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Logic Synthesis

D

x yλ
δ

Given: Functional description of finite-state 
machine F(Q,X,Y,δ,λ) where:
Q:  Set of internal states
X:  Input alphabet
Y:  Output alphabet
δ:  X x Q → Q    (next state function)
λ:  X x Q → Y    (output function)

Target: Circuit C(G, W) where:
G:   set of circuit components g ∈ {gates, FFs, etc.}
W:  set of wires connecting G

2023/8/24
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Backgrounds
 Historic evolution of data structures and tools in 

logic synthesis and verification
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Boolean Function Representation

Logic synthesis translates Boolean 
functions into circuits

We need representations of Boolean 
functions for two reasons:
 to represent and manipulate the actual circuit 

that we are implementing
 to facilitate Boolean reasoning

2023/8/24
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Boolean Space
 B = {0,1}
 B2 = {0,1}×{0,1} = {00, 01, 10, 11} 

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4

2023/8/24
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Boolean Function
 A Boolean function f over input variables: x1, x2, …, xm, is a 

mapping f: Bm → Y, where B = {0,1} and Y = {0,1,d}
 E.g.
 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111}  (characteristic function f1 = x2 )

 off-set (f = 0) 
 E.g. {100, 101}  (characteristic function f0 = x1 ¬x2 )

 don’t-care set (f = d) 
 E.g. {000, 001}  (characteristic function fd = ¬x1 ¬x2 )

 f is an incompletely specified function if the don’t-care set is 
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely 

specified

2023/8/24
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Boolean Function
 A Boolean function f: Bn → B over variables 

x1,…,xn maps each Boolean valuation (truth 
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1, 
f(1,1) = 0

0
0
1

1
x2

x1

x1

x2

2023/8/24
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Boolean Function
 Onset of f, denoted as f1, is f1= {v ∈ Bn | f(v)=1}

 If f1 = Bn, f is a tautology
 Offset of f, denoted as f0, is f0= {v ∈ Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.
 f1 and f0 are sets, not functions!
 Boolean functions f and g are equivalent if ∀v∈ Bn. f(v) =

g(v) where v is a truth assignment or Boolean valuation
 A literal is a Boolean variable x or its negation x′ (or x, ¬x) 

in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1

2023/8/24



FLOLAC 2023 12

Boolean Function
 There are 2n vertices in Bn

 There are 22n
distinct Boolean functions 

 Each subset f1 ⊆ Bn of vertices in Bn forms a 
distinct Boolean function f with onset f1

x1x2x3 f
0 0 0    1
0 0 1    0
0 1 0    1
0 1 1    0
1 0 0  ⇒ 1
1 0 1    0
1 1 0    1
1 1 1    0

x1

x2

x3

2023/8/24
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Boolean Operations
Given two Boolean functions:

f :  Bn → B
g : Bn → B

 h = f ∧ g from AND operation is defined as
h1 = f1 ∩ g1; h0 = Bn \ h1

 h = f ∨ g from OR operation is defined as
h1 = f1 ∪ g1; h0 = Bn \ h1

 h = ¬f  from COMPLEMENT operation is defined as
h1 = f0; h0 = f1

2023/8/24
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Cofactor and Quantification
Given a Boolean function:

f :  Bn → B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi
h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi
h = f¬xi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi
h = ∃xi. f  is defined as h = f(x1,x2,…,0,…,xn) ∨ f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi
h = ∀xi. f  is defined as h = f(x1,x2,…,0,…,xn) ∧ f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi
h = ∂f/∂xi is defined as h = f(x1,x2,…,0,…,xn) ⊕ f(x1,x2,…,1,…,xn)

2023/8/24
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Boolean Function Representation
 Some common representations:

 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF) 
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even 

subcircuits
 Specialized Boolean network

 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and 

weaknesses (no single data structure is best for all 
applications)

2023/8/24
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Boolean Function Representation
Truth Table
 Truth table (function table for multi-valued 

functions):
The truth table of a function f : Bn → B is a 
tabulation of its value at each of the 2n

vertices of Bn. 

