
FLOLAC 2023 1

Quantified Satisfiability and
Its Synthesis & Verification

Applications

Jie-Hong Roland Jiang
江介宏

Department of Electrical Engineering
National Taiwan University

2023/8/24

FLOLAC 2023 2

Outline

Logic synthesis & verification
Boolean function representation
Propositional satisfiability & applications
Quantified satisfiability & applications
Beyond quantified Boolean satisfiability
Dependency quantified Boolean formula
Second-order quantified Boolean formula
#SAT (model counting)
Stochastic Boolean satisfiability
Dependency stochastic Boolean satisfiability

2023/8/24

FLOLAC 2023 3

IC Design Flow

HDL spec.

logic
synthesislogic netlist

circuit
netlist

layout /
mask

chip

RTL
synthesis

physical
design

fab.

2023/8/24

FLOLAC 2023 4

Logic Synthesis

Logic
Synthesis

Boolean Function
Expression

Optimized
Logic Netlist

Boolean/Temporal
Constraints

Solution Circuit

2023/8/24

FLOLAC 2023 5

Logic Synthesis

D

x yλ
δ

Given: Functional description of finite-state
machine F(Q,X,Y,δ,λ) where:
Q: Set of internal states
X: Input alphabet
Y: Output alphabet
δ: X x Q → Q (next state function)
λ: X x Q → Y (output function)

Target: Circuit C(G, W) where:
G: set of circuit components g ∈ {gates, FFs, etc.}
W: set of wires connecting G

2023/8/24

FLOLAC 2023 6

Backgrounds
 Historic evolution of data structures and tools in

logic synthesis and verification
Problem Size

Time1950-1970 1980 1990 2000

CNF
TT

SOP BDD
AIG

16

50

100

100000

Espresso,
MIS, SIS

SIS, VIS,
MVSIS

ABC

Courtesy of Alan Mishchenko
2023/8/24

FLOLAC 2023 7

Boolean Function Representation

Logic synthesis translates Boolean
functions into circuits

We need representations of Boolean
functions for two reasons:
 to represent and manipulate the actual circuit

that we are implementing
 to facilitate Boolean reasoning

2023/8/24

FLOLAC 2023 8

Boolean Space
 B = {0,1}
 B2 = {0,1}×{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4

2023/8/24

FLOLAC 2023 99

Boolean Function
 A Boolean function f over input variables: x1, x2, …, xm, is a

mapping f: Bm → Y, where B = {0,1} and Y = {0,1,d}
 E.g.
 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111} (characteristic function f1 = x2)

 off-set (f = 0)
 E.g. {100, 101} (characteristic function f0 = x1 ¬x2)

 don’t-care set (f = d)
 E.g. {000, 001} (characteristic function fd = ¬x1 ¬x2)

 f is an incompletely specified function if the don’t-care set is
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely

specified

2023/8/24

FLOLAC 2023 10

Boolean Function
 A Boolean function f: Bn → B over variables

x1,…,xn maps each Boolean valuation (truth
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1,
f(1,1) = 0

0
0
1

1
x2

x1

x1

x2

2023/8/24

FLOLAC 2023 11

Boolean Function
 Onset of f, denoted as f1, is f1= {v ∈ Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v ∈ Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if ∀v∈ Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x′ (or x, ¬x)

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1

2023/8/24

FLOLAC 2023 12

Boolean Function
 There are 2n vertices in Bn

 There are 22n
distinct Boolean functions

 Each subset f1 ⊆ Bn of vertices in Bn forms a
distinct Boolean function f with onset f1

x1x2x3 f
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 ⇒ 1
1 0 1 0
1 1 0 1
1 1 1 0

x1

x2

x3

2023/8/24

FLOLAC 2023 13

Boolean Operations
Given two Boolean functions:

f : Bn → B
g : Bn → B

 h = f ∧ g from AND operation is defined as
h1 = f1 ∩ g1; h0 = Bn \ h1

 h = f ∨ g from OR operation is defined as
h1 = f1 ∪ g1; h0 = Bn \ h1

 h = ¬f from COMPLEMENT operation is defined as
h1 = f0; h0 = f1

2023/8/24

FLOLAC 2023 14

Cofactor and Quantification
Given a Boolean function:

f : Bn → B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = f¬xi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi
h = ∃xi. f is defined as h = f(x1,x2,…,0,…,xn) ∨ f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi
h = ∀xi. f is defined as h = f(x1,x2,…,0,…,xn) ∧ f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = ∂f/∂xi is defined as h = f(x1,x2,…,0,…,xn) ⊕ f(x1,x2,…,1,…,xn)

2023/8/24

FLOLAC 2023 15

Boolean Function Representation
 Some common representations:

 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF)
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even

subcircuits
 Specialized Boolean network

 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and

weaknesses (no single data structure is best for all
applications)

2023/8/24

FLOLAC 2023 16

Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued

functions):
The truth table of a function f : Bn → B is a
tabulation of its value at each of the 2n

vertices of Bn.

In other words the truth table lists all mintems
Example: f = a′b′c′d + a′b′cd + a′bc′d +

ab′c′d + ab′cd + abc′d +
abcd′ + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1

2023/8/24

FLOLAC 2023 17

Boolean Function Representation
Boolean Formula
 A Boolean formula is defined inductively as an expression

with the following formation rules (syntax):

formula ::= ‘(‘ formula ‘)’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “⋅” formula (AND operator)
| ¬ formula (complement)

Example
f = (x1 ⋅ x2) + (x3) + ¬(¬(x4 ⋅ (¬x1)))
typically “⋅” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is
clear, e.g., f = x1 x2 + x3 + x4 ¬x1

2023/8/24

FLOLAC 2023 18

Boolean Function Representation
Boolean Formula in SOP

 Any function can be represented as a sum-of-
products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form
(DNF)

Example
ϕ = ab + a’c + bc

2023/8/24

FLOLAC 2023 19

Boolean Function Representation
Boolean Formula in POS

 Any function can be represented as a product-of-
sums (POS), also called conjunctive normal form
(CNF)
 Dual of the SOP representation

Example
ϕ = (a+b′+c) (a′+b+c) (a+b′+c′) (a+b+c)

 Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

2023/8/24

FLOLAC 2023 20

Boolean Function Representation
Binary Decision Diagram

 BDD – a graph
representation of Boolean
functions
 A leaf node represents

constant 0 or 1
 A non-leaf node

represents a decision node
(multiplexer) controlled by
some variable

 Can make a BDD
representation canonical
by imposing the variable
ordering and reduction
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root
node

c+d

d

2023/8/24

FLOLAC 2023 21

Boolean Function Representation
Binary Decision Diagram
 Any Boolean function f can be written in term of

Shannon expansion
f = v fv + ¬v f¬v

 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: f¬xi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by

variable v represent two sub-functions fv and f¬v

v
0 1

f

fv fv

2023/8/24

FLOLAC 2023 22

Boolean Function Representation
Binary Decision Diagram
 Reduced and ordered BDD (ROBDD) is a canonical

Boolean function representation
 Ordered:

cofactor variables are in the same order along all paths
xi1

< xi2
< xi3

< … < xin

 Reduced:
any node with two identical children is removed
two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a
distinct logic function

a

c c

b

0 1

ordered
(a<c<b)

a

b c

c

0 1

not
ordered

b

a

b

0 1

f

b

0 1

f

reduce

2023/8/24

FLOLAC 2023 23

Boolean Function Representation
Binary Decision Diagram
 For a Boolean function,

 ROBDD is unique with respect to a given variable ordering
 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+dc

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node2023/8/24

FLOLAC 2023 24

Boolean Function Representation
Boolean Network
 A Boolean network is a directed graph C(G,N)

where G are the gates and N ⊆ (G×G) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I ⊆ G
Outputs: O ⊆ G
I ∩ O = ∅

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms
of its inputs.

2023/8/24

FLOLAC 2023 25

Boolean Function Representation
Boolean Network
 The fanin FI(g) of a gate g are the predecessor gates of g:

FI(g) = {g’ | (g’,g) ∈ N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’) ∈ N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its
cone:
SUPPORT(g) = CONE(g) ∩ I

2023/8/24

FLOLAC 2023 26

Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}
FO(6) = {7,9}
CONE(6) = {1,2,4,6}
SUPPORT(6) = {1,2}
Every node may have its own function

1

5
3

4
7

8

9
2

2023/8/24

FLOLAC 2023 27

Boolean Function Representation
And-Inverter Graph
 AND-INVERTER graphs (AIGs)

vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic
circuits

f

g g

f

2023/8/24

FLOLAC 2023 28

Boolean Function Representation
 Truth table

 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node

functions in a Boolean network
 POS

 Useful in SAT solving and Boolean reasoning
 Rarely used in circuit synthesis (due to the asymmetric characteristics

of NMOS and PMOS)
 ROBDD

 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning

2023/8/24

FLOLAC 2023 29

Circuit to CNF Conversion
 Naive conversion of circuit to CNF:

 Multiply out expressions of circuit until two level structure
 Example: y = x1⊕ x2 ⊕ x2 ⊕ ... ⊕ xn (Parity function)

 circuit size is linear in the number of variables

⊕

 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of

the circuit

2023/8/24

FLOLAC 2023 30

Circuit to CNF Conversion
 Example

 Single gate:

 Circuit of connected gates:

b

a
c (¬a + ¬b + c)(a + ¬c)(b + ¬c)

AND

1

6

2 5
8

7

3

4

9 0

(¬1 + 2 + 4)(1 + ¬4)(¬2 + ¬4)
(¬2 + ¬3 + 5)(2 + ¬5)(3 + ¬5)
(2 + ¬3 + 6)(¬2 + ¬6)(3 + ¬6)
(¬4 + ¬5 + 7)(4 + ¬7)(5 + ¬7)
(5 + 6 + 8)(¬5 + ¬8)(¬6 + ¬8)
(7 + 8 + 9)(¬7 + ¬9)(¬8 + ¬9)
(9)

Justify to “1”

Is output always 0 ?

