Quantified Satisfiability and Its Synthesis \＆Verification Applications

Jie－Hong Roland Jiang江介宏

Department of Electrical Engineering National Taiwan University

Outline

-Logic synthesis \& verification
\square Boolean function representation
\square Propositional satisfiability \& applications
\square Quantified satisfiability \& applications
\square Beyond quantified Boolean satisfiability

- Dependency quantified Boolean formula

■ Second-order quantified Boolean formula
■ SAT (model counting)
■ Stochastic Boolean satisfiability
■ Dependency stochastic Boolean satisfiability

IC Design Flow

HDL spec.

Logic Synthesis

Logic Synthesis

Given: Functional description of finite-state machine $F(Q, X, Y, \delta, \lambda)$ where:
Q: Set of internal states
X: Input alphabet
Y: Output alphabet
$\delta: ~ X \times Q \rightarrow Q \quad$ (next state function)
$\lambda: \mathrm{XxQ} \rightarrow \mathrm{Y} \quad$ (output function)

Target: Circuit C(G, W) where:
G : set of circuit components $\mathrm{g} \in$ \{gates, FFs, etc.\} W: set of wires connecting G

Backgrounds

\square Historic evolution of data structures and tools in logic synthesis and verification

Boolean Function Representation

-Logic synthesis translates Boolean functions into circuits
\square We need representations of Boolean functions for two reasons:

- to represent and manipulate the actual circuit that we are implementing
- to facilitate Boolean reasoning

Boolean Space

ㅁ $B=\{0,1\}$
$\square B^{2}=\{0,1\} \times\{0,1\}=\{00,01,10,11\}$

Karnaugh Maps:

Boolean Lattices:

Boolean Function

\square A Boolean function f over input variables: $x_{1}, x_{2}, \ldots, x_{m}$, is a mapping $f: \mathbf{B}^{m} \rightarrow Y$, where $\mathbf{B}=\{0,1\}$ and $Y=\{0,1, d\}$

- E.g.
- The output value of $f\left(x_{1}, x_{2}, x_{3}\right)$, say, partitions \mathbf{B}^{m} into three sets:
\square on-set $(f=1)$
- E.g. $\{010,011,110,111\}$ (characteristic function $f^{1}=x_{2}$)
\square off-set $(f=0)$
- E.g. $\{100,101\}$ (characteristic function $f^{0}=x_{1} \neg x_{2}$)
\square don't-care set ($f=\mathrm{d}$)
- E.g. $\{000,001\}$ (characteristic function $f^{d}=\neg x_{1} \neg x_{2}$)
$\square f$ is an incompletely specified function if the don't-care set is nonempty. Otherwise, f is a completely specified function
- Unless otherwise said, a Boolean function is meant to be completely specified

Boolean Function

\square A Boolean function $\mathrm{f}: \mathbf{B}^{n} \rightarrow \mathbf{B}$ over variables $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ maps each Boolean valuation (truth assignment) in \mathbf{B}^{n} to 0 or 1

Example

$f\left(x_{1}, x_{2}\right)$ with $f(0,0)=0, f(0,1)=1, f(1,0)=1$, $f(1,1)=0$

Boolean Function

\square Onset of f, denoted as f^{1}, is $f^{1}=\left\{v \in \mathbf{B}^{n} \mid f(v)=1\right\}$

- If $\mathrm{f}^{1}=\mathbf{B}^{n}$, f is a tautology
\square Offset of f, denoted as f^{0}, is $f^{0}=\left\{v \in \mathbf{B}^{n} \mid f(v)=0\right\}$
- If $f 0=\mathbf{B}^{n}, f$ is unsatisfiable. Otherwise, f is satisfiable.
$\square \mathrm{f}^{1}$ and f^{0} are sets, not functions!
\square Boolean functions f and g are equivalent if $\forall v \in \mathbf{B}^{n} . f(v)=$ $g(v)$ where v is a truth assignment or Boolean valuation
\square A literal is a Boolean variable x or its negation $x^{\prime}($ or $x, \neg x)$ in a Boolean formula

Boolean Function

\square There are 2^{n} vertices in \mathbf{B}^{n}
\square There are $2^{2^{n}}$ distinct Boolean functions
\square Each subset $f^{1} \subseteq \mathbf{B}^{n}$ of vertices in \mathbf{B}^{n} forms a distinct Boolean function f with onset f^{1}

Boolean Operations

Given two Boolean functions:

$$
\begin{aligned}
& \mathrm{f}: \mathbf{B}^{n} \rightarrow \mathbf{B} \\
& \mathrm{~g}: \mathbf{B}^{n} \rightarrow \mathbf{B}
\end{aligned}
$$

$\square h=f \wedge g$ from AND operation is defined as $h^{1}=f^{1} \cap g^{1} ; h^{0}=B^{n} \backslash h^{1}$
$\square h=f \vee g$ from OR operation is defined as
$h^{1}=f^{1} \cup g^{1} ; h^{0}=B^{n} \backslash h^{1}$
$\square \mathrm{h}=\neg \mathrm{f}$ from COMPLEMENT operation is defined as

$$
h^{1}=f^{0} ; h^{0}=f^{1}
$$

Cofactor and Quantification

Given a Boolean function:
$\mathrm{f}: \mathbf{B}^{n} \rightarrow \mathbf{B}$, with the input variable ($\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{i}, \ldots, \mathrm{x}_{n}$)
ㅁ Positive cofactor on variable x_{i}
$h=f_{x i}$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
\square Negative cofactor on variable x_{i}
$h=f_{-x i}$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right)$

- Existential quantification over variable x_{i}
$h=\exists x_{i} . f$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right) \vee f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
- Universal quantification over variable x_{i}
$h=\forall x_{i} . f$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right) \wedge f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$
ㅁ Boolean difference over variable x_{i}
$h=\partial f / \partial x_{i}$ is defined as $h=f\left(x_{1}, x_{2}, \ldots, 0, \ldots, x_{n}\right) \oplus f\left(x_{1}, x_{2}, \ldots, 1, \ldots, x_{n}\right)$

Boolean Function Representation

\square Some common representations:

- Truth table
- Boolean formula
- SOP (sum-of-products, or called disjunctive normal form, DNF)
\square POS (product-of-sums, or called conjunctive normal form, CNF)
- BDD (binary decision diagram)
- Boolean network (consists of nodes and wires)
\square Generic Boolean network
- Network of nodes with generic functional representations or even subcircuitsSpecialized Boolean network
- Network of nodes with SOPs (PLAs)
- And-Inv Graph (AIG)
\square Why different representations?
- Different representations have their own strengths and weaknesses (no single data structure is best for all applications)

Boolean Function Representation Truth Table

\square Truth table (function table for multi-valued functions):
The truth table of a function $\mathrm{f}: \mathbf{B}^{n} \rightarrow \mathbf{B}$ is a tabulation of its value at each of the 2^{n} vertices of \mathbf{B}^{n}.

In other words the truth table lists all mintems
Example: $f=a^{\prime} b^{\prime} c^{\prime} d+a^{\prime} b^{\prime} c d+a^{\prime} b c^{\prime} d+$ $a b^{\prime} c^{\prime} d+a b^{\prime} c d+a b c^{\prime} d+$ abcd' + abcd

The truth table representation is

- impractical for large n
- canonical

If two functions are the equal, then their canonical representations are isomorphic.

| | abcd | f |
| :--- | :--- | :--- | :--- |
| 0 | 00000 | 0 |
| 1 | 0001 | 1 |
| 2 | 0010 | 0 |
| 3 | 0011 | 1 |
| 4 | 0100 | 0 |
| 5 | 0101 | 1 |
| 6 | 0110 | 0 |
| 7 | 0111 | 0 |

Boolean Function Representation Boolean Formula

\square A Boolean formula is defined inductively as an expression with the following formation rules (syntax):

formula $::=$	(' formula ')' Boolean constant	(true or false)
	<Boolean variable> formula " + " formula	
	(OR operator)	
	formula "." formula	(AND operator)
	\neg formula	(complement)

Example

$\mathrm{f}=\left(\mathrm{x}_{1} \cdot \mathrm{x}_{2}\right)+\left(\mathrm{x}_{3}\right)+\neg\left(\neg\left(\mathrm{x}_{4} \cdot\left(\neg \mathrm{x}_{1}\right)\right)\right)$
typically "." is omitted and '(', ')' are omitted when the operator priority is clear, e.g., $f=x_{1} x_{2}+x_{3}+x_{4} \neg x_{1}$

Boolean Function Representation Boolean Formula in SOP

\square Any function can be represented as a sum-ofproducts (SOP), also called sum-of-cubes (a cube is a product term), or disjunctive normal form (DNF)

Example

$$
\varphi=a b+a \prime c+b c
$$

Boolean Function Representation Boolean Formula in POS

\square Any function can be represented as a product-ofsums (POS), also called conjunctive normal form
(CNF)

- Dual of the SOP representation

Example
$\varphi=\left(a+b^{\prime}+c\right)\left(a^{\prime}+b+c\right)\left(a+b^{\prime}+c^{\prime}\right)(a+b+c)$
\square Exercise: Any Boolean function in POS can be converted to SOP using De Morgan's law and the distributive law, and vice versa

Boolean Function Representation Binary Decision Diagram

- BDD - a graph representation of Boolean functions
- A leaf node represents constant 0 or 1
- A non-leaf node represents a decision node (multiplexer) controlled by some variable
- Can make a BDD representation canonical by imposing the variable ordering and reduction criteria (ROBDD)