In other words the truth table lists all mintems
Example: f = a′b′c′d + a′b′cd + a′bc′d + 

ab′c′d + ab′cd + abc′d + 
abcd′ + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their 
canonical representations are isomorphic.

abcd f
0 0000 0
1 0001 1
2 0010 0
3 0011 1
4 0100 0
5 0101 1
6 0110 0
7 0111 0

abcd f
8 1000 0
9 1001 1
10 1010 0
11 1011 1
12 1100 0
13 1101 1
14 1110 1
15 1111 1

2023/8/24
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Boolean Function Representation
Boolean Formula
 A Boolean formula is defined inductively as an expression 

with the following formation rules (syntax):

formula ::=  ‘(‘ formula ‘)’
|        Boolean constant (true or false)
|        <Boolean variable>
| formula “+” formula (OR operator)
| formula  “⋅”  formula (AND operator)
|        ¬ formula (complement)

Example
f = (x1 ⋅ x2) + (x3) + ¬(¬(x4 ⋅ (¬x1)))
typically “⋅” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is 
clear, e.g., f = x1 x2 + x3 + x4 ¬x1

2023/8/24
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Boolean Function Representation
Boolean Formula in SOP

 Any function can be represented as a sum-of-
products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form 
(DNF)

Example
ϕ = ab + a’c + bc

2023/8/24
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Boolean Function Representation
Boolean Formula in POS

 Any function can be represented as a product-of-
sums (POS), also called conjunctive normal form 
(CNF)
 Dual of the SOP representation

Example 
ϕ = (a+b′+c) (a′+b+c) (a+b′+c′) (a+b+c)

 Exercise: Any Boolean function in POS can be 
converted to SOP using De Morgan’s law and the 
distributive law, and vice versa

2023/8/24
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Boolean Function Representation
Binary Decision Diagram

 BDD – a graph 
representation of Boolean 
functions
 A leaf node represents 

constant 0 or 1
 A non-leaf node

represents a decision node 
(multiplexer) controlled by 
some variable

 Can make a BDD 
representation canonical
by imposing the variable 
ordering and reduction 
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root 
node

c+d

d

2023/8/24
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Boolean Function Representation
Binary Decision Diagram
 Any Boolean function f can be written in term of 

Shannon expansion 
f = v fv + ¬v f¬v

 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: f¬xi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by 

variable v represent two sub-functions fv and f¬v

v
0 1

f

fv fv

2023/8/24
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Boolean Function Representation
Binary Decision Diagram
 Reduced and ordered BDD (ROBDD) is a canonical

Boolean function representation
 Ordered:

cofactor variables are in the same order along all paths
xi1

< xi2
< xi3

< … < xin

 Reduced:
any node with two identical children is removed
two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a 
distinct logic function

a

c c

b

0 1

ordered
(a<c<b)

a

b c

c

0 1

not
ordered

b

a

b

0 1

f

b

0 1

f

reduce

2023/8/24
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Boolean Function Representation
Binary Decision Diagram
 For a Boolean function, 

 ROBDD is unique with respect to a given variable ordering
 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+dc

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node2023/8/24
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Boolean Function Representation
Boolean Network
 A Boolean network is a directed graph C(G,N) 

where G are the gates and N ⊆ (G×G) are the 
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I ⊆ G
Outputs: O ⊆ G 
I ∩ O = ∅

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms 
of its inputs. 

2023/8/24
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Boolean Function Representation
Boolean Network
 The fanin FI(g) of a gate g are the predecessor gates of g:

FI(g) = {g’ | (g’,g) ∈ N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:
FO(g) = {g’ | (g,g’) ∈ N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of 
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its 
cone:
SUPPORT(g) = CONE(g) ∩ I

2023/8/24
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Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}
FO(6) = {7,9}
CONE(6) = {1,2,4,6}
SUPPORT(6) = {1,2}
Every node may have its own function

1

5
3

4
7

8

9
2

2023/8/24
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Boolean Function Representation
And-Inverter Graph
 AND-INVERTER graphs (AIGs)

vertices: 2-input AND gates 
edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic 
circuits

f

g g

f

2023/8/24
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Boolean Function Representation
 Truth table

 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node 

functions in a Boolean network
 POS

 Useful in SAT solving and Boolean reasoning 
 Rarely used in circuit synthesis (due to the asymmetric characteristics 

of NMOS and PMOS)
 ROBDD

 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning

2023/8/24
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Circuit to CNF Conversion
 Naive conversion of circuit to CNF:

 Multiply out expressions of circuit until two level structure
 Example: y = x1⊕ x2 ⊕ x2 ⊕ ... ⊕ xn (Parity function)

 circuit size is linear in the number of variables

⊕   

 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed 

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of 

the circuit

2023/8/24
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Circuit to CNF Conversion
 Example

 Single gate:

 Circuit of connected gates:

b

a
c (¬a + ¬b + c)(a + ¬c)(b + ¬c)

AND

1

6

2 5
8

7

3

4

9 0

(¬1 + 2 + 4)(1 + ¬4)(¬2 + ¬4)
(¬2 + ¬3 + 5)(2 + ¬5)(3 + ¬5)
(2 + ¬3 + 6)(¬2 + ¬6)(3 + ¬6)
(¬4 + ¬5 + 7)(4 + ¬7)(5 + ¬7)
(5 + 6 + 8)(¬5 + ¬8)(¬6 + ¬8)
(7 + 8 + 9)(¬7 + ¬9)(¬8 + ¬9)
(9)

Justify to “1”

Is output always 0 ?

2023/8/24
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Circuit to CNF Conversion

Circuit to CNF conversion 
 can be done in linear size (with respect to the 

circuit size) if intermediate variables can be 
introduced

may grow exponentially in size if no 
intermediate variables are allowed

2023/8/24



FLOLAC 2023 32

Propositional Satisfiability

2023/8/24
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Normal Forms

 A literal is a variable or its negation
 A clause (cube) is a disjunction (conjunction) of 

literals
 A conjunctive normal form (CNF) is a 

conjunction of clauses; a disjunctive normal 
form (DNF) is a disjunction of cubes

 E.g.,
CNF: (a+¬b+c)(a+¬c)(b+d)(¬a)
(¬a) is a unit clause, d is a pure literal

DNF: a¬bc + a¬c + bd + ¬a

2023/8/24
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Satisfiability
 The satisfiability (SAT) problem asks whether a 

given CNF formula can be true under some 
assignment to the variables

 In theory, SAT is intractable
 The first shown NP-complete problem [Cook, 1971]

 In practice, modern SAT solvers work 
‘mysteriously’ well on application CNFs with 
~100,000 variables and ~1,000,000 clauses
 It enables various applications, and inspires solver 

development for QBF, SMT (Satisfiability Modulo 
Theories), DQBF, SSAT, etc.

2023/8/24
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SAT Competition

http://www.satcompetition.org/PoS11/

2023/8/24
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SAT Solving 
 Ingredients of modern SAT solvers:

 DPLL-style search 
[Davis, Putnam, Logemann, Loveland, 1962]

 Conflict-driven clause learning (CDCL)
[Marques-Silva, Sakallah, 1996 (GRASP)]

 Boolean constraint propagation (BCP) with two-literal 
watch
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Decision heuristics using variable activity
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Restart
 Preprocessing
 Support for incremental solving

[Een, Sorensson, 2003 (MiniSat)]

2023/8/24
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Pre-Modern SAT Procedure
Algorithm DPLL(Φ)
{

while there is a unit clause {l} in Φ 
Φ = BCP(Φ, l); 

while there is a pure literal l in Φ 
Φ = assign(Φ, l); 

if all clauses of Φ satisfied   return true; 
if Φ has a conflicting clause   return false; 
l := choose_literal(Φ); 
return DPLL(assign(Φ,¬l)) ∨ DPLL(assign(Φ,l));

} 

2023/8/24
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DPLL Procedure

Chorological backtrack

E.g. 
a

b

c

0

0

0
⊥

⊥

1

1

T

~a ~b b ~c c d
{¬a,e}
{a,b,¬c}
{c,¬d}
{a,b,d}
{d,e}
{c,d,¬e}

~d

~e

⊥

~c

~c d

⊥

~a ~b

2023/8/24
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Modern SAT Procedure 
Algorithm CDCL(Φ)
{

while(1)
while there is a unit clause {l} in Φ 

Φ = BCP(Φ, l); 
while there is a pure literal l in Φ 

Φ = assign(Φ, l); 
if Φ contains no conflicting clause

if all clauses of Φ are satisfied   return true; 
l := choose_literal(Φ); 
assign(Φ,l);

else
if conflict at top decision level   return false; 
analyze_conflict();
undo assignments;
Φ := add_conflict_clause(Φ); 

} 

2023/8/24
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Conflict Analysis & Clause Learning
 There can be many learnt 

clauses from a conflict
 Clause learning admits non-

chorological backtrack

 E.g.,
{¬x10587, ¬x10588, 
¬x10592}
…
{¬x10374, ¬x10582, 
¬x10578, ¬x10373, ¬x10629}
…
{x10646, x9444, ¬x10373, 
¬x10635, ¬x10637}

Courtesy of Niklas Een

Box: decision node
Oval: implication node
Inside: literal (decision level)