2023/8/24

FLOLAC 2023 31

Circuit to CNF Conversion

Circuit to CNF conversion
 can be done in linear size (with respect to the

circuit size) if intermediate variables can be
introduced

may grow exponentially in size if no
intermediate variables are allowed

2023/8/24

FLOLAC 2023 32

Propositional Satisfiability

2023/8/24

FLOLAC 2023 33

Normal Forms

 A literal is a variable or its negation
 A clause (cube) is a disjunction (conjunction) of

literals
 A conjunctive normal form (CNF) is a

conjunction of clauses; a disjunctive normal
form (DNF) is a disjunction of cubes

 E.g.,
CNF: (a+¬b+c)(a+¬c)(b+d)(¬a)
(¬a) is a unit clause, d is a pure literal

DNF: a¬bc + a¬c + bd + ¬a

2023/8/24

FLOLAC 2023 34

Satisfiability
 The satisfiability (SAT) problem asks whether a

given CNF formula can be true under some
assignment to the variables

 In theory, SAT is intractable
 The first shown NP-complete problem [Cook, 1971]

 In practice, modern SAT solvers work
‘mysteriously’ well on application CNFs with
~100,000 variables and ~1,000,000 clauses
 It enables various applications, and inspires solver

development for QBF, SMT (Satisfiability Modulo
Theories), DQBF, SSAT, etc.

2023/8/24

FLOLAC 2023 35

SAT Competition

http://www.satcompetition.org/PoS11/

2023/8/24

FLOLAC 2023 36

SAT Solving
 Ingredients of modern SAT solvers:

 DPLL-style search
[Davis, Putnam, Logemann, Loveland, 1962]

 Conflict-driven clause learning (CDCL)
[Marques-Silva, Sakallah, 1996 (GRASP)]

 Boolean constraint propagation (BCP) with two-literal
watch
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Decision heuristics using variable activity
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Restart
 Preprocessing
 Support for incremental solving

[Een, Sorensson, 2003 (MiniSat)]

2023/8/24

FLOLAC 2023 37

Pre-Modern SAT Procedure
Algorithm DPLL(Φ)
{

while there is a unit clause {l} in Φ
Φ = BCP(Φ, l);

while there is a pure literal l in Φ
Φ = assign(Φ, l);

if all clauses of Φ satisfied return true;
if Φ has a conflicting clause return false;
l := choose_literal(Φ);
return DPLL(assign(Φ,¬l)) ∨ DPLL(assign(Φ,l));

}

2023/8/24

FLOLAC 2023 38

DPLL Procedure

Chorological backtrack

E.g.
a

b

c

0

0

0
⊥

⊥

1

1

T

~a ~b b ~c c d
{¬a,e}
{a,b,¬c}
{c,¬d}
{a,b,d}
{d,e}
{c,d,¬e}

~d

~e

⊥

~c

~c d

⊥

~a ~b

2023/8/24

FLOLAC 2023 39

Modern SAT Procedure
Algorithm CDCL(Φ)
{

while(1)
while there is a unit clause {l} in Φ

Φ = BCP(Φ, l);
while there is a pure literal l in Φ

Φ = assign(Φ, l);
if Φ contains no conflicting clause

if all clauses of Φ are satisfied return true;
l := choose_literal(Φ);
assign(Φ,l);

else
if conflict at top decision level return false;
analyze_conflict();
undo assignments;
Φ := add_conflict_clause(Φ);

}

2023/8/24

FLOLAC 2023 40

Conflict Analysis & Clause Learning
 There can be many learnt

clauses from a conflict
 Clause learning admits non-

chorological backtrack

 E.g.,
{¬x10587, ¬x10588,
¬x10592}
…
{¬x10374, ¬x10582,
¬x10578, ¬x10373, ¬x10629}
…
{x10646, x9444, ¬x10373,
¬x10635, ¬x10637}

Courtesy of Niklas Een

Box: decision node
Oval: implication node
Inside: literal (decision level)

2023/8/24

FLOLAC 2023 41

Clause Learning as Resolution
 Resolution of two clauses C1∨x and C2∨¬x:

C1∨x C2∨¬x
C1∨C2

where x is the pivot variable and C1∨C2 is the resolvant,
i.e., C1∨C2 = ∃x.(C1∨x)(C2∨¬x)

 A learnt clause can be obtained from a sequence of
resolution steps
 Exercise:

Find a resolution sequence leading to the learnt clause
{¬x10374, ¬x10582, ¬x10578, ¬x10373, ¬x10629}
in the previous slides

2023/8/24

FLOLAC 2023 42

Resolution
 Resolution is complete for SAT solving

 A CNF formula is unsatisfiable if and only if there exists
a resolution sequence leading to the empty clause

 Example (a∨b∨c)(¬a∨c)(¬b∨¬d)(¬c)(c∨d)

(b∨c)

(c∨¬d)

(d)

(¬d)

()
2023/8/24

FLOLAC 2023 43

SAT Certification

True CNF
Satisfying assignment (model)

Verifiable in linear time

False CNF
Resolution refutation

Potentially of exponential size

2023/8/24

FLOLAC 2023 44

Craig Interpolation

 [Craig Interpolation Thm, 1957]
If A∧B is UNSAT for formulae A
and B, there exists an
interpolant I of A such that

1. A⇒I
2. I∧B is UNSAT
3. I refers only to the common
variables of A and B

BA

I

I is an abstraction of A

2023/8/24

FLOLAC 2023 45

Interpolant and Resolution Proof
 SAT solver may produce the resolution proof of an UNSAT

CNF ϕ
 For ϕ= ϕA∧ϕB specified, the corresponding interpolant can

be obtained in time linear in the resolution proof
ϕA ϕB

(a∨b∨c)(¬a∨c)(¬b∨¬d)(¬c)(c∨d)

(b∨c)

(c∨¬d)

(d)

(¬d)

()

(b∨c)(c)(1)(1)(1)

= (b∨c)

[McMillan, 2003]

2023/8/24

FLOLAC 2023 46

Incremental SAT Solving

To solve, in a row, multiple CNF formulae,
which are similar except for a few clauses,
can we reuse the learnt clauses?
What if adding a clause to ϕ?
What if deleting a clause from ϕ?

2023/8/24

FLOLAC 2023 47

Incremental SAT Solving

MiniSat API
 void addClause(Vec<Lit> clause)
 bool solve(Vec<Lit> assumps)
 bool readModel(Var x) − for SAT results
 bool assumpUsed(Lit p) − for UNSAT results

 The method solve() treats the literals in assumps as unit
clauses to be temporary assumed during the SAT-
solving.

 More clauses can be added after solve() returns, then
incrementally another SAT-solving executed.

Courtesy of Niklas Een

2023/8/24

FLOLAC 2023 48

SAT & Logic Synthesis
Equivalence Checking

2023/8/24

FLOLAC 2023 4949

Combinational EC
 Given two combinational circuits C1 and C2, are

their outputs equivalent under all possible input
assignments?

x C1

C2x

≡
?

y1

y2

2023/8/24

FLOLAC 2023 5050

Miter for Combinational EC

 Two combinational circuits C1 and C2 are
equivalent if and only if the output of their “miter”
structure always produces constant 0

x 0?

C1

C2

2023/8/24

FLOLAC 2023 5151

Approaches to Combinational EC

Basic methods:
 random simulation

good at identifying inequivalent signals
 BDD-based methods
 structural SAT-based methods

x 0?

C1

C2

2023/8/24

FLOLAC 2023 52

SAT & Logic Synthesis
Functional Dependency

2023/8/24

FLOLAC 2023 53

Functional Dependency

f(x) functionally depends on g1(x),
g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)),
denoted h(G(x))
Under what condition can function f be

expressed as some function h over a set
G={g1,…,gm} of functions ?

 h exists ⇔ ∃a,b such that f(a)≠f(b) and G(a)=G(b)

i.e., G is more distinguishing than f

2023/8/24

FLOLAC 2023 54

Motivation

Applications of functional dependency
Resynthesis/rewiring
Redundant register removal
BDD minimization
Verification reduction
…

f

g4g3
g2

g1
target function
base functions

h
Boolean Network

2023/8/24

FLOLAC 2023 55

BDD-Based Computation

BDD-based computation of h
hon = {y ∈ Bm : y = G(x) and f(x) = 1, x ∈ Bn}
hoff = {y ∈ Bm : y = G(x) and f(x) = 0, x ∈ Bn}

Bn Bm
Gf(x) = 1

f(x) = 0

hon = ∃x.(y≡G)∧f

hoff = ∃x.(y≡G)∧¬f

2023/8/24

FLOLAC 2023 56

BDD-Based Computation

Pros
 Exact computation of hon and hoff

Better support for don’t care minimization

Cons
2 image computations for every choice of G
 Inefficient when |G| is large or when there are

many choices of G

2023/8/24

FLOLAC 2023 57

SAT-Based Computation

h exists ⇔
∃a,b such that f(a)≠f(b) and G(a)=G(b),
i.e., (f(x)≡f(x*))∧(G(x)≡G(x*)) is UNSAT

How to derive h? How to select G?