Boolean Function Representation Binary Decision Diagram

\square Any Boolean function f can be written in term of Shannon expansion

$$
f=v f_{v}+\neg v f_{\neg v}
$$

- Positive cofactor:

$$
\begin{aligned}
& f_{x i}=f\left(x_{1}, \ldots, x_{i}=1, \ldots, x_{n}\right) \\
& f_{-x i}=f\left(x_{1}, \ldots, x_{i}=0, \ldots, x_{n}\right)
\end{aligned}
$$

\square BDD is a compressed Shannon cofactor tree:

- The two children of a node with function f controlled by variable v represent two sub-functions f_{v} and $f_{\neg v}$

Boolean Function Representation Binary Decision Diagram

\square Reduced and ordered BDD (ROBDD) is a canonical Boolean function representation

- Ordered:
\square cofactor variables are in the same order along all paths

$$
x_{i_{1}}<x_{i_{2}}<x_{i_{3}}<\ldots<x_{i_{n}}
$$

■ Reduced:
\square any node with two identical children is removed
\square two nodes with isomorphic BDD's are merged
These two rules make any node in an ROBDD represent a distinct logic function

Boolean Function Representation Binary Decision Diagram

\square For a Boolean function,

- ROBDD is unique with respect to a given variable ordering
- Different orderings may result in different ROBDD structures

Boolean Function Representation Boolean Network

\square A Boolean network is a directed graph C(G,N) where G are the gates and $N \subset(G \times G)$ are the directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: $\mathrm{I} \subseteq \mathrm{G}$
Outputs: $\mathrm{O} \subseteq \mathrm{G}$
$\mathrm{I} \cap \mathrm{O}=\varnothing$
Each gate g is assigned a Boolean function f_{g} which computes the output of the gate in terms of its inputs.

Boolean Function Representation Boolean Network

- The fanin $\mathrm{FI}(\mathrm{g})$ of a gate g are the predecessor gates of g : $\mathrm{FI}(\mathrm{g})=\left\{\mathrm{g}^{\prime} \mid\left(\mathrm{g}^{\prime}, \mathrm{g}\right) \in \mathrm{N}\right\}$ (N : the set of nets)
- The fanout $\mathrm{FO}(\mathrm{g})$ of a gate g are the successor gates of g : $\mathrm{FO}(\mathrm{g})=\left\{\mathrm{g}^{\prime} \mid\left(\mathrm{g}, \mathrm{g}^{\prime}\right) \in \mathrm{N}\right\}$
- The cone $\operatorname{CONE}(\mathrm{g})$ of a gate g is the transitive fanin (TFI) of g and g itself
- The support SUPPORT(g) of a gate g are all inputs in its cone: $\operatorname{SUPPORT}(\mathrm{g})=\operatorname{CONE}(\mathrm{g}) \cap \mathrm{I}$

Boolean Function Representation Boolean Network

Example

$\mathrm{FI}(6)=\{2,4\}$
$\mathrm{FO}(6)=\{7,9\}$
$\operatorname{CONE}(6)=\{1,2,4,6\}$
SUPPORT(6) = \{1,2\}
Every node may have its own function

Boolean Function Representation And-Inverter Graph

\square AND-INVERTER graphs (AIGs)
vertices: 2-input AND gates
edges: interconnects with (optional) dots representing INVs
\square Hash table to identify and reuse structurally isomorphic circuits

Boolean Function Representation

- Truth table
- Canonical
- Useful in representing small functions
- SOP
- Useful in two-level logic optimization, and in representing local node functions in a Boolean network
- POS
- Useful in SAT solving and Boolean reasoning
- Rarely used in circuit synthesis (due to the asymmetric characteristics of NMOS and PMOS)
\square ROBDD
- Canonical
- Useful in Boolean reasoning
\square Boolean network
- Useful in multi-level logic optimization
- AIG

■ Useful in multi-level logic optimization and Boolean reasoning

Circuit to CNF Conversion

- Naive conversion of circuit to CNF:

■ Multiply out expressions of circuit until two level structure

- Example: $\mathrm{y}=\mathrm{x}_{1} \oplus \mathrm{x}_{2} \oplus \mathrm{x}_{2} \oplus \ldots \oplus \mathrm{x}_{\mathrm{n}}$ (Parity function)
\square circuit size is linear in the number of variables
\oplus

\square generated chess-board Karnaugh map
\square CNF (or DNF) formula has $2^{\mathrm{n}-1}$ terms (exponential in \#vars)
- Better approach:
- Introduce one variable per circuit vertex
- Formulate the circuit as a conjunction of constraints imposed on the vertex values by the gates
- Uses more variables but size of formula is linear in the size of the circuit

Circuit to CNF Conversion

\square Example

■ Single gate:

- Circuit of connected gates:

$$
\begin{aligned}
& (\neg 1+2+4)(1+\neg 4)(\neg 2+\neg 4) \\
& (\neg 2+\neg 3+5)(2+\neg 5)(3+\neg 5) \\
& (2+\neg 3+6)(\neg 2+\neg 6)(3+\neg 6) \\
& (\neg 4+\neg 5+7)(4+\neg 7)(5+\neg 7) \\
& (5+6+8)(\neg 5+\neg 8)(\neg 6+\neg 8) \\
& (7+8+9)(\neg 7+\neg 9)(\neg 8+\neg 9) \\
& (9)
\end{aligned}
$$

Circuit to CNF Conversion

-Circuit to CNF conversion

■ can be done in linear size (with respect to the circuit size) if intermediate variables can be introduced

- may grow exponentially in size if no intermediate variables are allowed

Propositional Satisfiability

Normal Forms

\square A literal is a variable or its negation
\square A clause (cube) is a disjunction (conjunction) of literals
\square A conjunctive normal form (CNF) is a conjunction of clauses; a disjunctive normal form (DNF) is a disjunction of cubes
E.g.,

CNF: $(a+\neg b+c)(a+\neg c)(b+d)(\neg a)$
$\square(\neg a)$ is a unit clause, d is a pure literal
DNF: $a \neg b c+a \neg c+b d+\neg a$

Satisfiability

\square The satisfiability (SAT) problem asks whether a given CNF formula can be true under some assignment to the variables
\square In theory, SAT is intractable
■ The first shown NP-complete problem [Cook, 1971]
\square In practice, modern SAT solvers work 'mysteriously' well on application CNFs with $\sim 100,000$ variables and $\sim 1,000,000$ clauses
■ It enables various applications, and inspires solver development for QBF, SMT (Satisfiability Modulo Theories), DQBF, SSAT, etc.

SAT Competition

SAT Solving

\square Ingredients of modern SAT solvers:
■ DPLL-style search
ㅁ[Davis, Putnam, Logemann, Loveland, 1962]

- Conflict-driven clause learning (CDCL)

ㅁMarques-Silva, Sakallah, 1996 (GRASP)]

- Boolean constraint propagation (BCP) with two-literal watch
[[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]
- Decision heuristics using variable activity
[[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]
- Restart
- Preprocessing
- Support for incremental solving
- [Een, Sorensson, 2003 (MiniSat)]

Pre-Modern SAT Procedure

```
Algorithm DPLL(\Phi)
{
    while there is a unit clause {l} in \Phi
        \Phi = BCP (\Phi, l);
    while there is a pure literal l in \Phi
        \Phi = assign(\Phi, l);
    if all clauses of \Phi satisfied return true;
    if \Phi has a conflicting clause return false;
    l := choose_literal(\Phi);
    return DPLL(assign(\Phi,\negl)) \vee DPLL(assign(\Phi,l));
}
```


DPLL Procedure

-Chorological backtrack

Modern SAT Procedure

```
Algorithm CDCL (\Phi)
{
    while(1)
    while there is a unit clause {l} in Ф
            \Phi= BCP(\Phi, l);
    while there is a pure literal l in \Phi
            \Phi= assign(\Phi, l);
    if \Phi contains no conflicting clause
        if all clauses of \Phi are satisfied return true;
        l := choose_literal(\Phi);
        assign(\Phi,l);
    else
        if conflict at top decision level return false;
        analyze_conflict();
        undo assignments;
        \Phi := add_conflict_clause(\Phi);
}
```


Conflict Analysis \& Clause Learning

\square There can be many learnt clauses from a conflict
\square Clause learning admits nonchorological backtrack

- E.g.,
$\{\neg \times 10587, ~ \neg x 10588$,
$\rightarrow \times 10592\}$
\{ $\neg \times 10374, ~ \neg x 10582$,
$\neg \times 10578, ~ \neg \times 10373, ~ \neg \times 10629\}$
$\{x 10646, x 9444, \neg x 10373$, $\neg x 10635, ~ \neg \times 10637\}$

Box: decision node
Oval: implication node
Inside: literal (decision level)

Clause Learning as Resolution

\square Resolution of two clauses $C_{1} \vee x$ and $C_{2} \vee \neg x$:

$$
\frac{C_{1} \vee x \quad C_{2} \vee \neg x}{C_{1} \vee C_{2}}
$$

where x is the pivot variable and $C_{1} \vee C_{2}$ is the resolvant, i.e., $C_{1} \vee C_{2}=\exists x .\left(C_{1} \vee x\right)\left(C_{2} \vee \neg x\right)$
\square A learnt clause can be obtained from a sequence of resolution steps

- Exercise:

Find a resolution sequence leading to the learnt clause
$\{\neg \times 10374, \neg \times 10582, ~ \neg \times 10578, ~ \neg \times 10373, ~ \neg \times 10629\}$
in the previous slides

Resolution

\square Resolution is complete for SAT solving

- A CNF formula is unsatisfiable if and only if there exists a resolution sequence leading to the empty clause
- Example

SAT Certification

\square True CNF
\square Satisfying assignment (model)
\square Verifiable in linear time
\square False CNF
\square Resolution refutation
\square Potentially of exponential size

Craig Interpolation

- [Craig Interpolation Thm, 1957] If $A \wedge B$ is UNSAT for formulae A and B, there exists an interpolant I of A such that

1. $A \Rightarrow I$
2. $I \wedge B$ is UNSAT
3. I refers only to the common variables of A and B

I is an abstraction of A

Interpolant and Resolution Proof

\square SAT solver may produce the resolution proof of an UNSAT CNF φ
\square For $\varphi=\varphi_{A} \wedge \varphi_{\mathrm{B}}$ specified, the corresponding interpolant can be obtained in time linear in the resolution proof

()

Incremental SAT Solving

\square To solve, in a row, multiple CNF formulae, which are similar except for a few clauses, can we reuse the learnt clauses?
\square What if adding a clause to φ ?