2023/8/24
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Clause Learning as Resolution
 Resolution of two clauses C1∨x and C2∨¬x:

C1∨x C2∨¬x
C1∨C2

where x is the pivot variable and C1∨C2 is the resolvant, 
i.e., C1∨C2 = ∃x.(C1∨x)(C2∨¬x)

 A learnt clause can be obtained from a sequence of 
resolution steps
 Exercise: 

Find a resolution sequence leading to the learnt clause 
{¬x10374, ¬x10582, ¬x10578, ¬x10373, ¬x10629}
in the previous slides

2023/8/24
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Resolution
 Resolution is complete for SAT solving

 A CNF formula is unsatisfiable if and only if there exists 
a resolution sequence leading to the empty clause

 Example (a∨b∨c)(¬a∨c)(¬b∨¬d)(¬c)(c∨d)

(b∨c)

(c∨¬d)

(d)

(¬d)

()
2023/8/24
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SAT Certification

True CNF
Satisfying assignment (model)

Verifiable in linear time

False CNF
Resolution refutation

Potentially of exponential size 

2023/8/24
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Craig Interpolation

 [Craig Interpolation Thm, 1957]
If A∧B is UNSAT for formulae A
and B, there exists an 
interpolant I of A such that

1.   A⇒I
2.   I∧B is UNSAT
3.   I refers only to the common 
variables of A and B

BA

I

I is an abstraction of A

2023/8/24
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Interpolant and Resolution Proof
 SAT solver may produce the resolution proof of an UNSAT 

CNF ϕ
 For ϕ= ϕA∧ϕB specified, the corresponding interpolant can 

be obtained in time linear in the resolution proof
ϕA ϕB

(a∨b∨c)(¬a∨c)(¬b∨¬d)(¬c)(c∨d)

(b∨c)

(c∨¬d)

(d)

(¬d)

()

(b∨c)(c)(1)(1)(1)

= (b∨c)

[McMillan, 2003]

2023/8/24
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Incremental SAT Solving

To solve, in a row, multiple CNF formulae, 
which are similar except for a few clauses, 
can we reuse the learnt clauses? 
What if adding a clause to ϕ?
What if deleting a clause from ϕ?

2023/8/24
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Incremental SAT Solving

MiniSat API
 void addClause(Vec<Lit> clause)
 bool solve(Vec<Lit> assumps)
 bool readModel(Var x) − for SAT results
 bool assumpUsed(Lit p) − for UNSAT results

 The method solve() treats the literals in assumps as unit 
clauses to be temporary assumed during the SAT-
solving.

 More clauses can be added after solve() returns, then 
incrementally another SAT-solving executed.

Courtesy of Niklas Een

2023/8/24
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SAT & Logic Synthesis
Equivalence Checking

2023/8/24
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Combinational EC
 Given two combinational circuits C1 and C2, are 

their outputs equivalent under all possible input 
assignments?

x C1

C2x

≡
?

y1

y2

2023/8/24
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Miter for Combinational EC

 Two combinational circuits C1 and C2 are 
equivalent if and only if the output of their “miter”
structure always produces constant 0

x 0?

C1

C2

2023/8/24
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Approaches to Combinational EC

Basic methods:
 random simulation

good at identifying inequivalent signals
 BDD-based methods
 structural SAT-based methods

x 0?

C1

C2

2023/8/24
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SAT & Logic Synthesis
Functional Dependency

2023/8/24
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Functional Dependency

f(x) functionally depends on g1(x), 
g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)), 
denoted h(G(x))
Under what condition can function f be 

expressed as some function h over a set 
G={g1,…,gm} of functions ?

 h exists ⇔ ∃a,b such that f(a)≠f(b) and G(a)=G(b)

i.e., G is more distinguishing than f

2023/8/24
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Motivation

Applications of functional dependency
Resynthesis/rewiring
Redundant register removal 
BDD minimization
Verification reduction
…

f

g4g3
g2

g1
target function
base functions

h
Boolean Network

2023/8/24
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BDD-Based Computation

BDD-based computation of h
hon = {y ∈ Bm : y = G(x) and f(x) = 1, x ∈ Bn} 
hoff = {y ∈ Bm : y = G(x) and f(x) = 0, x ∈ Bn}

Bn Bm
Gf(x) = 1

f(x) = 0

hon = ∃x.(y≡G)∧f

hoff = ∃x.(y≡G)∧¬f

2023/8/24
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BDD-Based Computation

Pros
 Exact computation of hon and hoff

Better support for don’t care minimization

Cons
2 image computations for every choice of G
 Inefficient when |G| is large or when there are 

many choices of G

2023/8/24
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SAT-Based Computation

h exists ⇔
∃a,b such that f(a)≠f(b) and G(a)=G(b),
i.e., (f(x)≡f(x*))∧(G(x)≡G(x*)) is UNSAT

How to derive h? How to select G?