2023/8/24

FLOLAC 2023 58

SAT-Based Computation

 (f(x)≡f(x*))∧(G(x)≡G(x*)) is UNSAT

Circuit
Part

== =

…

…

……

1 0

DFNoffDFNon

0y *y0
*y2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x2

Constraint
Part

*y1

Assertion
Constraints

Equality
Constraints

2023/8/24

FLOLAC 2023 59

Deriving h with Craig Interpolation
 Clause set A: CDFNon, y0
 Clause set B: CDFNoff, ¬y0

*, (yi≡yi
*) for i =1,…,m

 I is an overapproximation of Img(fon) and is disjoint from
Img(foff)

 I only refers to y1,…, ym
 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y0
*y2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x2

*y1

A B

Img(fon) Img(foff)

2023/8/24

FLOLAC 2023 60

Incremental SAT Solving

 Controlled equality constraints
(yi≡yi

*) → (¬yi ∨ yi
* ∨ αi)(yi ∨ ¬yi

* ∨ αi)
with auxiliary variables αi

 Fast switch between target and base functions by unit
assumptions over control variables

 Fast enumeration of different base functions
 Share learned clauses

αi = true ⇒ ith equality constraint is disabled

2023/8/24

FLOLAC 2023 61

SAT vs. BDD
 SAT
 Pros

 Detect multiple choices of
G automatically

 Scalable to large |G|
 Fast enumeration of

different target functions
f

 Fast enumeration of
different base functions G

 Cons
 Single feasible

implementation of h

 BDD
 Cons

 Detect one choice of G at
a time

 Limited to small |G|
 Slow enumeration of

different target functions
f

 Slow enumeration of
different base functions G

 Pros
 All possible

implementations of h

2023/8/24

FLOLAC 2023 62

Quantified Boolean
Satisfiability

2023/8/24

FLOLAC 2023 63

Quantified Boolean Formula
 A quantified Boolean formula (QBF) is often

written in prenex form (with quantifiers placed
on the left) as

Q1 x1, …, Qn xn. ϕ

for Qi ∈ {∀, ∃} and ϕ a quantifier-free formula
 If ϕ is further in CNF, the corresponding QBF is in the

so-called prenex CNF (PCNF), the most popular QBF
representation

 Any QBF can be converted to PCNF

prefix matrix

2023/8/24

FLOLAC 2023 64

Quantified Boolean Formula

Quantification order matters in a QBF
A variable xi in (Q1 x1,…, Qi xi,…, Qn xn. ϕ)

is of level k if there are k quantifier
alternations (i.e., changing from ∀ to ∃ or
from ∃ to ∀) from Q1 to Qi.
 Example

∀a ∃b ∀c ∀d ∃e. ϕ
level(a)=0, level(b)=1, level(c)=2, level(d)=2,
level(e)=3

2023/8/24

FLOLAC 2023 65

Quantified Boolean Formula
Many decision problems can be

compactly encoded in QBFs

 In theory, QBF solving (QSAT)
is PSPACE complete
 The more the quantifier

alternations, the higher the
complexity in the Polynomial
Hierarchy

 In practice, solvable QBFs are
typically of size ~1,000
variables

P

PSPACE

coNP NP

Π2 ∑2

2023/8/24

FLOLAC 2023 66

QBF Solver
 QBF solver choices

 Data structures for formula representation
 Prenex vs. non-prenex
Normal form vs. non-normal form

 CNF, NNF, BDD, AIG, etc.
 Solving mechanisms

 Search, Q-resolution, Skolemization, quantifier elimination, etc.
 Preprocessing techniques

 Standard approach
 Search-based PCNF formula solving (similar to SAT)

 Both clause learning (from a conflicting assignment) and cube
learning (from a satisfying assignment) are performed
 Example

∀a ∃b ∃c ∀d ∃e. (a+c)(¬a+¬c)(b+¬c+e)(¬b)(c+d+¬e)(¬c+e)(¬d+e)
from 00101, we learn cube ¬a¬bc¬d (can be further simplified to ¬a)

2023/8/24

FLOLAC 2023 67

QBF Solving
 Example

))()()()()()((ybabxbxaccybxcybxacyba +++++++++++++++

>< La, >< Ra,
))()()()()((ybbxcybxcybxcyb +++++++++))()()((bxbxccybx +++++

>< Lx, >< Rx,
))()()()((ybcybcybcyb ++++++))()()((ybbcycyb ++++

>< Ub, >< Ub,
))()((cycycy +++ >< Pc,

>< Ly, >< Ry,
))((cc)(c

}{true}{ false

>< Py,
))()()((bxbxccbx ++++

>< Uc,
))()((bxbxbx +++

>< Lx, >< Rx,
)(b))((bb

}{true

}{true }{ false

∀

∀

∀

∃

cybxa ∃∀∃∀∃

)(ycbxa

)(cbxa

)(cbxa

2023/8/24

FLOLAC 2023 68

Q-Resolution
 Q-resolution on PCNF is similar to resolution on CNF, except that

the pivots are restricted to existentially quantified variables and
the additional rule of ∀-reduction

C1∨x C2∨¬x

∀-RED(C1∨C2)

where operator ∀-RED removes from C1∨C2 the universally (∀)
quantified variables whose quantification levels are greater than
any of the existentially (∃) quantified variables in C1∨C2
 E.g.,

prefix: ∀a ∃b ∀c ∀d ∃e
∀-RED(a+b+c+d) = (a+b)

 Q-resolution is complete for QBF solving
 A PCNF formula is unsatisfiable if and only if there exists a Q-

resolution sequence leading to the empty clause

2023/8/24

FLOLAC 2023 69

Q-Resolution
 Example (cont’d)

>< La, >< Ra,

>< Lx,

>< Ub,

>< Ly,

}{ false

>< Py,

>< Uc,

>< Rx,

>< Lc, >< Rc,
}{ false

)(xba ++

)(bx +

}{ false
>< Lb, >< Rb,

}{ false

)(cy +)(a

)(xac ++

)(a

)(a

)(a

)(bx +)(bxac +++)(cyxba ++++)(cyba +++

)(a

)(a

)(⊥

cybxa ∃∀∃∀∃))()()()()()((ybabxbxaccybxcybxacyba +++++++++++++++

2023/8/24

FLOLAC 2023 70

Skolemization
 Skolemization and Skolem normal form

 Existentially quantified variables are
replaced with function symbols

 QBF prefix contains only two
quantification levels
 ∃ function symbols, ∀ variables

 Example

∀a ∃b ∀c ∃d.
(¬a+¬b)(¬b+¬c+¬d)(¬b+c+d)(a+b+c)

∃Fb(a) ∃Fd(a,c) ∀a ∀c.
(¬a+¬Fb)(¬Fb+¬c+¬Fd)(¬Fb+c+Fd)(a+Fb+c)

a

b

c

d

0 11 00 0 1 1 1 11 1 0 0 0 0
Skolem functions

2023/8/24

FLOLAC 2023 71

QBF Certification
 QBF certification

 Ensure correctness and, more importantly, provide useful
information

 Certificates
 True QBF: term-resolution proof / Skolem-function (SF) model

 SF model is more useful in practical applications
 False QBF: clause-resolution proof / Herbrand-function (HF)

countermodel
 HF countermodel is more useful in practical applications

2023/8/24

FLOLAC 2023 72

QBF Certification

Unified QBF certification

Cube resolution proof Clause resolution proof

Skolem function
(model)

Herbrand function
(countermodel)

True QBF False QBF

ResQu ResQu

formula
negation

2023/8/24

FLOLAC 2023 73

ResQu
 A Skolem-function model (Herbrand-function

countermodel) for a true (false) QBF can be
derived from its cube (clause) resolution proof

 A Right-First-And-Or (RFAO) formula
is recursively defined as follows.
ϕ := clause | cube | clause ∧ ϕ | cube ∨ ϕ
 E.g.,

(a’+b) ∧ ac ∨ (b’+c’) ∧ bc
= ((a’+b) ∧ (ac ∨ ((b’+c’) ∧ bc)))

2023/8/24

FLOLAC 2023 74

ResQu

2023/8/24

FLOLAC 2023 75

ResQu
 Example

 ∃a∀x∃b∀y∃c

7654321)()()()()()()(ybabxcbxacybxcybxacyba +++++++++++++++

8)(ybxa +++

+++ 8)(bxa
+++ 10)(bxa

+9)(a

10)(ybxa +++

9)(xa +
11)(xa +

+11)(a

)(empty

++ 7)(ba
)2(

)3(

)1(

)4(

)5(

2023/8/24

FLOLAC 2023 76

QBF Certification

Applications of Skolem/Herbrand functions
 Program synthesis
Winning strategy synthesis in two player

games
 Plan derivation in AI
 Logic synthesis
 ...

2023/8/24

FLOLAC 2023 77

QSAT & Logic Synthesis
Boolean Matching

2023/8/24

FLOLAC 2023 78

Introduction

 Combinational
equivalence checking
(CEC)
 Known input

correspondence
 coNP-complete
 Well solved in practical

applications

… …

x1 x2 xn

f g

y1 y2 yn

2023/8/24

FLOLAC 2023 79

Introduction
 Boolean matching

 P-equivalence
 Unknown input

permutation
O(n!) CEC iterations

 NP-equivalence
 Unknown input negation

and permutation
O(2nn!) CEC iterations

 NPN-equivalence
 Unknown input negation,

input permutation, and
output negation

O(2n+1n!) CEC iterations

… …

x1 x2 xn

f g

y1 y2 yn

P N

νπ

N

2023/8/24

FLOLAC 2023 80

Introduction

Example

y1 y2 y3

g

x1 x2 x3

f

x1 x2 x3

=

2023/8/24

FLOLAC 2023 81

Introduction
 Motivations

 Theoretically
 Complexity in between

coNP (for all …) and
∑2 (there exists … for all …)
in the Polynomial Hierarchy (PH)
 Special candidate to test PH collapse

 Known as Boolean congruence/isomorphism
dating back to the 19th century

 Practically
 Broad applications

 Library binding
 FPGA technology mapping
 Detection of generalized symmetry
 Logic verification
 Design debugging/rectification
 Functional engineering change order

 Intensively studied over the last two decades

P

PSPACE

coNP NP

Π2 ∑2

2023/8/24

FLOLAC 2023 82

Introduction

 Prior methods

Complete
?