- What if deleting a clause from φ ?

Incremental SAT Solving

\square MiniSat API
■ void addClause(Vec<Lit> clause)
■ bool solve(Vec<Lit> assumps)

- bool readModel(Var x)
- for SAT results

■ bool assumpUsed(Lit p)

- for UNSAT results
- The method solve() treats the literals in assumps as unit clauses to be temporary assumed during the SATsolving.
- More clauses can be added after solve() returns, then incrementally another SAT-solving executed.

SAT \& Logic Synthesis Equivalence Checking

Combinational EC

\square Given two combinational circuits C_{1} and C_{2}, are their outputs equivalent under all possible input assignments?

Miter for Combinational EC

\square Two combinational circuits C_{1} and C_{2} are equivalent if and only if the output of their "miter" structure always produces constant 0

Approaches to Combinational EC

\square Basic methods:

- random simulation
\square good at identifying inequivalent signals
- BDD-based methods

■ structural SAT-based methods

SAT \& Logic Synthesis Functional Dependency

Functional Dependency

$\square f(x)$ functionally depends on $g_{1}(x)$, $g_{2}(x), \ldots, g_{m}(x)$ if $f(x)=h\left(g_{1}(x), g_{2}(x), \ldots, g_{m}(x)\right)$, denoted $h(G(x))$
\square Under what condition can function f be expressed as some function h over a set $G=\left\{g_{1}, \ldots, g_{m}\right\}$ of functions ?
$\square h$ exists $\Leftrightarrow \nexists a, b$ such that $f(a) \neq f(b)$ and $G(a)=G(b)$
i.e., G is more distinguishing than f

Motivation

\square Applications of functional dependency

- Resynthesis/rewiring
\square Redundant register removal
\square BDD minimization
- Verification reduction

■...

- target function
- base functions

BDD-Based Computation

\square BDD-based computation of h
$h^{\circ n}=\left\{y \in B^{m}: y=G(x)\right.$ and $\left.f(x)=1, x \in B^{n}\right\}$
$h^{\circ \text { off }}=\left\{y \in B^{m}: y=G(x)\right.$ and $\left.f(x)=0, x \in B^{n}\right\}$

$h^{\circ n}=\exists x .(y \equiv G) \wedge f$

$$
h^{\circ f f}=\exists x .(y \equiv G) \wedge \neg f
$$

BDD-Based Computation

\square Pros
\square Exact computation of hon and hoff

- Better support for don't care minimization
\square Cons
■ 2 image computations for every choice of G
\square Inefficient when $|G|$ is large or when there are many choices of G

SAT-Based Computation

$\square h$ exists \Leftrightarrow
$\nexists a, b$ such that $f(a) \neq f(b)$ and $G(a)=G(b)$, i.e., $\left(f(x) \neq f\left(x^{*}\right)\right) \wedge\left(G(x) \equiv G\left(x^{*}\right)\right)$ is UNSAT
-How to derive h? How to select G?

SAT-Based Computation

$\square\left(f(x) \neq f\left(x^{*}\right)\right) \wedge\left(G(x)=G\left(x^{*}\right)\right)$ is UNSAT

Deriving h with Craig Interpolation

- Clause set A: $C_{\text {DFNon }}, Y_{0}$
\square Clause set B: $C_{\text {DFNoff }} \rightarrow y_{0}{ }^{*},\left(y_{i}=y_{i}{ }^{*}\right)$ for $i=1, \ldots, m$
\square I is an overapproximation of $\operatorname{Img}($ fon $)$ and is disjoint from Img(foff)
\square I only refers to y_{1}, \ldots, y_{m}
\square Therefore, I corresponds to a feasible implementation of h

Incremental SAT Solving

\square Controlled equality constraints
$\left(y_{i} \equiv y_{i}^{*}\right) \rightarrow\left(\neg y_{i} \vee y_{i}^{*} \vee \alpha_{i}\right)\left(y_{i} \vee \neg y_{i}^{*} \vee \alpha_{i}\right)$
with auxiliary variables α_{i}
$\alpha_{i}=$ true $\Rightarrow i^{\text {th }}$ equality constraint is disabled

- Fast switch between target and base functions by unit assumptions over control variables
- Fast enumeration of different base functions
- Share learned clauses

SAT vs. BDD

\square SAT

- Pros
\square Detect multiple choices of G automatically
\square Scalable to large $|G|$
\square Fast enumeration of different target functions f
\square Fast enumeration of different base functions G
- Cons
\square Single feasible implementation of h
\square BDD
- Cons
\square Detect one choice of G at a time
\square Limited to small |G|
\square Slow enumeration of different target functions f
\square Slow enumeration of different base functions G
\square Pros
\square All possible implementations of h

Quantified Boolean Satisfiability

Quantified Boolean Formula

\square A quantified Boolean formula (QBF) is often written in prenex form (with quantifiers placed on the left) as
$\mathrm{Q}_{1} \mathrm{x}_{1}, \ldots, \mathrm{Q}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} . \varphi$
prefix
matrix
for $Q_{i} \in\{\forall, \exists\}$ and φ a quantifier-free formula

- If φ is further in CNF, the corresponding QBF is in the so-called prenex CNF (PCNF), the most popular QBF representation
■ Any QBF can be converted to PCNF

Quantified Boolean Formula

\square Quantification order matters in a QBF
$\square A$ variable x_{i} in ($Q_{1} x_{1}, \ldots, Q_{i} x_{i}, \ldots, Q_{n} x_{n} . \varphi$) is of level k if there are k quantifier alternations (i.e., changing from \forall to \exists or from \exists to \forall) from Q_{1} to Q_{i}.

- Example $\forall \mathrm{a} \exists \mathrm{b} \forall \mathrm{c} \forall \mathrm{d} \exists \mathrm{e} . \varphi$ level(a) $=0, \operatorname{level}(b)=1, \operatorname{level}(c)=2, \operatorname{level}(d)=2$, level(e)=3

Quantified Boolean Formula

\square Many decision problems can be compactly encoded in QBFs
\square In theory, QBF solving (QSAT) is PSPACE complete

- The more the quantifier alternations, the higher the complexity in the Polynomial Hierarchy
\square In practice, solvable QBFs are typically of size $\sim 1,000$
 variables

QBF Solver

\square QBF solver choices

- Data structures for formula representation
\square Prenex vs. non-prenex
\square Normal form vs. non-normal form
- CNF, NNF, BDD, AIG, etc.
- Solving mechanisms
\square Search, Q-resolution, Skolemization, quantifier elimination, etc.
- Preprocessing techniques
\square Standard approach
- Search-based PCNF formula solving (similar to SAT)
\square Both clause learning (from a conflicting assignment) and cube learning (from a satisfying assignment) are performed
- Example
$\forall a \exists b \exists c \forall d \exists e .(a+c)(\neg a+\neg c)(b+\neg c+e)(\neg b)(c+d+\neg e)(\neg c+e)(\neg d+e)$ from 00101, we learn cube $\neg a \neg b c \neg d$ (can be further simplified to $\neg a$)

QBF Solving

\square Example
$\exists a \forall x \exists b \forall y \exists c \quad(a+b+y+c)(a+x+b+y+\bar{c})(x+\bar{b})(\bar{y}+c)(\bar{c}+\bar{a}+\bar{x}+b)(\bar{x}+\bar{b})(a+\bar{b}+\bar{y})$

Q-Resolution

\square Q-resolution on PCNF is similar to resolution on CNF, except that the pivots are restricted to existentially quantified variables and the additional rule of \forall-reduction

$$
\mathrm{C}_{1} \vee \mathrm{x} \quad \mathrm{C}_{2} \vee \neg \mathrm{x}
$$

$$
\forall-\operatorname{RED}\left(\mathrm{C}_{1} \vee \mathrm{C}_{2}\right)
$$

where operator \forall-RED removes from $C_{1} \vee C_{2}$ the universally (\forall) quantified variables whose quantification levels are greater than any of the existentially (\exists) quantified variables in $\mathrm{C}_{1} \vee \mathrm{C}_{2}$

- E.g.,
prefix: $\forall \mathrm{a} \exists \mathrm{b} \forall \mathrm{c} \forall \mathrm{d} \exists \mathrm{e}$
$\forall-\operatorname{RED}(a+b+c+d)=(a+b)$
\square Q-resolution is complete for QBF solving
- A PCNF formula is unsatisfiable if and only if there exists a Qresolution sequence leading to the empty clause

Q-Resolution

\square Example (cont'd)

