q_i \xrightarrow{w_{i+1}} q_{\text{rip}} \cdots q_{\text{rip}} \xrightarrow{w_{j-1}} q_{\text{rip}} \xrightarrow{w_j} q_j \cdots q_{\text{accept}}$. Hence $q_{\text{start}} \xrightarrow{w_1} q_1 \cdots q_{i-1} \xrightarrow{w_i} q_i \xrightarrow{w_{i+1} \cdots w_j} q_j \cdots q_{\text{accept}}$ is a computation of G'. Conversely, any string accepted by G' is also accepted by G since the transition between q_i and q_j in G' describes the strings taking q_i to q_j in G. Hence G' is equivalent to G. By inductive hypothesis, CONVERT (G') is equivalent to G'.

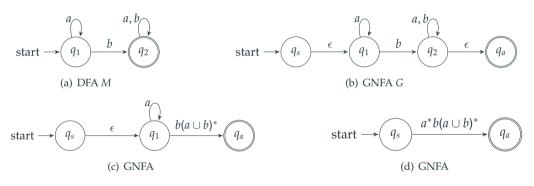


Figure 8: Finite Automaton to Regular Expression

Theorem 14 A language is regular if and only if some regular expression describes it.

Equivalence and Minimization

Institute of Information Science, Academia Sinica

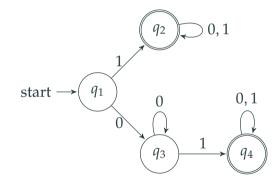
Equivalence of Descriptions

- Let *M* be a DFA, *N* an NFA, and *R* a regular expression.
- We would like to answer the following questions:
 - Is L(M) = L(N)?
 - Is L(M) = L(R)?
 - Is L(N) = L(R)?
- Recall that there are DFA's M_N and M_R such that $L(M_N) = L(N)$ and $L(M_R) = L(R)$.
- It suffices to solve the following problem: Given two DFA's M_0 and M_1 , is $L(M_0) = L(M_1)$?

Equivalence of States

- Let us start with a simpler question.
- Give a DFA $M = (Q, \Sigma, \delta, q_0, F)$ and $p, q \in Q$, is it true that $p \xrightarrow{w} p' \in F$ if and only if $q \xrightarrow{w} q' \in F$ for all $w \in \Sigma^*$?
 - Note that p' need not be q'.
 - We only ask if p' and q' are both in F or not.
- If the answer is "yes," then *p* and *q* are **equivalent**.
- Otherwise, *p* and *q* are distinguishable.

Table-Filling Algorithm i

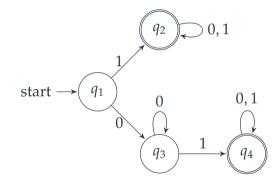


- Consider the DFA on the left.
- Since $q_1 \notin F$ but $q_2 \in F$, we know q_1 and q_2 are distinguishable.
 - Similarly, {*q*₁, *q*₄}, {*q*₃, *q*₂}, {*q*₃, *q*₄} are all distinguishable.
 - Moreover, *q*₂ and *q*₄ all have self loops labeled by 0, 1. {*q*₂, *q*₄} are equivalent.
 - What about q_1 and q_3 ?

Table-Filling Algorithm ii

- Here is an algorithm to find all equivalent states.
 - (Basis) If $p \in F$ but $q \notin F$, then $\{p, q\}$ is distinguishable;
 - (Inductive) Let $p, q \in Q$, $a \in \Sigma$, $r = \delta(p, a)$, and $s = \delta(q, a)$. If $\{r, s\}$ is distinguishable, then $\{p, q\}$ is distinguishable.
- Proof sketch:
 - If $p \in F$ but $q \notin F$, $p = \delta(p, \epsilon) \in F$ and $q = \delta(q, \epsilon) \notin F$. $\{p, q\}$ is distinguishable.
 - By inductive hypothesis, there is a *w* such that $r \xrightarrow{w} r' \in F$ but $s \xrightarrow{w} s' \notin F$ (the other case is symmetric). Then $p \xrightarrow{aw} r' \in F$ and $q \xrightarrow{aw} s' \notin F$. {p, q} is distinguishable.

Table-Filling Algorithm iii

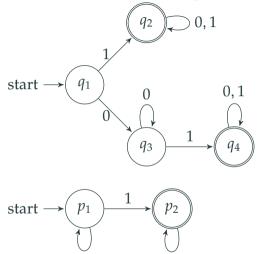


- By the algorithm, we see {*q*₁, *q*₃} and {*q*₂, *q*₄} are equivalent.
- We know how to find equivalent states in a DFA.