Function
type

Equivalence
type

Solution
type

Scalability

Spectral
methods

yes CS mostly P one – –

Signature
based methods

no mostly CS P/NP N/A – ~ ++

Canonical-form
based methods

yes CS mostly P one +

SAT based
methods

yes CS mostly P one/all +

BooM
(QBF/SAT-like)

yes CS / IS NPN one/all ++

CS: completely specified
IS: incompletely specified

2023/8/24

FLOLAC 2023 83

BooM: A Fast Boolean Matcher

Features of BooM
General computation framework
 Effective search space reduction techniques

Dynamic learning and abstraction
 Theoretical SAT-iteration upper-bound:

O(2nn!) O(22n)

2023/8/24

FLOLAC 2023 84

Formulation

 Reduce NPN-equiv to 2 NP-equiv checks
 Matching f and g; matching f and ¬g

 2nd order formula of NP-equivalence

 fc and gc are the care conditions of f and g, respectively

 Need 1st order formula instead for SAT solving

∃ν。π,∀x ((fc(x) ∧ gc(ν。π(x))) ⇒ (f(x) ≡ g(ν。π(x))))

2023/8/24

FLOLAC 2023 85

Formulation

0-1 matrix representation of ν。π

∑ =1

bij ⇒ (¬xj ≡ yi)aij ⇒ (xj ≡ yi)

∑ =1

2023/8/24

FLOLAC 2023 86

Formulation
 Quantified Boolean formula (QBF) for NP-equivalence

 ϕC: cardinality constraint
 ϕA: /\i,j (aij ⇒ (yi ≡ xj)) (bij ⇒ (yi ≡ ¬xj))

 Look for an assignment to a- and b-variables that satisfies
ϕC and makes the miter constraint

Ψ = ϕA ∧ (f ≠ g) ∧ fc ∧ gc
unsatisfiable

 Refine ϕC iteratively in a sequence Φ〈0〉, Φ〈1〉, …, Φ〈k〉, for Φ〈i+1〉

⇒ Φ〈i〉 through conflict-based learning

∃a,∃b,∀x,∀y (ϕC ∧ ϕA ∧((fc ∧ gc) ⇒ (f ≡ g))

2023/8/24

FLOLAC 2023 87

BooM Flow
f (and fc) g (and gc)

Preprocess
(sig., abs.)

Solve mapping Φ〈i〉

SAT?

Solve miter Ψ

SAT?

No match

Match
found

Add learned
clause to Φ〈i〉

Ψ

Φ〈i〉 characterizes
all matches

How to compute
all matches?

Solve Φ〈i〉 ∧ Ψ

i=0

yes

no

i=i+1

no

yes

2023/8/24

FLOLAC 2023 88

NP-Equivalence
Conflict-based Learning

Observation

0 1 1
ν。π

f g

1 0 1

1 0

1 0 1

From SAT 1

≠ How to avoid
these 6 mappings

at once?

2023/8/24

FLOLAC 2023 89

a11 b12 a13 b21 a22 b23 b31 a32 b33

Learnt clause generation
(a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33)

NP-Equivalence
Conflict-based Learning

f g

1 0

ν。π
1 0 1 0 1 1

1 0 1

2023/8/24

FLOLAC 2023 90

NP-Equivalence
Conflict-based Learning
 Proposition:

If f(u) ≠ g(v) with v = ν。π(u) for some ν。π satisfying Φ〈i〉,
then the learned clause \/ij lij for literals
lij = (vi ≠ uj) ? aij : bij
excludes from Φ〈i〉 the mappings {ν′。π′ | ν′。π′(u) = ν。π(u)}

 Proposition:
The learned clause prunes n! infeasible mappings

 Proposition:
The refinement process Φ〈0〉, Φ〈1〉, …, Φ〈k〉 is bounded by 22n

iterations

2023/8/24

FLOLAC 2023 91

NP-Equivalence
Abstraction
 Abstract Boolean matching

 Abstract
f(x1,…,xk,xk+1,…,xn) to
f(x1,…,xk,z,…,z) =
f*(x1,…,xk,z)

 Match g(y1,…,yn) against
f*(x1,…,xk,z)

 Infeasible matching
solutions of f* and g are
also infeasible for f and g

y1 yk yn

g

yk+1

……

x1 xk

f*

z

…

x1 xk z

f

z

……

x1 xk xn

f

xk+1

……

P N

2023/8/24

FLOLAC 2023 92

NP-Equivalence
Abstraction

Abstract Boolean matching
Similar matrix representation of

negation/permutation

Similar cardinality constraints, except for allowing
multiple y-variables mapped to z

∑ =1

∑ =1

2023/8/24

FLOLAC 2023 93

NP-Equivalence
Abstraction

Used for preprocessing

Information learned for abstract model is
valid for concrete model

Simplified matching in reduced Boolean
space

2023/8/24

FLOLAC 2023 94

P-Equivalence
Conflict-based Learning

 Proposition:
If f(u) ≠ g(v) with v = π(u) for some π satisfying
Φ〈i〉, then the learned clause \/ij lij for literals
lij = (vi=0 and uj=1) ? aij : ∅
excludes from Φ〈i〉 the mappings {π′ | π′(u) = π(u)}

2023/8/24

FLOLAC 2023 95

P-Equivalence
Abstraction

Abstraction enforces search in biased truth
assignments and makes learning strong
 For f* having k support variables, a learned

clause converted back to the concrete model
consists of at most (k–1)(n–k+1) literals

2023/8/24

FLOLAC 2023 96

QSAT & Logic Synthesis
Relation Determinization

2023/8/24

FLOLAC 2023 97

Relation vs. Function
 Relation R(X, Y)

 Allow one-to-many
mappings
Can describe non-

deterministic
behavior

 More generic than
functions

 Function F(X)
 Disallow one-to-many

mappings
Can only describe

deterministic
behavior

 A special case of
relation

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00

11
10
01
00

x1x2 y1y2

f1 = x1 x2
f2 = ¬ x1¬ x2

2023/8/24

FLOLAC 2023 98

Relation

 Total relation
 Every input element is

mapped to at least one
output element

 Partial relation
 Some input element is

not mapped to any
output element

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y

2023/8/24

FLOLAC 2023 99

Relation

A partial relation can be totalized
Assume that the input element not mapped to

any output element is a don’t care

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y
Partial relation

Totalize

Total relation

T(X, y) = R(X, y) ∨ ∀y. ¬ R(X, y)

2023/8/24

FLOLAC 2023 100

Motivation

 Applications of Boolean relation
 In high-level design, Boolean relations can be used to

describe (nondeterministic) specifications
 In gate-level design, Boolean relations can be used to

characterize the flexibility of sub-circuits
Boolean relations are more powerful than traditional don’t-

care representations

11
10
01
00

11
10
01
00

x1x2 y1y2

System
Spec.

x1

x2

y1

y2

2023/8/24

FLOLAC 2023 101

Motivation

Relation determinization
 For hardware implement of a system, we need

functions rather than relations
Physical realization are deterministic by nature
One input stimulus results in one output response

 To simplify implementation, we can explore
the flexibilities described by a relation for
optimization

2023/8/24

FLOLAC 2023 102

Motivation

Example

f1 = x1 x2
f2 = ¬ x1¬ x2

f1 = x2
f2 = ¬ x1

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00
z1z2

z1

z2

z1

z2

y1

y2

y1

y2

x1
x2

x1

x2

2023/8/24

FLOLAC 2023 103

Relation Determinization

Given a nondeterministic Boolean relation
R(X, Y), how to determinize and extract
functions from it?

For a deterministic total relation, we can
uniquely extract the corresponding
functions

2023/8/24

FLOLAC 2023 104

Relation Determinization

Approaches to relation determinization
 Iterative method (determinize one output at a

time)
BDD- or SOP-based representation

 Not scalable
 Better optimization

AIG representation
 Focus on scalability with reasonable optimization

quality

Non-iterative method (determinize all ouputs
at once)
QBF solving

2023/8/24

FLOLAC 2023 105

Iterative Relation Determinization
 Single-output relation

 For a single-output total relation R(X, y), we derive a
function f for variable y using interpolation

11
10
01
00

1

0

x1x2 y
I

φBφA

φA : ¬ R(X,0)
Minimal care onset of f

φB : ¬ R(X,1)
Minimal care offset of f

00

11

¬ R(X,0)∧¬ R(X,1) UNSAT

10

2023/8/24

FLOLAC 2023 106

Iterative Relation Determinization

 Multi-output relation
 Two-phase computation:

1. Backward reduction
 Reduce to single-output case

R(X, y1, …, yn) → ∃y2, …, ∃yn. R(X, y1, …, yn)
2. Forward substitution

 Extract functions

2023/8/24

FLOLAC 2023 107

Iterative Relation Determinization

Example

Phase1: (expansion reduction)
∃y3.R(X, y1, y2 , y3) → R(3)(X, y1, y2)
∃y2.R(3)(X, y1, y2) → R(2)(X, y1)

y1 y2X y3

f3

X

RR(3)R(2)

Phase2:
R(2)(X, y1) → y1 = f1 (X)
R(3)(X, y1, y2) → R(3)(X, f1(X), y2) → y2 = f2 (X)
R(X, y1, y2 , y3) → R(X, f1(X), f2(X), y2) → y3 = f3 (X)

f1

X
f2

X

2023/8/24

FLOLAC 2023 108

Non-Iterative Relation Determinization

Solve QBF
∀x1,…,∀xm,∃y1,…,∃yn. R(x1,…,xm, y1, …, yn)

 The Skolem functions of variables y1, …, yn correspond to
the functions we want

2023/8/24

FLOLAC 2023 109

Dependency Quantified
Boolean Satisfiability

2023/8/24

FLOLAC 2023 110

Dependency Quantified Boolean
Formula
 A dependency quantified Boolean formula (DQBF)

is commonly written in a prenex form as

Φ = ∀𝑋𝑋,∃𝑦𝑦1 𝐷𝐷1 , … ,∃𝑦𝑦𝑚𝑚(𝐷𝐷𝑚𝑚). 𝜑𝜑

for 𝐷𝐷𝑖𝑖 ⊆ 𝑋𝑋 being the dependency set of 𝑦𝑦𝑖𝑖 and 𝜑𝜑 a
quantifier-free formula

Φ is true if and only if there exist Skolem
functions 𝑓𝑓𝑖𝑖(𝐷𝐷𝑖𝑖) for 𝑦𝑦𝑖𝑖 such that 𝜑𝜑|𝑓𝑓1 𝐷𝐷1 /𝑦𝑦1,…,𝑓𝑓𝑚𝑚 𝐷𝐷𝑚𝑚 /𝑦𝑦𝑚𝑚
is a tautology

prefix matrix

2023/8/24

Dependency Quantified Boolean
Formula
 A game interpretation of DQBF

 Multi-player game played between
∀-player (to falsity the formula)
and multiple ∃-players with partial
information (to satisfy the
formula)