$\exists a \forall x \exists b \forall y \exists c \quad(a+b+y+c)(a+x+b+y+\bar{c})(x+\bar{b})(\bar{y}+c)(\bar{c}+\bar{a}+\bar{x}+b)(\bar{x}+\bar{b})(a+\bar{b}+\bar{y})$

Skolemization

\square Skolemization and Skolem normal form

- Existentially quantified variables are replaced with function symbols
- QBF prefix contains only two quantification levels
$\square \exists$ function symbols, \forall variables
- Example

$$
\forall \mathrm{a} \exists \mathrm{~b} \forall \mathrm{c} \exists \mathrm{~d} .
$$

$$
(\neg \mathrm{a}+\neg \mathrm{b})(\neg \mathrm{b}+\neg \mathrm{c}+\neg \mathrm{d})(\neg \mathrm{b}+\mathrm{c}+\mathrm{d})(\mathrm{a}+\mathrm{b}+\mathrm{c})
$$

Skolem functions

$\exists \mathrm{F}_{\mathrm{b}}(\mathrm{a}) \exists \mathrm{F}_{\mathrm{d}}^{*}(\mathrm{a}, \mathrm{c}) \forall \mathrm{a} \forall \mathrm{c}$.
$\left(\neg a+\neg F_{b}\right)\left(\neg F_{b}+\neg c+\neg F_{d}\right)\left(\neg F_{b}+c+F_{d}\right)\left(a+F_{b}+c\right)$

QBF Certification

\square QBF certification
■ Ensure correctness and, more importantly, provide useful information

- Certificates
\square True QBF: term-resolution proof / Skolem-function (SF) model
- SF model is more useful in practical applications
\square False QBF: clause-resolution proof / Herbrand-function (HF) countermodel
- HF countermodel is more useful in practical applications

QBF Certification

-Unified QBF certification

formula
negation
\section*{True QBF}

Cube resolution proof

Skolem function (model)

False QBF

Clause resolution proof

ResQu
Herbrand function (countermodel)

ResQu

\square A Skolem-function model (Herbrand-function countermodel) for a true (false) QBF can be derived from its cube (clause) resolution proof
\square A Right-First-And-Or (RFAO) formula is recursively defined as follows.
φ := clause | cube \| clause $\wedge \varphi \mid$ cube $\vee \varphi$

- E.g.,
$\left(a^{\prime}+b\right) \wedge a c \vee\left(b^{\prime}+c^{\prime}\right) \wedge b c$
$=\left(\left(a^{\prime}+b\right) \wedge\left(a c \vee\left(\left(b^{\prime}+c^{\prime}\right) \wedge b c\right)\right)\right)$

ResQu

```
Countermodel_construct
    input: a false - QBF }\Phi\mathrm{ and its clause-resolution DAG G}\mp@subsup{G}{\Pi}{}(\mp@subsup{V}{\Pi}{},\mp@subsup{E}{\Pi}{}
    output: a countermodel in RFAO formulas
    begin
    0 1 ~ f o r e a c h ~ u n i v e r s a l ~ v a r i a b l e ~ x ~ o f ~ \Phi
        RFAO_node_array [x] := \emptyset;
    foreach vertex v of G}\mp@subsup{G}{\Pi}{}\mathrm{ in topological order
            if v.clause resulted from }\forall\mathrm{ -reduction on u.clause, i.e., }(u,v)\in\mp@subsup{E}{\Pi}{
                v.cube := \neg(v.clause);
                foreach universal variable }x\mathrm{ reduced from u.clause to get v.clause
                    if}x\mathrm{ appears as positive literal in u.clause
                    push v.clause to RFAO_node_array [x];
                else if }x\mathrm{ appears as negative literal in u.clause
                    push v.cube to RFAO_node_array [x];
            if v.clause is the empty clause
                foreach universal variable x of }
                    simplify RFAO_node_array [x];
        return RFAO_node_array's;
    end
```


ResQu

- Example

■ $\exists \mathrm{a} \forall \mathrm{x} \exists \mathrm{b} \forall \mathrm{y} \exists \mathrm{c}$
$(a+b+y+c)_{1}(a+x+b+y+\bar{c})_{2}(x+\bar{b})_{3}(\bar{y}+c)_{4}(\bar{a}+\bar{x}+b+\bar{c})_{5}(\bar{x}+\bar{b})_{6}(a+\bar{b}+\bar{y})_{7}$

0. $x:[] \quad y:[]$

1. $x:[] \quad y:[$ cube $(\bar{a} b)]$
$\begin{array}{ll}\text { 2. } x:[] & y:\left[\begin{array}{l}\operatorname{cube}(\bar{a} b), \\ \operatorname{clause}(a+x+b)\end{array}\right] \\ 3 . x:[\operatorname{clause}(a)] & y:\left[\begin{array}{l}\operatorname{cube}(\bar{a} b), \\ \operatorname{clause}(a+x+b)\end{array}\right]\end{array}$
2. $x:[\operatorname{clause}(a)] \quad y:\left[\begin{array}{l}\operatorname{cube}(\bar{a} b), \\ \operatorname{clause}(a+x+b), \\ \operatorname{cube}(a x \bar{b})\end{array}\right]$
3. $x:\left[\begin{array}{l}\text { clause }(a), \\ \text { cube }(a)\end{array}\right] \quad y:\left[\begin{array}{l}\text { cube }(\bar{a} b), \\ \operatorname{clause}(a+x+b), \\ \text { cube }(a x \bar{b})\end{array}\right]$

QBF Certification

\square Applications of Skolem/Herbrand functions

- Program synthesis
\square Winning strategy synthesis in two player games
■ Plan derivation in AI
\square Logic synthesis

QSAT \& Logic Synthesis Boolean Matching

Introduction

\square Combinational equivalence checking (CEC)

- Known input correspondence
- coNP-complete
- Well solved in practical applications

Introduction

\square Boolean matching

- P-equivalence
\square Unknown input permutation
$\square \mathrm{O}(\mathrm{n}!)$ CEC iterations
- NP-equivalence
\square Unknown input negation and permutation
$\square O\left(2^{n} n!\right)$ CEC iterations
- NPN-equivalence
\square Unknown input negation, input permutation, and output negation
$\square O\left(2^{n+1} n!\right)$ CEC iterations

Introduction

■Example

Introduction

\square Motivations

- Theoretically
\square Complexity in between coNP (for all ...) and Σ_{2} (there exists ... for all ...) in the Polynomial Hierarchy (PH)
- Special candidate to test PH collapse
\square Known as Boolean congruence/isomorphism dating back to the $19^{\text {th }}$ century
- PracticallyBroad applications
- Library binding
- FPGA technology mapping

- Detection of generalized symmetry
- Logic verification
- Design debugging/rectification
- Functional engineering change orderIntensively studied over the last two decades

Introduction

\square Prior methods

	Complete $?$	Function type	Equivalence type	Solution type	Scalability
Spectral methods	yes	CS	mostly P	one	--
Signature based methods	no	mostly CS	P/NP	N/A	$-\sim++$
Canonical-form based methods	yes	CS	mostly P	one	+
SAT based methods	yes	CS	mostly P	one/all	+
BooM (QBF/SAT-like)	yes	CS / IS	NPN	one/all	++

BooM: A Fast Boolean Matcher

-Features of BooM

- General computation framework

■ Effective search space reduction techniques \square Dynamic learning and abstraction
\square Theoretical SAT-iteration upper-bound:

$O\left(2^{2 n}\right)$

Formulation

\square Reduce NPN-equiv to 2 NP-equiv checks
\square Matching f and g ; matching f and $\neg \mathrm{g}$
$\square 2^{\text {nd }}$ order formula of NP-equivalence
$\exists v \circ \pi, \forall x\left(\left(f_{c}(x) \wedge g_{c}(v \circ \pi(x))\right) \Rightarrow(f(x) \equiv g(v \circ \pi(x)))\right)$

- f_{c} and g_{c} are the care conditions of f and g , respectively
\square Need $1^{\text {st }}$ order formula instead for SAT solving

Formulation

$\square 0-1$ matrix representation of $v \circ \pi$

$$
\begin{aligned}
& \begin{array}{l}
\\
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\left(\begin{array}{ccccccc}
x_{1} & \neg x_{1} & x_{2} & \neg x_{2} & \cdots & x_{n} & \neg x_{n} \\
\hline a_{11} & b_{11} & a_{12} & b_{12} & \cdots & a_{1 n} & b_{1 n} \\
\hline a_{21} & b_{21} & a_{22} & b_{22} & \cdots & a_{2 n} & b_{2 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
a_{n 1} & b_{n 1} & a_{n 2} & b_{n 2} & \cdots & a_{n n} & b_{n n}
\end{array}\right) \quad \sum=1 \\
& \mathrm{a}_{\mathrm{ij}} \Rightarrow\left(\mathrm{X}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right) \\
& \mathrm{b}_{\mathrm{ij}} \Rightarrow\left(\neg \mathrm{x}_{\mathrm{j}} \equiv \mathrm{y}_{\mathrm{i}}\right)
\end{aligned}
$$

Formulation

\square Quantified Boolean formula (QBF) for NP-equivalence

$$
\exists \mathrm{a}, \exists \mathrm{~b}, \forall \mathrm{x}, \forall \mathrm{y}\left(\varphi_{\mathrm{c}} \wedge \varphi_{\mathrm{A}} \wedge\left(\left(\mathrm{f}_{\mathrm{c}} \wedge \mathrm{~g}_{\mathrm{c}}\right) \Rightarrow(\mathrm{f} \equiv \mathrm{~g})\right)\right.
$$