Equivalence of DFA's i

- Now consider two DFA's *M*⁰ and *M*₁.
- How do we know if $L(M_0) = L(M_1)$?
- Put *M*⁰ and *M*¹ together and check if the start states are equivalent.

Equivalence of DFA's ii



0, 1

q_1			X X			
q_2	Χ					
q_3		Х				
q_4	X		X			
p_1		Х		Х		
p_2	Χ		Х		X	
	q_1	q_2	<i>q</i> ₃	q_4	p_1	p_2

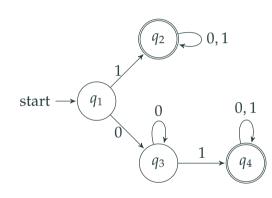
- Since *q*₁ and *p*₁ are equivalent, both DFA's accept the same language.
- Moreover, we know {*q*₁, *q*₃, *p*₁} are equivalent and {*q*₂, *q*₄, *p*₂} are equivalent.

FLOLAC 2023 Bow-Yaw Wang 王柏堯

Minimization of DFA's i

- Given a DFA *M*, can we find a DFA *M*' with the minimum number of states and L(M) = L(M')?
- Surprisingly, the table-filling algorithm can solve the minimization problem.
- Here is the algorithm:
 - Remove all states unreachable from the initial state;
 - Use the table-filling algorithm to find equivalent states;
 - Construct *M*′ with equivalent classes as states.

Minimization of DFA's ii



1

- Equivalent classes are $E_1 = \{q_1, q_3\}$ and $E_2 = \{q_2, q_4\}.$
- $M' = (\{E_1, E_2\}, \{0, 1\}, \delta', E_1, \{E_2\})$ and $\frac{\delta' \mid 0 \mid 1}{E_1 \mid E_1 \mid E_2}$ $E_2 \mid E_2 \mid E_2$

Nonregular Languages

Institute of Information Science, Academia Sinica

Pumping Lemma

Lemma 15

If *A* is a regular language, then there is a number *p* such that for any $s \in A$ of length at

least *p*, there is a partition s = xyz with

- 1. for each $i \ge 0$, $xy^i z \in A$;
- 2. |y| > 0; and
- 3. $|xy| \leq p$.

Proof.

Let $M = (Q, \Sigma, \delta, q_1, F)$ be a DFA recognizing A and p = |Q|.

Consider any string $s = s_1 s_2 \cdots s_n \in L(M)$ of length $n \ge p$. Let $r_1 = q_1, \ldots, r_{n+1}$ be the sequence of states such that $r_{i+1} = \delta(r_i, s_i)$ for $1 \le i \le n$. Since $n + 1 \ge p + 1 = |Q| + 1$, there are $1 \le j < l \le p + 1$ such that $r_j = r_l$ (why?). Choose $x = s_1 \cdots s_{j-1}, y = s_j \cdots s_{l-1}$, and $z = s_l \cdots s_n$. Note that $r_1 \xrightarrow{x} r_j, r_j \xrightarrow{y} r_l$, and $r_l \xrightarrow{z} r_{n+1} \in F$. Thus M accepts $xy^i z$ for $i \ge 0$. Since $j \ne l, |y| > 0$. Finally, $|xy| \le p$ for $l \le p + 1$.

Example 16 $B = \{0^n 1^n : n \ge 0\}$ is not a regular language.

Proof.

Suppose *B* is regular. Let *p* be the pumping length given by the pumping lemma. Choose $s = 0^p 1^p$. Then $s \in B$ and $|s| \ge p$, there is a partition s = xyz such that $xy^i z \in B$ for $i \ge 0$. Since $|xy| \le p$ and |y| > 0, $y \in 0^+$. $xz \notin B$. A contradiction.

Corollary 17 $C = \{w : w \text{ has an equal number of } 0's \text{ and } 1's\}$ is not a regular language.

Proof. Suppose *C* is regular. Then $B = C \cap 0^* 1^*$ is regular.

Example 18 $F = \{ww : w \in \{0, 1\}^*\}$ is not a regular language.

Proof. Suppose *F* is a regular language and *p* the pumping length. Choose $s = 0^p 1 0^p 1$. By the pumping lemma, there is a partition s = xyz such that $|xy| \le p$ and $xy^i z \in F$ for $i \ge 0$. Since $|xy| \le p, y \in 0^+$. But then $xz \notin F$. A contradiction.

Example 19 $D = \{1^{n^2} : n \ge 0\}$ is not a regular language.

Proof.