2023/8/24 FLOLAC 2023 111

a

b

c

d

0 11 00 0 1 1 1 11 1 0 0 0 0
Skolem functions

∀a ∀c ∃b(a) ∃d(c).
(¬a+¬b)(¬b+¬c+¬d)(¬b+c+d)(a+b+c)

∃Fb(a) ∃Fd(c) ∀a ∀c.
(¬a+¬Fb)(¬Fb+¬c+¬Fd)(¬Fb+c+Fd)(a+Fb+c)

FLOLAC 2023 112

Dependency Quantified Boolean
Formula
 Deciding DQBF

satisfiability is
NEXPTIME-complete

 DQBF solvers and
preprocessors have been
significantly advanced in
recent years

More applications have
been identified

P

PSPACE

coNP NP

Π2 ∑2

2023/8/24

NEXPTIME

EXPTIME

Application: Combinational ECO

Combinational ECO

2023/8/24 FLOLAC 2023 113

X

F

x
x

x
𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝐷𝐷1
𝐷𝐷2

𝐷𝐷3

G
= = =

∀𝑋𝑋,𝑌𝑌,∃𝑇𝑇 𝐷𝐷 . 𝑌𝑌 = 𝐸𝐸 𝑋𝑋 → 𝐹𝐹 𝑋𝑋,𝑇𝑇 = 𝐺𝐺 𝑋𝑋

where 𝑌𝑌 are internal signals referred to by 𝐷𝐷𝑖𝑖, and 𝐸𝐸 are functions of 𝑌𝑌 signals

Application: Sequential ECO

Sequential ECO

2023/8/24 FLOLAC 2023 114

∀𝑋𝑋,𝑌𝑌, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆1′ , 𝑆𝑆2′ ,∃𝑇𝑇 𝐷𝐷 ,𝑄𝑄 𝑆𝑆1 ∪ 𝑆𝑆2 ,𝑄𝑄′ 𝑆𝑆1′ ∪ 𝑆𝑆2′ .
𝐼𝐼 𝑆𝑆1, 𝑆𝑆2 → 𝑄𝑄 ∧
𝑄𝑄 ∧ 𝑌𝑌 = 𝐸𝐸 𝑋𝑋, 𝑆𝑆1 ∧ 𝑅𝑅 𝑋𝑋, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆1′ , 𝑆𝑆2′ → 𝑄𝑄′ ∧
𝑄𝑄 → 𝐹𝐹 𝑋𝑋, 𝑆𝑆1,𝑇𝑇 = 𝐺𝐺 𝑋𝑋, 𝑆𝑆2 ∧

(𝑆𝑆1, 𝑆𝑆2 = (𝑆𝑆1′ , 𝑆𝑆2′)) → 𝑄𝑄 = 𝑄𝑄′

where 𝑆𝑆1 and 𝑆𝑆2 (𝑆𝑆1′ and 𝑆𝑆2′) are current-state (next-state) variables of circuits
F and G, respectively,
𝐷𝐷 = {𝐷𝐷𝑖𝑖} with 𝐷𝐷𝑖𝑖 ⊆ 𝑋𝑋 ∪ 𝑌𝑌 ∪ 𝑆𝑆1, and
𝑅𝑅 = (𝑆𝑆1′ = Δ1 𝑋𝑋, 𝑆𝑆1,𝑇𝑇) ∧ (𝑆𝑆2′ = Δ2(𝑋𝑋, 𝑆𝑆2)) with Δ1 and Δ2 being the transition
functions of circuits F and G, respectively

FLOLAC 2023 115

Second-Order Quantified
Boolean Satisfiability

2023/8/24

Motivation
 The great success of SAT-solving technology has motivated

building solvers for more complex problems
 E.g., from SAT (NP-complete) to QBF (PSPACE-complete),

further to DQBF (S-form: NEXP-complete, H-form: coNEXP-
complete)

 Second-order quantified Boolean formula (SOQBF) extends
DQBF to the entire Exponential Time Hierarchy (EXPH)
 Σ1EXP: ∃𝐹𝐹1,∀𝑋𝑋.𝜑𝜑 (S-form DQBF); Π1EXP: ∀𝐹𝐹1,∃𝑋𝑋.𝜑𝜑 (H-form DQBF)
 Σ2EXP: ∃𝐹𝐹1,∀𝐹𝐹2,∃𝑋𝑋.𝜑𝜑; Π2EXP: ∀𝐹𝐹1,∃𝐹𝐹2,∀𝑋𝑋.𝜑𝜑
 Σ3EXP: ∃𝐹𝐹1,∀𝐹𝐹2,∃𝐹𝐹3,∀𝑋𝑋.𝜑𝜑; Π3EXP: ∀𝐹𝐹1,∃𝐹𝐹2,∀𝐹𝐹3,∃𝑋𝑋.𝜑𝜑
 …
 SOQBF𝑘𝑘 is Σ𝑘𝑘EXP-complete (Π𝑘𝑘EXP-complete) if starting with ∃ (∀)

2023/8/24 FLOLAC 2023 116

Complexity Classes

2023/8/24 FLOLAC 2023 117

EXP

EXPSPACE

coNEXP NEXP

Σ2𝐸𝐸𝐸𝐸𝐸𝐸

ELEMENTARY

2-EXPTIME

Π2𝐸𝐸𝐸𝐸𝐸𝐸
Although SOQBF𝑖𝑖 well
corresponds to the
Exponential Hierarchy
(EXPH), SOQBF is unlikely
to be EXPSPACE-
complete!

Syntax of SOQBF

 General form
Φ ∷= 0 1 𝑥𝑥 𝑓𝑓 ¬Φ Φ1 ∧ Φ2 ∃𝑥𝑥.Φ | ∃𝑓𝑓.Φ
 𝑥𝑥: proposition (atomic) variable, 𝑓𝑓: function variable
 ∃𝑥𝑥: first-order quantifier, ∃𝑓𝑓: second-order quantifier
 Assume each function variable 𝑓𝑓 has a fixed support set,

denoted 𝐒𝐒(𝑓𝑓), of atomic variables
Convertible by Ackermann’s expansion for functions with

unfixed arguments
 E.g., 𝑓𝑓 𝑓𝑓 𝑥𝑥,𝑦𝑦 , 𝑧𝑧 can be rewritten as
∃𝑤𝑤. (𝑓𝑓1∧ 𝑤𝑤 ↔ 𝑓𝑓2) ∧ ∀𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤. (𝑥𝑥 ↔ 𝑤𝑤 𝑦𝑦 ↔ 𝑧𝑧) → (𝑓𝑓1↔ 𝑓𝑓2))
for 𝐒𝐒 𝑓𝑓1 = {𝑤𝑤, 𝑧𝑧}, 𝐒𝐒 𝑓𝑓2 = {𝑥𝑥,𝑦𝑦},

 General form can be converted to prenex form
via variable renaming

2023/8/24 FLOLAC 2023 118

Syntax of SOQBF
 Prenex form

𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋1, … ,𝑄𝑄𝑛𝑛+𝑚𝑚𝑋𝑋𝑚𝑚.𝜑𝜑
 𝑄𝑄𝑖𝑖 = ∀,∃ ,𝑄𝑄𝑖𝑖 ≠ 𝑄𝑄𝑖𝑖+1 for 𝑖𝑖 ∈ [1,𝑛𝑛 − 1] and 𝑖𝑖 ∈ [𝑛𝑛 + 1,𝑛𝑛 + 𝑚𝑚 − 1]
 𝐹𝐹𝑖𝑖 and 𝑋𝑋𝑗𝑗 are sets of function and atomic variables, respectively
 Each 𝑓𝑓 ∈ 𝐹𝐹𝑖𝑖 is associated with a support set 𝐒𝐒 𝑓𝑓 ⊆ 𝑋𝑋1 ∪ ⋯∪ 𝑋𝑋𝑚𝑚
 𝜑𝜑: a quantifier-free formula over variables 𝐹𝐹1 ∪ ⋯∪ 𝐹𝐹𝑛𝑛 ∪ 𝑋𝑋1 ∪ ⋯∪

𝑋𝑋𝑚𝑚
 SO-quantification level 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓 = 𝑖𝑖 for 𝑓𝑓 ∈ 𝐹𝐹𝑖𝑖; FO-quantification

level 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 = 𝑗𝑗 for 𝑥𝑥 ∈ 𝑋𝑋𝑗𝑗
 Assume all valuables in an SOQBF are quantified (with no free

variables)
 Prenex form with multiple levels of atomic quantifiers can

be converted to prenex form with a single level of atomic
quantifiers

2023/8/24 FLOLAC 2023 119

Syntax of SOQBF

 Prenex form with a single atomic quantification
level
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑
 𝑄𝑄𝑖𝑖 = ∀,∃ for 𝑖𝑖 ∈ 1, … ,𝑛𝑛+1, and 𝑄𝑄𝑗𝑗 ≠ 𝑄𝑄𝑗𝑗+1 for 𝑗𝑗 ∈ [1,𝑛𝑛]

 Collapsing atomic quantifiers into one level may
incur level increase in second-order quantifiers
 E.g.,

𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,∀𝑋𝑋1,∃𝑦𝑦,∀𝑋𝑋2.𝜑𝜑
can be converted to
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,∃𝑓𝑓𝑦𝑦,∀𝑋𝑋1,∀𝑦𝑦,∀𝑋𝑋2. 𝑦𝑦 ↔ 𝑓𝑓𝑦𝑦 → 𝜑𝜑
for 𝐒𝐒 𝑓𝑓𝑦𝑦 = 𝑋𝑋1

2023/8/24 FLOLAC 2023 120

Semantics of SOQBF

Circuit representation of the matrix of
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑

2023/8/24 FLOLAC 2023 121

Semantics of SOQBF

In evaluating an SOQBF, an assignment to
a function variable 𝑓𝑓𝑖𝑖 with 𝐒𝐒 𝑓𝑓𝑖𝑖 = 𝑘𝑘
corresponds to determining the truth-table
values 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡2𝑘𝑘−1

Given an assignment 𝛼𝛼 to all function
variables ⋃𝑖𝑖 𝐹𝐹𝑖𝑖, the SOQBF Φ =
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑 under assignment 𝛼𝛼
is true if the QBF 𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑|𝛼𝛼 induced under 𝛼𝛼 is
true

2023/8/24 FLOLAC 2023 122

Semantics of SOQBF
 𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑 can be evaluated by a series of

QBF evaluations with respect to function variable
assignments that follow the prefix of the second-order
quantifiers 𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛

 Game-theoretic semantics
 A two-player game interpretation: The ∃-player (∀-player) assigns

existential (universal) function variables to satisfy (falsify) the
formula. The prefix of the SOQBF determines the order of the players’
moves. The SOQBF is true (false) iff the ∃-player (∀-player) has a
winning strategy.

 An SOQBF is true if there exists a model (∃-player’s winning
strategy), i.e., a set of Skolem functionals for the
existential function variables such that substituting each
existential function variable with its corresponding Skolem
functional makes the induced formula a tautology

2023/8/24 FLOLAC 2023 123

Converting SOQBF to QBF
 An SOQBF can be converted to a model-equivalent QBF via

ground instantiation, where every function variable is
instantiated with respect to a full assignment over its
support set
 Iteratively eliminating the innermost atomic variable through

formula expansion until no more atomic variable is left
 Specifically,
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑋𝑋,∀𝑦𝑦.𝜑𝜑 is converted to 𝑄𝑄1𝐹𝐹1

𝑦𝑦 ∪ 𝐹𝐹1
¬𝑦𝑦 , … ,𝐹𝐹1

𝑦𝑦 ∪
𝐹𝐹1

¬𝑦𝑦 ,𝑄𝑄𝑋𝑋.𝜑𝜑|𝑦𝑦 ∧ 𝜑𝜑|¬𝑦𝑦

𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑋𝑋,∃𝑦𝑦.𝜑𝜑 is converted to 𝑄𝑄1𝐹𝐹1
𝑦𝑦 ∪ 𝐹𝐹1

¬𝑦𝑦 , … ,𝐹𝐹1
𝑦𝑦 ∪

𝐹𝐹1
¬𝑦𝑦 ,𝑄𝑄𝑋𝑋.𝜑𝜑|𝑦𝑦 ∨ 𝜑𝜑|¬𝑦𝑦

where 𝐹𝐹𝑖𝑖
𝑦𝑦 = 𝑓𝑓𝛼𝛼∧𝑦𝑦 𝑓𝑓𝛼𝛼 ∈ 𝐹𝐹𝑖𝑖 , 𝑦𝑦 ∈ 𝐒𝐒 𝑓𝑓𝛼𝛼 ∪ 𝑓𝑓𝛼𝛼 𝑓𝑓𝛼𝛼 ∈ 𝐹𝐹𝑖𝑖 , 𝑦𝑦 ∉ 𝐒𝐒 𝑓𝑓𝛼𝛼 and
𝐹𝐹𝑖𝑖

¬𝑦𝑦 = 𝑓𝑓𝛼𝛼∧¬𝑦𝑦 𝑓𝑓𝛼𝛼 ∈ 𝐹𝐹𝑖𝑖 , 𝑦𝑦 ∈ 𝐒𝐒 𝑓𝑓𝛼𝛼 ∪ 𝑓𝑓𝛼𝛼 𝑓𝑓𝛼𝛼 ∈ 𝐹𝐹𝑖𝑖 ,𝑦𝑦 ∉ 𝐒𝐒 𝑓𝑓𝛼𝛼

2023/8/24 FLOLAC 2023 124

Converting SOQBF to QBF
 Example

 ∀𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 ,∃𝑓𝑓 𝑥𝑥1, 𝑥𝑥3 ,∀𝑥𝑥1,∃𝑥𝑥2,∀𝑥𝑥3. (𝑔𝑔 + 𝑓𝑓 + ¬𝑥𝑥1 + ¬𝑥𝑥2 + 𝑥𝑥3)(𝑔𝑔 + ¬𝑓𝑓)

2023/8/24 FLOLAC 2023 125

= ∀𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 ,∃𝑓𝑓𝑥𝑥3 𝑥𝑥1 , 𝑓𝑓¬𝑥𝑥3 𝑥𝑥1 ,∀𝑥𝑥1,∃𝑥𝑥2.
(𝑔𝑔 + 𝑓𝑓¬𝑥𝑥3 + ¬𝑥𝑥1 + ¬𝑥𝑥2)(𝑔𝑔 + ¬𝑓𝑓¬𝑥𝑥3)(𝑔𝑔 + ¬𝑓𝑓𝑥𝑥3)

= ∀𝑔𝑔𝑥𝑥2 𝑥𝑥1 ,𝑔𝑔¬𝑥𝑥2 𝑥𝑥1 ,∃𝑓𝑓𝑥𝑥3 𝑥𝑥1 ,𝑓𝑓¬𝑥𝑥3 𝑥𝑥1 ,∀𝑥𝑥1.
𝑔𝑔𝑥𝑥2 + 𝑓𝑓¬𝑥𝑥3 + ¬𝑥𝑥1 𝑔𝑔𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥3 𝑔𝑔𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥3 + (𝑔𝑔¬𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥3)(𝑔𝑔¬𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥3)

= ∀𝑔𝑔𝑥𝑥1𝑥𝑥2 ,𝑔𝑔𝑥𝑥1¬𝑥𝑥2 ,𝑔𝑔𝑥𝑥1𝑥𝑥2 ,𝑔𝑔𝑥𝑥1¬𝑥𝑥2 ,∃𝑓𝑓𝑥𝑥1𝑥𝑥3 ,𝑓𝑓𝑥𝑥1¬𝑥𝑥3 ,𝑓𝑓¬𝑥𝑥1𝑥𝑥3 , 𝑓𝑓¬𝑥𝑥1¬𝑥𝑥3 .
(𝑔𝑔𝑥𝑥1𝑥𝑥2 + 𝑓𝑓𝑥𝑥1¬𝑥𝑥3 𝑔𝑔𝑥𝑥1𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥1¬𝑥𝑥3 𝑔𝑔𝑥𝑥1𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥1𝑥𝑥3 + 𝑔𝑔𝑥𝑥1¬𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥1¬𝑥𝑥3 𝑔𝑔𝑥𝑥1¬𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥1𝑥𝑥3)
(𝑔𝑔¬𝑥𝑥1𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥1¬𝑥𝑥3 𝑔𝑔¬𝑥𝑥1𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥1𝑥𝑥3 + 𝑔𝑔¬𝑥𝑥1¬𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥1¬𝑥𝑥3 𝑔𝑔¬𝑥𝑥1¬𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥1𝑥𝑥3)

Application: Secure Unknown
Function Synthesis

 Synthesize an unknown function 𝐹𝐹, its
composition with the context 𝐶𝐶 satisfies property
𝑃𝑃 regardless of the operation of 𝐺𝐺

2023/8/24 FLOLAC 2023 126

F

G

PX Y

Z

C

∃𝐹𝐹,∀𝐺𝐺,∃𝐻𝐻,∀𝑋𝑋,𝑌𝑌,𝑍𝑍,𝑊𝑊.𝜑𝜑

𝐻𝐻: function variables for normal form conversion
𝑊𝑊: atomic variables for normal form conversion
𝐒𝐒 𝐹𝐹 = 𝑌𝑌, 𝐒𝐒 𝐺𝐺 = 𝑍𝑍, 𝐒𝐒 𝐻𝐻 = 𝑋𝑋 ∪ 𝑌𝑌 ∪ 𝑍𝑍 ∪𝑊𝑊

Other Applications

Quantified bit-vector formulas of SMT
Memory consistency checking
Planning for agents with opposing goals

2023/8/24 FLOLAC 2023 127

FLOLAC 2023 128

Stochastic Boolean
Satisfiability

2023/8/24

Decision under Uncertainty
(Example 1)

 Evaluation of probabilistic circuits [Lee, J 14]
 Each gate produces correct value under a certain

probability
 Query about the average output error rate, the

maximum error rate under some input assignment, etc.