- φ_{C} : cardinality constraint
$\square \varphi_{\mathrm{A}}: / \lambda_{\mathrm{i}, \mathrm{j}}\left(\mathrm{a}_{\mathrm{ij}} \Rightarrow\left(\mathrm{y}_{\mathrm{i}} \equiv \mathrm{x}_{\mathrm{j}}\right)\right)\left(\mathrm{b}_{\mathrm{ij}} \Rightarrow\left(\mathrm{y}_{\mathrm{i}} \equiv \neg \mathrm{x}_{\mathrm{j}}\right)\right)$
\square Look for an assignment to a - and b-variables that satisfies φ_{C} and makes the miter constraint

$$
\Psi=\varphi_{A} \wedge(f \neq g) \wedge f_{c} \wedge g_{c}
$$

unsatisfiable
\square Refine φ_{C} iteratively in a sequence $\Phi^{\langle 0\rangle}, \Phi^{\langle 1\rangle}, \ldots, \Phi^{(k\rangle}$, for $\Phi^{\langle i+1\rangle}$ $\Rightarrow \Phi^{(i)}$ through conflict-based learning

BooM Flow

NP-Equivalence Conflict-based Learning

-Observation

NP-Equivalence Conflict-based Learning

\square Learnt clause generation

$$
\left(a_{11} \vee b_{12} \vee a_{13} \vee b_{21} \vee a_{22} \vee b_{23} \vee b_{31} \vee a_{32} \vee b_{33}\right)
$$

NP-Equivalence Conflict-based Learning

\square Proposition:
If $f(u) \neq g(v)$ with $v=v \circ \pi(u)$ for some $v \circ \pi$ satisfying $\Phi^{(i)}$, then the learned clause $\bigvee_{i j} \mathrm{l}_{\mathrm{ij}}$ for literals
$\mathrm{l}_{\mathrm{ij}}=\left(\mathrm{v}_{\mathrm{i}} \neq \mathrm{u}_{\mathrm{j}}\right) ? \mathrm{a}_{\mathrm{ij}}: \mathrm{b}_{\mathrm{ij}}$
excludes from $\Phi^{\text {(i) }}$ the mappings $\left\{v^{\prime} \circ \pi^{\prime} \mid v^{\prime} \circ \pi^{\prime}(u)=v \circ \pi(u)\right\}$
\square Proposition:
The learned clause prunes n ! infeasible mappings
\square Proposition:
The refinement process $\Phi^{\langle 0\rangle}, \Phi^{\langle 1\rangle}, \ldots, \Phi^{(k\rangle}$ is bounded by $2^{2 n}$ iterations

NP-Equivalence Abstraction

\square Abstract Boolean matching

- Abstract
$f\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n}\right)$ to
$\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{z}, \ldots, \mathrm{z}\right)=$
$\mathrm{f}^{*}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{z}\right)$
- Match $\mathrm{g}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ against $f^{*}\left(x_{1}, \ldots, x_{k}, z\right)$
- Infeasible matching solutions of f^{*} and g are also infeasible for f and g

NP-Equivalence Abstraction

\square Abstract Boolean matching

- Similar matrix representation of negation/permutation

y_{1}
y_{2}
\vdots
y_{n}

\hline a_{11} \& b_{11} \& \cdots \& a_{1 k} \& b_{1 k} \& a_{1(k+1)} \& b_{1(k+1)}

\hline a_{21} \& b_{21} \& \cdots \& a_{2 k} \& b_{2 k} \& a_{2(k+1)} \& b_{2(k+1)}

\vdots \& \vdots \& \vdots \& \vdots \& \vdots \& \vdots \&

a_{n 1} \& b_{n 1} \& \cdots \& a_{n k} \& b_{n k} \& a_{n(k+1)} \& b_{n(k+1)}\end{array}\right) \sum=1\)
\square Similar cardinality constraints, except for allowing multiple y-variables mapped to z

NP-Equivalence Abstraction
\square Used for preprocessing
\square Information learned for abstract model is valid for concrete model
\square Simplified matching in reduced Boolean space

P-Equivalence
 Conflict-based Learning

\square Proposition:
If $f(u) \neq g(v)$ with $v=\pi(u)$ for some π satisfying $\Phi^{\text {ii) }}$, then the learned clause $\bigvee_{\mathrm{ij}} \mathrm{I}_{\mathrm{ij}}$ for literals
$\mathrm{l}_{\mathrm{ij}}=\left(\mathrm{v}_{\mathrm{i}}=0\right.$ and $\left.\mathrm{u}_{\mathrm{j}}=1\right) ? \mathrm{a}_{\mathrm{ij}}: \varnothing$
excludes from $\Phi^{(i)}$ the mappings $\left\{\pi^{\prime} \mid \pi^{\prime}(\mathrm{u})=\pi(\mathrm{u})\right\}$

P-Equivalence Abstraction
-Abstraction enforces search in biased truth assignments and makes learning strong

- For f* having k support variables, a learned clause converted back to the concrete model consists of at most ($k-1$)($n-k+1$) literals

QSAT \& Logic Synthesis Relation Determinization

Relation vs. Function

\square Relation $R(X, Y)$
■ Allow one-to-many mappings
\square Can describe nondeterministic behavior

- More generic than functions
\square Function $F(X)$
- Disallow one-to-many mappings
\square Can only describe deterministic behavior
- A special case of relation

Relation

\square Total relation
■ Every input element is mapped to at least one output element

\square Partial relation

- Some input element is not mapped to any output element

Relation

\square A partial relation can be totalized

■ Assume that the input element not mapped to any output element is a don't care

Partial relation

Total relation

$$
T(X, y)=R(X, y) \vee \forall y . \neg R(X, y)
$$

Motivation

\square Applications of Boolean relation

- In high-level design, Boolean relations can be used to describe (nondeterministic) specifications
- In gate-level design, Boolean relations can be used to characterize the flexibility of sub-circuits
\square Boolean relations are more powerful than traditional don'tcare representations

Motivation

\square Relation determinization

For hardware implement of a system, we need functions rather than relations
\square Physical realization are deterministic by nature
\square One input stimulus results in one output response

- To simplify implementation, we can explore the flexibilities described by a relation for optimization

Motivation

-Example

Relation Determinization

\square Given a nondeterministic Boolean relation $R(X, Y)$, how to determinize and extract functions from it?
\square For a deterministic total relation, we can uniquely extract the corresponding functions

Relation Determinization

\square Approaches to relation determinization
\square Iterative method (determinize one output at a time)
-BDD- or SOP-based representation

- Not scalable
- Better optimization
\square AIG representation
- Focus on scalability with reasonable optimization quality
\square Non-iterative method (determinize all ouputs at once)
\square QBF solving

Iterative Relation Determinization

\square Single-output relation

- For a single-output total relation $R(X, y)$, we derive a function f for variable y using interpolation

Iterative Relation Determinization

- Multi-output relation

- Two-phase computation:

1. Backward reduction

- Reduce to single-output case

$$
R\left(X, y_{1}, \ldots, y_{n}\right) \rightarrow \exists y_{2}, \ldots, \exists y_{n} \cdot R\left(X, y_{1}, \ldots, y_{n}\right)
$$

2. Forward substitution

- Extract functions

Iterative Relation Determinization

-Example

Phase1: (expansion reduction)
$\exists y_{3} \cdot R\left(X, y_{1}, y_{2}, y_{3}\right) \rightarrow R^{(3)}\left(X, y_{1}, y_{2}\right)$
$\exists y_{2} \cdot R^{(3)}\left(X, y_{1}, y_{2}\right) \rightarrow R^{(2)}\left(X, y_{\nu}\right)$

Phase2:
$R^{(2)}\left(X, y_{1}\right) \quad \rightarrow y_{1}=f_{1}(X)$
$R^{(3)}\left(X, y_{1}, y_{2}\right) \rightarrow R^{(3)}\left(X, f_{1}(X), y_{2}\right) \quad \rightarrow y_{2}=f_{2}(X)$
$R\left(X, y_{1}, y_{2}, y_{3}\right) \rightarrow R\left(X, f_{1}(X), f_{2}(X), y_{2}\right) \rightarrow y_{3}=f_{3}(X)$

Non-Iterative Relation Determinization

\square Solve QBF

$$
\forall x_{1}, \ldots, \forall x_{m}, \exists y_{1}, \ldots, \exists y_{n} . R\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right)
$$

\square The Skolem functions of variables y_{1}, \ldots, y_{n} correspond to the functions we want

Dependency Quantified Boolean Satisfiability

Dependency Quantified Boolean Formula

\square A dependency quantified Boolean formula (DQBF) is commonly written in a prenex form as

$$
\Phi=\forall X, \exists y_{1}\left(D_{1}\right), \ldots, \exists y_{m}\left(D_{m}\right) . \varphi
$$

prefix

matrix
for $D_{i} \subseteq X$ being the dependency set of y_{i} and φ a quantifier-free formula
$\square \Phi$ is true if and only if there exist Skolem functions $f_{i}\left(D_{i}\right)$ for y_{i} such that $\left.\varphi\right|_{f_{1}\left(D_{1}\right) / y_{1}, \ldots, f_{m}\left(D_{m}\right) / y_{m}}$ is a tautology