Suppose *D* is a regular language and *p* the pumping length. Choose $s = 1^{p^2}$. By the pumping lemma, there is a partition s = xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in D$ for $i \ge 0$. Consider the strings xyz and xy^2z . We have $|xyz| = p^2$ and $|xy^2z| = p^2 + |y| \le p^2 + p < p^2 + 2p + 1 = (p + 1)^2$. Since |y| > 0, we have $p^2 = |xyz| < |xy^2z| < (p + 1)^2$. Thus $xy^2z \notin D$. A contradiction.

Example 20 $E = \{0^{i}1^{j} : i > j\}$ is not a regular language.

Proof.

Suppose *E* is a regular language and *p* the pumping length. Choose $s = 0^{p+1}1^p$. By the pumping lemma, there is a partition s = xyz such that |y| > 0, $|xy| \le p$, and $xy^iz \in E$ for $i \ge 0$. Since $|xy| \le p, y \in 0^+$. But then $xz \notin E$ for |y| > 0. A contradiction.

To Infinity and Beyond

Institute of Information Science, Academia Sinica

ω -Automata

- We would like to generalize inputs to finite automata.
- Instead of finite input strings, let us consider an infinite input strings $\alpha = a_1 a_2 \cdots a_n \cdots$ over Σ .
- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automaton.
- As before, define a run $\rho = q_0 q_1 \cdots q_n \cdots$ on α to be an infinite sequence of states such that

for all
$$i \ge 0$$
, $(q_i, a_{i+1}, q_{i+1}) \in \delta$.

- What is an accepting run then?
 - Problem: there is no "final" state in an infinite run.
 - We cannot reuse the old definition.

Büchi Acceptance

- Let $\rho = q_0 q_1 \cdots q_n \cdots$ be an infinite run.
- Define

Inf(ρ) = { $q \in Q : q$ occurs infinitely many times in ρ }.

- An infinite run ρ over α on $M = (Q, \Sigma, \delta, q_0, F)$ is accepting if $Inf(\rho) \cap F \neq \emptyset$.
 - This is called Büchi acceptance
- An infinite input string α is accepted by *M* if there is an accepting infinite run ρ over α on *M*.
- Finally, define

 $L_{\omega}(M) = \{ \alpha : \alpha \text{ is an infinite input string accepted by } M \}.$

Example

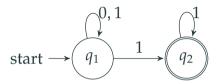


Figure 9: NFA N₆

- $L_{\omega}(N_6) = \{ \alpha : \alpha \text{ has only finitely many } 0's \}.$
 - If there are infinitely many 0's, N_6 has to stay in q_1 . It cannot pass q_2 infinitely many times.
- We will write the expression $(0 + 1)^* 1^{\omega}$ to denote $L(N_6)$.

Nondeterminism

- For finite automata over finite input strings, we know nondeterminism does not give us more expressive power.
- However, nondeterministic finite automata over infinite input strings can recognize more languages than deterministic ones.

Theorem 21 $(0 + 1)^*1^\omega$ cannot be accepted by any deterministic finite automata.

Proof. Suppose $D = (Q, \Sigma, \delta, q_0, F)$ is a DFA and $L(D) = (0 + 1)^* 1^\omega$. Consider 1^ω . There is n_0 such that 1^{n_0} causes D to reach an accepting state. Now consider $1^{n_0}01^\omega$. There is n_1 such that $1^{n_0}01^{n_2}$ causes D to reach an accepting state. We can therefore construct $1^{n_0}01^{n_1}01^{n_2}0\cdots$ to cause D to pass through F infinitely many times. A contradiction.

Remark

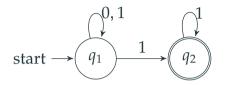


Figure 10: NFA N₆

- The proof does not work for NFA.
- Consider again the NFA N₆.
- 1 causes N_6 to reach q_2 . 101 causes N_6 to reach q_2 , etc. There is no problem.
- However, 101 passes *q*₂ only once. Similarly, 10101, 1010101, ... pass *q*₂ only once.
- Because *N*⁶ is nondeterministic, infinite runs may not be the "limit" of their finite prefixes.

The Class of Regular $\omega\text{-Languages}$

• Define

 $\mathcal{R}_{\omega} = \{L_{\omega}(M) : M \text{ is an NFA with Büchi acceptance } \}.$

- \mathcal{R}_{ω} is called the class of regular ω -languages.
- Moreover, it is known the class of regular *ω*-language is closed under intersection, union, and complement.
- Under Büchi acceptance, nondeterminism increases the expressive power. We have

 $\{L_{\omega}(D) : D \text{ is a DFA with Büchi acceptance }\} \subsetneq \mathcal{R}_{\omega}.$

Concluding Remarks

Institute of Information Science, Academia Sinica

Where to Go

- Automata theory is a rich field.
- It is widely studied in computational complexity, formal verification, and natural language processing.
- You will see applications of automata theory in formal verification later.