2023/8/24 FLOLAC 2023 129

Decision under Uncertainty
(Example 2)

 Probabilistic planning: Robot charge [Huang 06]
 States: {S0, …, S15}

Initial state: S0; goal state: S15

 Actions: {↑, ↓, ←, →}
 Succeed with prob. 0,8
 Proceed to its right w.r.t. the intended direction with prob. 0,2

2023/8/24 FLOLAC 2023 130

S1 S2 S3

S5 S6 S7

S12 S13 S14

S4

S9 S10 S11S8

Decision under Uncertainty
(Example 3)
 Probabilistic planning: Sand-Castle-67 [Majercik, Littman

98]
 States: (moat, castle) = {(0,0), (0,1), (1,0), (1,1)}

 Initial state: (0,0); goal states: (0,1), (1,1)
 Actions: {dig-moat, erect-castle}

2023/8/24 FLOLAC 2023 131

dig-moat

erect-castle

moat castle

1.0 0.5 1.0 0.0

FT FT

moat castle

0.0 1.0

FT FT

castle

0.75

FT
castle

’

1.0 0.5

FT

moat

0.67 0.25

FT

Decision under Uncertainty
(Example 4)

 Belief network inference [Dechter 96, Peot 98]
 BN queries, e.g., belief assessment, most probable

explanation, maximum a posteriori hypothesis,
maximum expected utility

2023/8/24 FLOLAC 2023 132

From SAT to #SAT
#SAT – A Counting Problem

The #SAT problem asks how many
satisfying solutions are there for a given
CNF formula
 E.g., (a+¬b+c)(a+¬c)(b+d)(¬a+b) has 5

solutions, (a,b,c,d) = (0,0,0,1), (1,1,-,-)
A #P-complete problem
A.k.a. model counting

Exact vs. approximate model counting
Weighted model counting: variables are weighted

under a function 𝑤𝑤:𝑙𝑙𝑎𝑎𝑟𝑟(𝜙𝜙)→[0,1]
 Compute the sum of weights of satisfying assignments

of 𝜙𝜙

2023/8/24 FLOLAC 2023 133

Motivation

Decision vs. counting problems
SAT vs. #SAT
HAMILTON PATH vs. #HAMILTON PATH
MATCHING vs. PERMANET
GRAPH REACHABILITY vs. GRAPH RELIABILITY

From correctness verification to
quantitative verification
System reliability
AI planning under uncertainty

2023/8/24 FLOLAC 2023 134

Concerned Problems in a Nutshell

 SAT: Given a CNF Boolean formula, decide its satisfiability
 #SAT: Given a CNF Boolean formula, count its number of

solutions
 QBF: Given a PCNF quantified Boolean formula, decide its

satisfiability
 SSAT: Given a PCNF quantified Boolean formula, maximize

its satisfying probability
 SSAT (D): decide whether its maximum satisfying probability ≥ θ

 DQBF: Given a PCNF dependency quantified Boolean
formula, decide its satisfiability

 DSSAT: Given a PCNF dependency quantified Boolean
formula, maximize its satisfying probability
 DSSAT (D): decide whether its maximum satisfying probability ≥ θ

2023/8/24 FLOLAC 2023 135

Related Complexity Classes

2023/8/24 FLOLAC 2023 136

NP

PSPACE

NEXP
DQBF, DSSAT (D)

PH

QBF, SSAT (D)

SAT

PP

PPP

MAJSAT (#SAT (D))

Counting is powerful!

FLOLAC 2023 137

From QBF to SSAT
Stochastic Boolean Satisfiability
 A stochastic Boolean satisfiability (SSAT) formula

is commonly written in a prenex form as

Φ = 𝑄𝑄1𝑋𝑋1,𝑄𝑄2𝑋𝑋2, … ,𝑄𝑄𝑛𝑛𝑋𝑋𝑛𝑛. 𝜑𝜑

for 𝑄𝑄𝑖𝑖 ∈ {ℛ𝑝𝑝,∃}, 𝑄𝑄𝑖𝑖 ≠ 𝑄𝑄𝑖𝑖+1, and 𝜑𝜑 a quantifier-free
formula often in CNF
 Randomized quantification ℛ𝑝𝑝𝑥𝑥: variable 𝑥𝑥 valuates to
TRUE with probability 𝑝𝑝 (different variables can have
different probabilities)

 A variable 𝑥𝑥 ∈ 𝑋𝑋𝑘𝑘 is of (quantification) level 𝑘𝑘

prefix matrix

2023/8/24

From QBF to SSAT
Stochastic Boolean Satisfiability
 Semantics of SSAT formula Φ = 𝑄𝑄1𝑙𝑙1 …𝑄𝑄𝑛𝑛𝑙𝑙𝑛𝑛.𝜑𝜑 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛

 Satisfying probability (SP): Expectation of satisfying 𝜑𝜑
w.r.t. the prefix structure
 Pr ⊤ = 1; Pr ⊥ = 0
 Pr Φ = max Pr Φ|¬𝑣𝑣 , Pr Φ|𝑣𝑣 , for outermost quantification ∃𝑙𝑙
 Pr Φ = 1 − 𝑝𝑝 Pr Φ|¬𝑣𝑣 + 𝑝𝑝 Pr Φ|𝑣𝑣 , for outermost quantification ℛ𝑝𝑝𝑙𝑙

 Optimization version: Find the SP maximum among all
assignments of existential variables

 Decision version: Determine whether SP ≥ 𝜃𝜃
 E.g., Φ = ∃𝑥𝑥,ℛ0.7𝑦𝑦. 𝑥𝑥 ∨ 𝑦𝑦 ¬𝑥𝑥 ∨ ¬𝑦𝑦

2023/8/24 FLOLAC 2023 138

𝑥𝑥

𝑦𝑦 𝑦𝑦

⊤ ⊤ ⊥⊥

0.70.7 0.30.3

0.30.7

0.7

Pr Φ = 0.7

From QBF to SSAT
Stochastic Boolean Satisfiability
 A game (against nature)

interpretation of SSAT
 Two-player game played by ∃-player

(to maximize the expectation of
satisfaction) and ℛ -player (to make
random moves)

2023/8/24 FLOLAC 2023 139

a

b

c

d

0 11 00 0 1 1 1 11 1 0 0 0 0
Skolem functions

ℛ0.6a ∃b ℛ0.5c ∃d.
(¬a+¬b)(¬b+¬c+¬d)(¬b+c+d)(a+b+c)

∃Fb(a) ∃Fd(a,c) ℛ0.6a ℛ0.5c.
(¬a+¬Fb)(¬Fb+¬c+¬Fd)(¬Fb+c+Fd)(a+Fb+c)

0.4 0.6

0.5 0.5 0.5 0.5 0.5
10 1 1 1 1 0 0

0110.5

1 1

1

Recent SSAT Solvers

ClauSSat [CHJ22]
Combining QBF clause selection techniques

and model counting
Allowing both exact and approximate solution

search
ElimSSat [WTJS22]
Solving based on quantifier elimination

SharpSSat [FJ23]
Solving based on component analysis

2023/8/24 FLOLAC 2023 140

Applications

AI planning under uncertainty [Littman et al.
2001]

Belief network inference [Littman et al. 2001]

Trust management [Freudenthal et al. 2003]

Equivalence verification of probabilistic
circuits [Lee et al. 2018]

2023/8/24 FLOLAC 2023 141

FLOLAC 2023 142

Dependency Stochastic
Boolean Satisfiability

2023/8/24

FLOLAC 2023 143

From DQBF to DSSAT
Dependency SSAT
 A dependency SSAT (DSSAT) formula is

commonly written in a prenex form as

Φ = ℛ𝑋𝑋,∃𝑦𝑦1 𝐷𝐷1 , … ,∃𝑦𝑦𝑚𝑚(𝐷𝐷𝑚𝑚). 𝜑𝜑

for 𝐷𝐷𝑖𝑖 ⊆ 𝑋𝑋 being the dependency set of 𝑦𝑦𝑖𝑖 and 𝜑𝜑 a
quantifier-free formula

 SP of Φ w.r.t. Skolem functions 𝑓𝑓1, … ,𝑓𝑓𝑚𝑚 is
Pr[ℛ𝑋𝑋.𝜑𝜑|𝑓𝑓1 𝐷𝐷1 /𝑦𝑦1,…,𝑓𝑓𝑚𝑚 𝐷𝐷𝑚𝑚 /𝑦𝑦𝑚𝑚]

Optimization version: Find the maximum SP
 Decision version: Determine whether SP ≥ 𝜃𝜃

prefix matrix

2023/8/24

[Lee, J., AAAI 2021]

From DQBF to DSSAT
Dependency SSAT

DSSAT (D) is NEXP-complete
By the fact that DSSAT (D) is in NEXP and

polynomial-time reducible from DQBF

2023/8/24 FLOLAC 2023 144

DSSAT Solver

DSSATpre [CJ23]
A preprocessing-based solver converting a

DSSAT instance to an SSAT instance

2023/8/24 FLOLAC 2023 145

Application: Probabilistic Partial
Design

 Probabilistic design is a new
paradigm in VLSI design,
which allows logic gates to
have probabilistic errors

 Black-box synthesis for
probabilistic circuit design
 Black-box outputs 𝑡𝑡1, 𝑡𝑡2, … with

their respective inputs 𝐷𝐷1,𝐷𝐷2, …
 𝑋𝑋: primary inputs, 𝑍𝑍: error-

source pseudo-inputs, 𝑌𝑌:
intermediate variables

2023/8/24 FLOLAC 2023 146

X

F

𝑡𝑡1
𝑡𝑡2

𝐷𝐷1
𝐷𝐷2

G

Z

𝑧𝑧1
𝑧𝑧2

≡ ≡ ≡

ℛ𝑋𝑋,ℛ𝑍𝑍,∀𝑌𝑌,∃𝑇𝑇 𝐷𝐷 . 𝑌𝑌 = 𝐸𝐸 𝑋𝑋 → (𝐹𝐹 𝑋𝑋,𝑍𝑍,𝑇𝑇 = 𝐺𝐺(𝑋𝑋))

Application: Dec-POMDP

 Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) generalizes
POMDP from single agent to multiple agents
 𝑀𝑀 = (𝐼𝐼, 𝑆𝑆, 𝐴𝐴𝑖𝑖 ,𝑇𝑇,𝜌𝜌, 𝑂𝑂𝑖𝑖 ,Ω,Δ0, ℎ)

Agents 𝐼𝐼 = {1, … ,𝑛𝑛}
States 𝑆𝑆
Actions 𝐴𝐴𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼
Transition distribution 𝑇𝑇: 𝑆𝑆 × 𝐴𝐴1 × ⋯× 𝐴𝐴𝑛𝑛 × 𝑆𝑆 → 0,1
Reward 𝜌𝜌: 𝑆𝑆 × 𝐴𝐴1 × ⋯× 𝐴𝐴𝑛𝑛 → R
Observations 𝑂𝑂𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼
Observation distribution Ω: 𝑆𝑆 × 𝐴𝐴1 × ⋯× 𝐴𝐴𝑛𝑛 × (𝑂𝑂1 × ⋯× 𝑂𝑂𝑛𝑛) →

0,1
Initial state distribution Δ0: 𝑆𝑆 → [0,1]
Horizon ℎ

2023/8/24 FLOLAC 2023 147

Application: Dec-POMDP

Goal: Find optimal joint policy to maximize
the expected total reward 𝐸𝐸[∑𝑡𝑡=0ℎ−1 𝜌𝜌(𝑠𝑠𝑡𝑡, �⃗�𝑎𝑡𝑡)]

Dec-POMDP is NEXP-complete and
polynomial-time reducible to DSSAT

2023/8/24 FLOLAC 2023 148

FLOLAC 2023 149

Summary and Outlook

 Subjects covered
 Logic synthesis in a nutshell
 Boolean satisfiability
 Quantified Boolean satisfiability
 Beyond QBF

DQBF, SOQBF
#SAT, SSAT, DSSAT

 Satisfiability and counting are fundamental in
computation
 Crucial in applications such as EDA, AI, software

engineering, etc.
 New formalisms, solvers, and applications await further

exploration
2023/8/24

Thanks for Your Attention!