Dependency Quantified Boolean Formula

\square A game interpretation of DQBF

- Multi-player game played between \forall-player (to falsity the formula) and multiple \exists-players with partial information (to satisfy the formula)
$\forall \mathrm{a} \forall \mathrm{c} \exists \mathrm{b}(\mathrm{a}) \exists \mathrm{d}(\mathrm{c})$.
$(\neg \mathrm{a}+\neg \mathrm{b})(\neg \mathrm{b}+\neg \mathrm{c}+\neg \mathrm{d})(\neg \mathrm{b}+\mathrm{c}+\mathrm{d})(\mathrm{a}+\mathrm{b}+\mathrm{c})$

Skolem functions

$\exists \mathrm{F}_{\mathrm{b}}(\mathrm{a}) \exists \mathrm{F}_{\mathrm{d}}(\mathrm{c}) \forall \mathrm{a} \forall \mathrm{c}$.
$\left(\neg \mathrm{a}+\neg \mathrm{F}_{\mathrm{b}}\right)\left(\neg \mathrm{F}_{\mathrm{b}}+\neg \mathrm{c}+\neg \mathrm{F}_{\mathrm{d}}\right)\left(\neg \mathrm{F}_{\mathrm{b}}+\mathrm{c}+\mathrm{F}_{\mathrm{d}}\right)\left(\mathrm{a}+\mathrm{F}_{\mathrm{b}}+\mathrm{c}\right)$

Dependency Quantified Boolean Formula

\square Deciding DQBF satisfiability is NEXPTIME-complete
\square DQBF solvers and preprocessors have been significantly advanced in recent years
\square More applications have been identified

Application: Combinational ECO

-Combinational ECO

$\forall X, Y, \exists T(D) .(Y=E(X)) \rightarrow(F(X, T)=G(X))$
where Y are internal signals referred to by D_{i}, and E are functions of Y signals

Application: Sequential ECO

\square Sequential ECO

$$
\begin{aligned}
& \forall X, Y, S_{1}, S_{2}, S_{1}^{\prime}, S_{2}^{\prime}, \exists T(D), Q\left(S_{1} \cup S_{2}\right), Q^{\prime}\left(S_{1}^{\prime} \cup S_{2}^{\prime}\right) \\
& \left(I\left(S_{1}, S_{2}\right) \rightarrow Q\right) \wedge \\
& \left(Q \wedge\left(Y=E\left(X, S_{1}\right)\right) \wedge R\left(X, S_{1}, S_{2}, S_{1}^{\prime}, S_{2}^{\prime}\right) \rightarrow Q^{\prime}\right) \wedge \\
& \left(Q \rightarrow\left(F\left(X, S_{1}, T\right)=G\left(X, S_{2}\right)\right)\right) \wedge \\
& \left(\left(S_{1}, S_{2}\right)=\left(S_{1}^{\prime}, S_{2}^{\prime}\right)\right) \rightarrow\left(Q=Q^{\prime}\right)
\end{aligned}
$$

where S_{1} and $S_{2}\left(S_{1}^{\prime}\right.$ and $\left.S_{2}^{\prime}\right)$ are current-state (next-state) variables of circuits F and G, respectively,
$D=\left\{D_{i}\right\}$ with $D_{i} \subseteq X \cup Y \cup S_{1}$, and
$R=\left(S_{1}^{\prime}=\Delta_{1}\left(X, S_{1}, T\right)\right) \wedge\left(S_{2}^{\prime}=\Delta_{2}\left(X, S_{2}\right)\right)$ with Δ_{1} and Δ_{2} being the transition functions of circuits F and G, respectively

Second-Order Quantified Boolean Satisfiability

Motivation

\square The great success of SAT-solving technology has motivated building solvers for more complex problems
■ E.g., from SAT (NP-complete) to QBF (PSPACE-complete), further to DQBF (S-form: NEXP-complete, H-form: coNEXPcomplete)
\square Second-order quantified Boolean formula (SOQBF) extends DQBF to the entire Exponential Time Hierarchy (EXPH)
$\square \Sigma_{1}^{\mathrm{EXP}}: \exists F_{1}, \forall X . \varphi$ (S-form DQBF); $\Pi_{1}^{\mathrm{EXP}}: \forall F_{1}, \exists X . \varphi$ (H-form DQBF)
$\square \Sigma_{2}^{\mathrm{EXP}}: \exists F_{1}, \forall F_{2}, \exists X . \varphi ; \Pi_{2}^{\mathrm{EXP}}: \forall F_{1}, \exists F_{2}, \forall X . \varphi$
$\square \Sigma_{3}^{\mathrm{EXP}}: \exists F_{1}, \forall F_{2}, \exists F_{3}, \forall X . \varphi ; \Pi_{3}^{\mathrm{EXP}}: \forall F_{1}, \exists F_{2}, \forall F_{3}, \exists X . \varphi$
\square SOQBF $_{k}$ is $\Sigma_{k}^{\mathrm{EXP}}$-complete (Π_{k}^{EXP}-complete) if starting with $\exists(\forall)$

Complexity Classes

Although SOQBF_{i} well corresponds to the Exponential Hierarchy (EXPH), SOQBF is unlikely to be EXPSPACEcomplete!

Syntax of SOQBF

\square General form
$\Phi::=0|1| x|f| \neg \Phi\left|\Phi_{1} \wedge \Phi_{2}\right| \exists x . \Phi \mid \exists f . \Phi$

- x : proposition (atomic) variable, f : function variable
$\square \exists x$: first-order quantifier, $\exists f$: second-order quantifier
- Assume each function variable f has a fixed support set, denoted $\mathbf{S}(f)$, of atomic variables
\square Convertible by Ackermann's expansion for functions with unfixed arguments
- E.g., $f(f(x, y), z)$ can be rewritten as

$$
\begin{aligned}
& \left.\exists w \cdot\left(f_{1} \wedge\left(w \leftrightarrow f_{2}\right)\right) \wedge \forall x, y, z, w \cdot((x \leftrightarrow w)(y \leftrightarrow z)) \rightarrow\left(f_{1} \leftrightarrow f_{2}\right)\right) \\
& \text { for } \mathbf{S}\left(f_{1}\right)=\{w, z\}, \mathbf{S}\left(f_{2}\right)=\{x, y\},
\end{aligned}
$$

\square General form can be converted to prenex form via variable renaming

Syntax of SOQBF

- Prenex form
$Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, Q_{n+1} X_{1}, \ldots, Q_{n+m} X_{m} . \varphi$
- $Q_{i}=\{\forall, \exists\}, Q_{i} \neq Q_{i+1}$ for $i \in[1, n-1]$ and $i \in[n+1, n+m-1]$
- F_{i} and X_{j} are sets of function and atomic variables, respectively

■ Each $f \in F_{i}$ is associated with a support set $\mathbf{S}(f) \subseteq X_{1} \cup \cdots \cup X_{m}$
■ : a quantifier-free formula over variables $F_{1} \cup \cdots \cup F_{n} \cup X_{1} \cup \cdots \cup$ X_{m}
■ SO-quantification level $\operatorname{lev}(f)=i$ for $f \in F_{i}$; FO-quantification level $\operatorname{lev}(x)=j$ for $x \in X_{j}$

- Assume all valuables in an SOQBF are quantified (with no free variables)
\square Prenex form with multiple levels of atomic quantifiers can be converted to prenex form with a single level of atomic quantifiers

Syntax of SOQBF

\square Prenex form with a single atomic quantification level

$$
\begin{aligned}
& Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, Q_{n+1} X . \varphi \\
& \quad Q_{i}=\{\forall, \exists\} \text { for } i \in 1, \ldots, n+1, \text { and } Q_{j} \neq Q_{j+1} \text { for } j \in[1, n]
\end{aligned}
$$

\square Collapsing atomic quantifiers into one level may incur level increase in second-order quantifiers

- E.g.,
$Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, \forall X_{1}, \exists y, \forall X_{2} . \varphi$
can be converted to

$$
Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, \exists f_{y}, \forall X_{1}, \forall y, \forall X_{2} .\left(y \leftrightarrow f_{y}\right) \rightarrow \varphi
$$

for $\mathbf{S}\left(f_{y}\right)=X_{1}$

Semantics of SOQBF

-Circuit representation of the matrix of $Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, Q_{n+1} X . \varphi$

Semantics of SOQBF

\square In evaluating an SOQBF, an assignment to a function variable f_{i} with $\left|\mathbf{S}\left(f_{i}\right)\right|=k$ corresponds to determining the truth-table values $t_{0}, t_{1}, \ldots, t_{2^{k}-1}$
\square Given an assignment α to all function variables $U_{i} F_{i}$, the SOQBF $\Phi=$ $Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, Q_{n+1} X . \varphi$ under assignment α is true if the QBF $\left.Q_{n+1} X \cdot \varphi\right|_{\alpha}$ induced under α is true

Semantics of SOQBF

$\square Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, Q_{n+1} X . \varphi$ can be evaluated by a series of QBF evaluations with respect to function variable assignments that follow the prefix of the second-order quantifiers $Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}$
\square Game-theoretic semantics

- A two-player game interpretation: The \exists-player (\forall-player) assigns existential (universal) function variables to satisfy (falsify) the formula. The prefix of the SOQBF determines the order of the players' moves. The SOQBF is true (false) iff the \exists-player (\forall-player) has a winning strategy.
\square An SOQBF is true if there exists a model (ヨ-player's winning strategy), i.e., a set of Skolem functionals for the existential function variables such that substituting each existential function variable with its corresponding Skolem functional makes the induced formula a tautology

Converting SOQBF to QBF

\square An SOQBF can be converted to a model-equivalent QBF via ground instantiation, where every function variable is instantiated with respect to a full assignment over its support set
■ Iteratively eliminating the innermost atomic variable through formula expansion until no more atomic variable is left