2023/8/24
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SAT-Based Computation

 (f(x)≡f(x*))∧(G(x)≡G(x*)) is UNSAT

Circuit 
Part

== =

…

…

……

1 0

DFNoffDFNon

0y *y0
*y2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x2

Constraint 
Part

*y1

Assertion 
Constraints

Equality 
Constraints

2023/8/24
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Deriving h with Craig Interpolation
 Clause set A: CDFNon, y0
 Clause set B: CDFNoff, ¬y0

*, (yi≡yi
*) for i =1,…,m

 I is an overapproximation of Img( fon ) and is disjoint from  
Img( foff )

 I only refers to y1,…, ym
 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y0
*y2

*
my……1y 2y my

1x 2x nx 1
*x *

nx*x2

*y1

A B

Img(fon) Img(foff)

2023/8/24
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Incremental SAT Solving

 Controlled equality constraints 
(yi≡yi

*) → (¬yi ∨ yi
* ∨ αi)(yi ∨ ¬yi

* ∨ αi) 
with auxiliary variables αi

 Fast switch between target and base functions by unit 
assumptions over control variables

 Fast enumeration of different base functions
 Share learned clauses

αi = true ⇒ ith equality constraint is disabled 

2023/8/24
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SAT vs. BDD
 SAT
 Pros

 Detect multiple choices of 
G automatically

 Scalable to large |G|
 Fast enumeration of 

different target functions 
f

 Fast enumeration of 
different base functions G

 Cons
 Single feasible 

implementation of h

 BDD
 Cons

 Detect one choice of G at 
a time

 Limited to small |G|
 Slow enumeration of 

different target functions 
f

 Slow enumeration of 
different base functions G

 Pros
 All possible 

implementations of h
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Quantified Boolean 
Satisfiability
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Quantified Boolean Formula
 A quantified Boolean formula (QBF) is often 

written in prenex form (with quantifiers placed 
on the left) as

Q1 x1, …, Qn xn. ϕ

for Qi ∈ {∀, ∃} and ϕ a quantifier-free formula 
 If ϕ is further in CNF, the corresponding QBF is in the 

so-called prenex CNF (PCNF), the most popular QBF 
representation

 Any QBF can be converted to PCNF

prefix matrix
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Quantified Boolean Formula

Quantification order matters in a QBF
A variable xi in (Q1 x1,…, Qi xi,…, Qn xn. ϕ) 

is of level k if there are k quantifier 
alternations (i.e., changing from ∀ to ∃ or 
from ∃ to ∀) from Q1 to Qi. 
 Example

∀a ∃b ∀c ∀d ∃e. ϕ
level(a)=0, level(b)=1, level(c)=2, level(d)=2, 
level(e)=3
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Quantified Boolean Formula
Many decision problems can be 

compactly encoded in QBFs

 In theory, QBF solving (QSAT) 
is PSPACE complete
 The more the quantifier 

alternations, the higher the 
complexity in the Polynomial 
Hierarchy

 In practice, solvable QBFs are 
typically of size ~1,000 
variables

P

PSPACE

coNP NP

Π2 ∑2
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QBF Solver
 QBF solver choices

 Data structures for formula representation
 Prenex vs. non-prenex
Normal form vs. non-normal form

 CNF, NNF, BDD, AIG, etc.
 Solving mechanisms

 Search, Q-resolution, Skolemization, quantifier elimination, etc.
 Preprocessing techniques

 Standard approach
 Search-based PCNF formula solving (similar to SAT)

 Both clause learning (from a conflicting assignment) and cube 
learning (from a satisfying assignment) are performed
 Example 

∀a ∃b ∃c ∀d ∃e. (a+c)(¬a+¬c)(b+¬c+e)(¬b)(c+d+¬e)(¬c+e)(¬d+e)
from 00101, we learn cube ¬a¬bc¬d (can be further simplified to ¬a)
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QBF Solving
 Example