2023/8/24 FLOLAC 2023 150

References (1/3)
 Satisfiability

 A. Biere, M. Heule, H. Van Maaren, T. Walsh. Handbook of Satisfiability, Second Edition, IOS
Press, 2021.

 Complexity
 C. Papadimitriou. Computational Complexity, Pearson Publishers, 1993.
 S. Arora, B. Barak. Computational Complexity: A Modern Approach, Cambridge University

Press, 2009.

 Boolean function representation
 J.-H. Jiang, S. Devadas. Logic synthesis in a nutshell, in Electronic Design Automation, MK

Publishers, 2009.

 SAT
 J. Marques Silva, K. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE

Trans. Computers 48(5): 506-521 (1999)
 M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering an Efficient SAT

Solver. DAC 2001: 530-535
 N. Eén, N. Sörensson. An Extensible SAT-solver. SAT 2003: 502-518

2023/8/24 FLOLAC 2023 151

References (2/3)
 Craig interpolation

 K. McMillan. Interpolation and sat-based model checking. CAV 2003: 1-13
 K. McMillan. An interpolating theorem prover. Theoretical Computer Science, 345(1): 101-

121, 2005.

 Combinational equivalence checking
 A. Mishchenko, S. Chatterjee, R. Brayton, N. Eén. Improvements to combinational equivalence

checking. ICCAD 2006: 836-843

 Functional dependency
 J.-H. Jiang, C.-C. Lee, A. Mishchenko, C.-Y. Huang. To SAT or Not to SAT: Scalable

Exploration of Functional Dependency. IEEE Trans. Computers 59(4): 457-467 (2010)

 Boolean matching
 C.-F. Lai, J.-H. Jiang, K.-H. Wang. BooM: A decision procedure for Boolean matching with

abstraction and dynamic learning. DAC 2010: 499-504

 Relation determinization
 J.-H. Jiang, H.-P. Lin, W.-L. Hung. Interpolating functions from large Boolean relations. ICCAD

2009: 779-784

2023/8/24 FLOLAC 2023 152

References (3/3)
 QBF certification

 V. Balabanov, J.-H. Jiang. Unified QBF certification and its applications. Formal Methods Syst.
Des. 41(1): 45-65 (2012)

 DQBF
 V. Balabanov, H.-J. Chiang, J.-H. Jiang. Henkin quantifiers and Boolean formulae: A

certification perspective of DQBF. Theor. Comput. Sci. 523: 86-100 (2014)
 C. Scholl, R. Wimmer. Dependency Quantified Boolean Formulas: An Overview of Solution

Methods and Applications - Extended Abstract. SAT 2018: 3-16

 SOQBF
 J.-H. Jiang. Second-Order Quantified Boolean Logic. AAAI 2023: 4007-4015

 SSAT
 P.-W. Chen, Y.-C. Huang, J.-H. Jiang. A Sharp Leap from Quantified Boolean Formula to

Stochastic Boolean Satisfiability Solving. AAAI 2021: 3697-3706
 H.-R. Wang, K.-H. Tu, J.-H. Jiang, C. Scholl. Quantifier Elimination in Stochastic Boolean

Satisfiability. SAT 2022: 23:1-23:17
 Y.-W. Fan, J.-H. R. Jiang. SharpSSAT: A Witness-Generating Stochastic Boolean Satisfiability

Solver. AAAI 2023: 3949-3958

 DSSAT
 N.-Z. Lee, J.-H. Jiang. Dependency Stochastic Boolean Satisfiability: A Logical Formalism for

NEXPTIME Decision Problems with Uncertainty. AAAI 2021: 3877-3885
 C. Cheng, J.-H. Jiang. Lifting (D)QBF Preprocessing and Solving Techniques to (D)SSAT. AAAI

2023: 3906-3914
2023/8/24 FLOLAC 2023 153

	Quantified Satisfiability and Its Synthesis & Verification Applications
	Outline
	IC Design Flow
	Logic Synthesis
	Logic Synthesis
	Backgrounds
	Boolean Function Representation
	Boolean Space
	Boolean Function
	Boolean Function
	Boolean Function
	Boolean Function
	Boolean Operations
	Cofactor and Quantification
	Boolean Function Representation
	Boolean Function Representation�Truth Table
	Boolean Function Representation�Boolean Formula
	Boolean Function Representation�Boolean Formula in SOP
	Boolean Function Representation�Boolean Formula in POS
	Boolean Function Representation�Binary Decision Diagram
	Boolean Function Representation�Binary Decision Diagram
	Boolean Function Representation�Binary Decision Diagram
	Boolean Function Representation�Binary Decision Diagram
	Boolean Function Representation�Boolean Network
	Boolean Function Representation�Boolean Network
	Boolean Function Representation�Boolean Network
	Boolean Function Representation�And-Inverter Graph
	Boolean Function Representation
	Circuit to CNF Conversion
	Circuit to CNF Conversion
	Circuit to CNF Conversion
	Propositional Satisfiability
	Normal Forms
	Satisfiability
	SAT Competition
	SAT Solving
	Pre-Modern SAT Procedure
	DPLL Procedure
	Modern SAT Procedure
	Conflict Analysis & Clause Learning
	Clause Learning as Resolution
	Resolution
	SAT Certification
	Craig Interpolation
	Interpolant and Resolution Proof
	Incremental SAT Solving
	Incremental SAT Solving
	投影片編號 48
	Combinational EC
	Miter for Combinational EC
	Approaches to Combinational EC
	SAT & Logic Synthesis�Functional Dependency
	Functional Dependency
	Motivation
	BDD-Based Computation
	BDD-Based Computation
	SAT-Based Computation
	SAT-Based Computation
	Deriving h with Craig Interpolation
	Incremental SAT Solving
	SAT vs. BDD
	Quantified Boolean Satisfiability
	Quantified Boolean Formula
	Quantified Boolean Formula
	Quantified Boolean Formula
	QBF Solver
	QBF Solving
	Q-Resolution
	Q-Resolution
	Skolemization
	QBF Certification
	QBF Certification
	ResQu
	ResQu
	ResQu
	QBF Certification
	QSAT & Logic Synthesis �Boolean Matching
	Introduction
	Introduction
	Introduction
	Introduction
	Introduction
	BooM: A Fast Boolean Matcher
	Formulation
	Formulation
	Formulation
	BooM Flow
	NP-Equivalence�Conflict-based Learning
	NP-Equivalence�Conflict-based Learning
	NP-Equivalence�Conflict-based Learning
	NP-Equivalence�Abstraction
	NP-Equivalence�Abstraction
	NP-Equivalence�Abstraction
	P-Equivalence�Conflict-based Learning
	P-Equivalence�Abstraction
	QSAT & Logic Synthesis �Relation Determinization
	Relation vs. Function
	Relation
	Relation
	Motivation
	Motivation
	Motivation
	Relation Determinization
	Relation Determinization
	Iterative Relation Determinization
	Iterative Relation Determinization
	Iterative Relation Determinization
	Non-Iterative Relation Determinization
	Dependency Quantified Boolean Satisfiability
	Dependency Quantified Boolean Formula
	Dependency Quantified Boolean Formula
	Dependency Quantified Boolean Formula
	Application: Combinational ECO
	Application: Sequential ECO
	Second-Order Quantified Boolean Satisfiability
	Motivation
	Complexity Classes
	Syntax of SOQBF
	Syntax of SOQBF
	Syntax of SOQBF
	Semantics of SOQBF
	Semantics of SOQBF
	Semantics of SOQBF
	Converting SOQBF to QBF
	Converting SOQBF to QBF
	Application: Secure Unknown Function Synthesis
	Other Applications
	Stochastic Boolean Satisfiability
	Decision under Uncertainty (Example 1)
	Decision under Uncertainty (Example 2)
	Decision under Uncertainty (Example 3)
	Decision under Uncertainty�(Example 4)
	From SAT to #SAT�#SAT – A Counting Problem
	Motivation
	Concerned Problems in a Nutshell
	Related Complexity Classes
	From QBF to SSAT�Stochastic Boolean Satisfiability
	From QBF to SSAT�Stochastic Boolean Satisfiability
	From QBF to SSAT�Stochastic Boolean Satisfiability
	Recent SSAT Solvers
	Applications
	Dependency Stochastic Boolean Satisfiability
	From DQBF to DSSAT �Dependency SSAT
	From DQBF to DSSAT�Dependency SSAT
	DSSAT Solver
	Application: Probabilistic Partial Design
	Application: Dec-POMDP
	Application: Dec-POMDP
	Summary and Outlook
	Thanks for Your Attention!
	References (1/3)
	References (2/3)
	References (3/3)