- Specifically,

$$
\begin{aligned}
& Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, Q X, \forall y . \varphi \text { is converted to } Q_{1} F_{1}^{y} \cup F_{1}^{\neg y}, \ldots, F_{1}^{y} \cup \\
& F_{1}^{\neg y}, Q X .\left.\left.\varphi\right|_{y} \wedge \varphi\right|_{\neg y} \\
& Q_{1} F_{1}, Q_{2} F_{2}, \ldots, Q_{n} F_{n}, Q X, \exists y . \varphi \text { is converted to } Q_{1} F_{1}^{y} \cup F_{1}^{\neg y}, \ldots, F_{1}^{y} \cup \\
& F_{1}^{\neg y}, Q X .\left.\left.\varphi\right|_{y} \vee \varphi\right|_{\neg y} \\
& \text { where } F_{i}^{y}=\left\{f^{\alpha \wedge y} \mid f^{\alpha} \in F_{i}, y \in \mathbf{S}\left(f^{\alpha}\right)\right\} \cup\left\{f^{\alpha} \mid f^{\alpha} \in F_{i}, y \notin \mathbf{S}\left(f^{\alpha}\right)\right\} \text { and } \\
& F_{i}^{\neg y}=\left\{f^{\alpha \wedge \neg ᄀ} \mid f^{\alpha} \in F_{i}, y \in \mathbf{S}\left(f^{\alpha}\right)\right\} \cup\left\{f^{\alpha} \mid f^{\alpha} \in F_{i}, y \notin \mathbf{S}\left(f^{\alpha}\right)\right\}
\end{aligned}
$$

Converting SOQBF to QBF

- Example

```
\(\square \forall g\left(x_{1}, x_{2}\right), \exists f\left(x_{1}, x_{3}\right), \forall x_{1}, \exists x_{2}, \forall x_{3} .\left(g+f+\neg x_{1}+\neg x_{2}+x_{3}\right)(g+\neg f)\)
\(=\forall g\left(x_{1}, x_{2}\right), \exists f^{x_{3}}\left(x_{1}\right), f \neg^{x_{3}}\left(x_{1}\right), \forall x_{1}, \exists x_{2}\).
    \(\left(g+f \neg x_{3}+\neg x_{1}+\neg x_{2}\right)\left(g+\neg f \neg x_{3}\right)\left(g+\neg f^{x_{3}}\right)\)
\(=\forall g^{x_{2}}\left(x_{1}\right), g \neg^{x_{2}}\left(x_{1}\right), \exists f^{x_{3}}\left(x_{1}\right), f \neg x_{3}\left(x_{1}\right), \forall x_{1}\).
    \(\left(g^{x_{2}}+f \neg x_{3}+\neg x_{1}\right)\left(g^{x_{2}}+\neg f \neg x_{3}\right)\left(g^{x_{2}}+\neg f^{x_{3}}\right)+\left(g \neg x_{2}+\neg f \neg x_{3}\right)\left(g \neg x^{x_{2}}+\neg f^{x_{3}}\right)\)
\(=\forall g^{x_{1} x_{2}}, g^{x_{1} \neg x_{2}}, g^{x_{1} x_{2}}, g^{x_{1} \neg x_{2}}, \exists f^{x_{1} x_{3}}, f^{x_{1} \neg x_{3}}, f \neg^{x_{1} x_{3}}, f \neg x_{1} \neg x_{3}\).
    \(\left(\left(g^{x_{1} x_{2}}+f^{x_{1} \neg x_{3}}\right)\left(g^{x_{1} x_{2}}+\neg f^{x_{1} \neg x_{3}}\right)\left(g^{x_{1} x_{2}}+\neg f^{x_{1} x_{3}}\right)+\left(g^{x_{1} \neg x_{2}}+\neg f^{x_{1} \neg x_{3}}\right)\left(g^{x_{1} \neg x_{2}}+\neg f^{x_{1} x_{3}}\right)\right)\)
    \(\left(\left(g \neg x_{1} x_{2}+\neg f \neg x_{1} \neg x_{3}\right)\left(g \neg x_{1} x_{2}+\neg f \neg x_{1} x_{3}\right)+\left(g \neg x_{1} \neg x_{2}+\neg f \neg x_{1} \neg x_{3}\right)\left(g \neg x_{1} \neg x_{2}+\neg f \neg x_{1} x_{3}\right)\right)\)
```


Application: Secure Unknown Function Synthesis

\square Synthesize an unknown function F, its composition with the context C satisfies property P regardless of the operation of G

Other Applications

-Quantified bit-vector formulas of SMT
\square Memory consistency checking
\square Planning for agents with opposing goals

Stochastic Boolean Satisfiability

Decision under Uncertainty (Example 1)

\square Evaluation of probabilistic circuits [Lee, J 14]

- Each gate produces correct value under a certain probability
■ Query about the average output error rate, the maximum error rate under some input assignment, etc.

Decision under Uncertainty (Example 2)

\square Probabilistic planning: Robot charge [Huang 06]

- States: $\left\{\mathrm{S}_{0}, \ldots, \mathrm{~S}_{15}\right\}$
\square Initial state: S_{0}; goal state: S_{15}
- Actions: $\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$
\square Succeed with prob. 0,8
\square Proceed to its right w.r.t. the intended direction with prob. 0,2

	S_{1}	S_{2}	S_{3}
S_{4}	S_{5}	S_{6}	S_{7}
S_{8}	S_{9}	S_{10}	S_{11}
S_{12}	S_{13}	S_{14}	2

Decision under Uncertainty (Example 3)

\square Probabilistic planning: Sand-Castle-67 [Majercik, Littman 98]

- States: (moat, castle) = \{(0,0), (0,1), (1,0), (1,1)\}
\square Initial state: $(0,0)$; goal states: $(0,1),(1,1)$
■ Actions: \{dig-moat, erect-castle\}
dig-moat

Decision under Uncertainty (Example 4)

\square Belief network inference [Dechter 96, Peot 98]

- BN queries, e.g., belief assessment, most probable explanation, maximum a posteriori hypothesis, maximum expected utility

From SAT to \#SAT \#SAT - A Counting Problem

-The \#SAT problem asks how many satisfying solutions are there for a given CNF formula
E.g., $(a+\neg b+c)(a+\neg c)(b+d)(\neg a+b)$ has 5 solutions, $(a, b, c, d)=(0,0,0,1),(1,1,-,-)$

- A \#P-complete problem
- A.k.a. model counting
\square Exact vs. approximate model counting
\square Weighted model counting: variables are weighted under a function $w: \operatorname{var}(\phi) \rightarrow[0,1]$
- Compute the sum of weights of satisfying assignments of ϕ

Motivation

\square Decision vs. counting problems

- SAT vs. \#SAT

■ HAMILTON PATH vs. \#HAMILTON PATH
■ MATCHING vs. PERMANET
■ GRAPH REACHABILITY vs. GRAPH RELIABILITY
\square From correctness verification to quantitative verification
\square System reliability

- AI planning under uncertainty

Concerned Problems in a Nutshell

\square SAT: Given a CNF Boolean formula, decide its satisfiability
\# \#SAT: Given a CNF Boolean formula, count its number of solutions
\square QBF: Given a PCNF quantified Boolean formula, decide its satisfiability
\square SSAT: Given a PCNF quantified Boolean formula, maximize its satisfying probability

- SSAT (D): decide whether its maximum satisfying probability $\geq \theta$
\square DQBF: Given a PCNF dependency quantified Boolean formula, decide its satisfiability
\square DSSAT: Given a PCNF dependency quantified Boolean formula, maximize its satisfying probability
■ DSSAT (D): decide whether its maximum satisfying probability $\geq \theta$

Related Complexity Classes

From QBF to SSAT
 Stochastic Boolean Satisfiability

\square A stochastic Boolean satisfiability (SSAT) formula is commonly written in a prenex form as

$$
\Phi=Q_{1} X_{1}, Q_{2} X_{2}, \ldots, Q_{n} X_{n} . \varphi
$$

for $Q_{i} \in\left\{\mathcal{R}^{p}, \exists\right\}, Q_{i} \neq Q_{i+1}$, and φ a quantifier-free formula often in CNF

- Randomized quantification $\mathcal{R}^{p} x$: variable x valuates to TRUE with probability p (different variables can have different probabilities)
- A variable $x \in X_{k}$ is of (quantification) level k

From QBF to SSAT
 Stochastic Boolean Satisfiability

\square Semantics of SSAT formula $\Phi=Q_{1} v_{1} \ldots Q_{n} v_{n} . \varphi\left(v_{1}, \ldots, v_{n}\right)$

- Satisfying probability (SP): Expectation of satisfying φ w.r.t. the prefix structure
$\square \operatorname{Pr}[\mathrm{T}]=1 ; \operatorname{Pr}[\perp]=0$$\operatorname{Pr}[\Phi]=\max \left\{\operatorname{Pr}\left[\left.\Phi\right|_{\neg v}\right], \operatorname{Pr}\left[\left.\Phi\right|_{\nu}\right]\right\}$, for outermost quantification $\exists v$ $\square \operatorname{Pr}[\Phi]=(1-p) \operatorname{Pr}\left[\left.\Phi\right|_{\neg \mathcal{V}}\right]+p \operatorname{Pr}\left[\left.\Phi\right|_{v}\right]$, for outermost quantification $\mathcal{R}^{p} v$
\square Optimization version: Find the SP maximum among all assignments of existential variables
- Decision version: Determine whether $\mathrm{SP} \geq \theta$
\square E.g., $\Phi=\exists x, \mathcal{R}^{0.7} y$. $(x \vee y)(\neg x \vee \neg y)$

$$
\operatorname{Pr}[\Phi]=0.7
$$

From QBF to SSAT Stochastic Boolean Satisfiability

\square A game (against nature) interpretation of SSAT

- Two-player game played by \exists-player (to maximize the expectation of satisfaction) and \mathcal{R}-player (to make random moves)

$$
\begin{aligned}
& \mathcal{R}^{0.6} \mathrm{a} \exists \mathrm{~b} \mathcal{R}^{0.5} \mathrm{c} \exists \mathrm{~d} . \\
& (\neg \mathrm{a}+\neg \mathrm{b})(\neg \mathrm{b}+\neg \mathrm{c}+\neg \mathrm{d})(\neg \mathrm{b}+\mathrm{c}+\mathrm{d})(\mathrm{a}+\mathrm{b}+\mathrm{c})
\end{aligned}
$$

Skolem functions

$$
\begin{aligned}
& \exists \mathrm{F}_{\mathrm{b}}(\mathrm{a}) \exists \mathrm{F}_{\mathrm{d}}(\mathrm{a}, \mathrm{c}) \mathcal{R}^{0.6} \mathrm{a} \mathcal{R}^{0.5} \mathrm{c} . \\
& \left(\neg \mathrm{a}+\neg \mathrm{F}_{\mathrm{b}}\right)\left(\neg \mathrm{F}_{\mathrm{b}}+\neg \mathrm{c}+\neg \mathrm{F}_{\mathrm{d}}\right)\left(\neg \mathrm{F}_{\mathrm{b}}+\mathrm{c}+\mathrm{F}_{\mathrm{d}}\right)\left(\mathrm{a}+\mathrm{F}_{\mathrm{b}}+\mathrm{c}\right)
\end{aligned}
$$

Recent SSAT Solvers

■clauSSat [CHJ22]

- Combining QBF clause selection techniques and model counting
- Allowing both exact and approximate solution search
■ElimSSat [WTJS22]
- Solving based on quantifier elimination
\square SharpSSat [FJ23]
- Solving based on component analysis

Applications

\square AI planning under uncertainty [Littman et al. 2001]
\square Belief network inference [Littman et al. 2001]
\square Trust management [Freudenthal et al. 2003]
\square Equivalence verification of probabilistic circuits [Lee et al. 2018]

Dependency Stochastic Boolean Satisfiability

From DQBF to DSSAT Dependency SSAT

\square A dependency SSAT (DSSAT) formula is commonly written in a prenex form as

$$
\Phi=\mathcal{R} X, \exists y_{1}\left(D_{1}\right), \ldots, \exists y_{m}\left(D_{m}\right) . \varphi
$$

prefix

matrix
for $D_{i} \subseteq X$ being the dependency set of y_{i} and φ a quantifier-free formula
\square SP of Φ w.r.t. Skolem functions f_{1}, \ldots, f_{m} is $\operatorname{Pr}\left[\mathcal{R} X .\left.\varphi\right|_{f_{1}\left(D_{1}\right) / y_{1}, \ldots, f_{m}\left(D_{m}\right) / y_{m}}\right]$
\square Optimization version: Find the maximum SP
\square Decision version: Determine whether $\mathrm{SP} \geq \theta$
[Lee, J., AAAI 2021]

From DQBF to DSSAT Dependency SSAT

-DSSAT (D) is NEXP-complete
\square By the fact that DSSAT (D) is in NEXP and polynomial-time reducible from DQBF

DSSAT Solver

-DSSATpre [CJ23]

- A preprocessing-based solver converting a DSSAT instance to an SSAT instance

Application: Probabilistic Partial Design

\square Probabilistic design is a new paradigm in VLSI design,
 which allows logic gates to have probabilistic errors
\square Black-box synthesis for probabilistic circuit design
■ Black-box outputs t_{1}, t_{2}, \ldots with their respective inputs D_{1}, D_{2}, \ldots

- X : primary inputs, Z : errorsource pseudo-inputs, Y : intermediate variables

$$
\mathcal{R} X, \mathcal{R} Z, \forall Y, \exists T(D) .(Y=E(X)) \rightarrow(F(X, Z, T)=G(X))
$$

Application: Dec-POMDP

\square Decentralized Partially Observable Markov Decision Process (Dec-POMDP) generalizes POMDP from single agent to multiple agents

- $M=\left(I, S,\left\{A_{i}\right\}, T, \rho,\left\{O_{i}\right\}, \Omega, \Delta_{0}, h\right)$
\square Agents $I=\{1, \ldots, n\}$
\square States S
\square Actions $\left\{A_{i}\right\}, i \in I$
-Transition distribution $T: S \times\left(A_{1} \times \cdots \times A_{n}\right) \times S \rightarrow[0,1]$
\square Reward $\rho: S \times\left(A_{1} \times \cdots \times A_{n}\right) \rightarrow \mathrm{R}$
\square Observations $\left\{O_{i}\right\}, i \in I$
\square Observation distribution $\Omega: S \times\left(A_{1} \times \cdots \times A_{n}\right) \times\left(O_{1} \times \cdots \times O_{n}\right) \rightarrow$ [0,1]
\square Initial state distribution $\Delta_{0}: S \rightarrow[0,1]$
- Horizon h

Application: Dec-POMDP

\square Goal: Find optimal joint policy to maximize the expected total reward $E\left[\sum_{t=0}^{h-1} \rho\left(s^{t}, \vec{a}^{t}\right)\right]$
\square Dec-POMDP is NEXP-complete and polynomial-time reducible to DSSAT

Summary and Outlook

\square Subjects covered
■ Logic synthesis in a nutshell

- Boolean satisfiability
- Quantified Boolean satisfiability
- Beyond QBF
-DQBF, SOQBF
- \#SAT, SSAT, DSSAT
\square Satisfiability and counting are fundamental in computation
■ Crucial in applications such as EDA, AI, software engineering, etc.
■ New formalisms, solvers, and applications await further exploration

Thanks for Your Attention!

References (1/3)

- Satisfiability
- A. Biere, M. Heule, H. Van Maaren, T. Walsh. Handbook of Satisfiability, Second Edition, IOS Press, 2021.
- Complexity
- C. Papadimitriou. Computational Complexity, Pearson Publishers, 1993.
- S. Arora, B. Barak. Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
\square Boolean function representation
- J.-H. Jiang, S. Devadas. Logic synthesis in a nutshell, in Electronic Design Automation, MK Publishers, 2009.
\square SAT
- J. Marques Silva, K. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Trans. Computers 48(5): 506-521 (1999)
- M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, S. Malik. Chaff: Engineering an Efficient SAT Solver. DAC 2001: 530-535
■ N. Eén, N. Sörensson. An Extensible SAT-solver. SAT 2003: 502-518

References (2/3)

\square Craig interpolation
■ K. McMillan. Interpolation and sat-based model checking. CAV 2003: 1-13

- K. McMillan. An interpolating theorem prover. Theoretical Computer Science, 345(1): 101121, 2005.
\square Combinational equivalence checking
- A. Mishchenko, S. Chatterjee, R. Brayton, N. Eén. Improvements to combinational equivalence checking. ICCAD 2006: 836-843
\square Functional dependency
- J.-H. Jiang, C.-C. Lee, A. Mishchenko, C.-Y. Huang. To SAT or Not to SAT: Scalable Exploration of Functional Dependency. IEEE Trans. Computers 59(4): 457-467 (2010)
\square Boolean matching
- C.-F. Lai, J.-H. Jiang, K.-H. Wang. BooM: A decision procedure for Boolean matching with abstraction and dynamic learning. DAC 2010: 499-504
\square Relation determinization
- J.-H. Jiang, H.-P. Lin, W.-L. Hung. Interpolating functions from large Boolean relations. ICCAD 2009: 779-784

References (3/3)

- QBF certification
- V. Balabanov, J.-H. Jiang. Unified QBF certification and its applications. Formal Methods Syst. Des. 41(1): 45-65 (2012)
\square DQBF
- V. Balabanov, H.-J. Chiang, J.-H. Jiang. Henkin quantifiers and Boolean formulae: A certification perspective of DQBF. Theor. Comput. Sci. 523: 86-100 (2014)
- C. Scholl, R. Wimmer. Dependency Quantified Boolean Formulas: An Overview of Solution Methods and Applications - Extended Abstract. SAT 2018: 3-16
SOQBF
■ J.-H. Jiang. Second-Order Quantified Boolean Logic. AAAI 2023: 4007-4015
- SSAT
- P.-W. Chen, Y.-C. Huang, J.-H. Jiang. A Sharp Leap from Quantified Boolean Formula to Stochastic Boolean Satisfiability Solving. AAAI 2021: 3697-3706
- H.-R. Wang, K.-H. Tu, J.-H. Jiang, C. Scholl. Quantifier Elimination in Stochastic Boolean Satisfiability. SAT 2022: 23:1-23:17
- Y.-W. Fan, J.-H. R. Jiang. SharpSSAT: A Witness-Generating Stochastic Boolean Satisfiability Solver. AAAI 2023: 3949-3958
- DSSAT
- N.-Z. Lee, J.-H. Jiang. Dependency Stochastic Boolean Satisfiability: A Logical Formalism for NEXPTIME Decision Problems with Uncertainty. AAAI 2021: 3877-3885
- C. Cheng, J.-H. Jiang. Lifting (D)QBF Preprocessing and Solving Techniques to (D)SSAT. AAAI 2023: 3906-3914