))()()()()()(( ybabxbxaccybxcybxacyba +++++++++++++++

>< La, >< Ra,
))()()()()(( ybbxcybxcybxcyb +++++++++ ))()()(( bxbxccybx +++++

>< Lx, >< Rx,
))()()()(( ybcybcybcyb ++++++ ))()()(( ybbcycyb ++++

>< Ub, >< Ub,
))()(( cycycy +++ >< Pc,

>< Ly, >< Ry,
))(( cc )(c

}{true}{ false

>< Py,
))()()(( bxbxccbx ++++

>< Uc,
))()(( bxbxbx +++

>< Lx, >< Rx,
)(b ))(( bb

}{true

}{true }{ false

∀

∀

∀

∃

cybxa ∃∀∃∀∃

)( ycbxa

)( cbxa

)( cbxa
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Q-Resolution
 Q-resolution on PCNF is similar to resolution on CNF, except that 

the pivots are restricted to existentially quantified variables and 
the additional rule of ∀-reduction

C1∨x C2∨¬x

∀-RED(C1∨C2)

where operator ∀-RED removes from C1∨C2 the universally (∀) 
quantified variables whose quantification levels are greater than 
any of the existentially (∃) quantified variables in C1∨C2
 E.g., 

prefix: ∀a ∃b ∀c ∀d ∃e 
∀-RED(a+b+c+d) = (a+b) 

 Q-resolution is complete for QBF solving
 A PCNF formula is unsatisfiable if and only if there exists a Q-

resolution sequence leading to the empty clause
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Q-Resolution
 Example (cont’d)

>< La, >< Ra,

>< Lx,

>< Ub,

>< Ly,

}{ false

>< Py,

>< Uc,

>< Rx,

>< Lc, >< Rc,
}{ false

)( xba ++

)( bx +

}{ false
>< Lb, >< Rb,

}{ false

)( cy + )(a

)( xac ++

)(a

)(a

)(a

)( bx +)( bxac +++)( cyxba ++++)( cyba +++

)(a

)(a

)(⊥

cybxa ∃∀∃∀∃ ))()()()()()(( ybabxbxaccybxcybxacyba +++++++++++++++
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Skolemization
 Skolemization and Skolem normal form

 Existentially quantified variables are 
replaced with function symbols

 QBF prefix contains only two 
quantification levels 
 ∃ function symbols, ∀ variables

 Example

∀a ∃b ∀c ∃d. 
(¬a+¬b)(¬b+¬c+¬d)(¬b+c+d)(a+b+c)

∃Fb(a) ∃Fd(a,c) ∀a ∀c.
(¬a+¬Fb)(¬Fb+¬c+¬Fd)(¬Fb+c+Fd)(a+Fb+c)

a

b

c

d

0 11 00 0 1 1 1 11 1 0 0 0 0
Skolem functions
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QBF Certification
 QBF certification

 Ensure correctness and, more importantly, provide useful 
information

 Certificates
 True QBF: term-resolution proof / Skolem-function (SF) model

 SF model is more useful in practical applications 
 False QBF: clause-resolution proof / Herbrand-function (HF) 

countermodel
 HF countermodel is more useful in practical applications 
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QBF Certification

Unified QBF certification

Cube resolution proof Clause resolution proof

Skolem function
(model)

Herbrand function
(countermodel)

True QBF False QBF

ResQu ResQu

formula 
negation
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ResQu
 A Skolem-function model (Herbrand-function 

countermodel) for a true (false) QBF can be 
derived from its cube (clause) resolution proof

 A Right-First-And-Or (RFAO) formula
is recursively defined as follows.
ϕ := clause | cube | clause ∧ ϕ | cube ∨ ϕ
 E.g., 

(a’+b) ∧ ac ∨ (b’+c’) ∧ bc 
= ((a’+b) ∧ (ac ∨ ((b’+c’) ∧ bc)))
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ResQu
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ResQu
 Example

 ∃a∀x∃b∀y∃c

7654321 )()()()()()()( ybabxcbxacybxcybxacyba +++++++++++++++

8)( ybxa +++

+++ 8)( bxa
+++ 10)( bxa

+9)(a

10)( ybxa +++

9)( xa +
11)( xa +

+11)(a

)(empty

++ 7)( ba
)2(

)3(

)1(

)4(

)5(
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QBF Certification

Applications of Skolem/Herbrand functions
 Program synthesis
Winning strategy synthesis in two player 

games
 Plan derivation in AI
 Logic synthesis
 ...
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QSAT & Logic Synthesis 
Boolean Matching
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Introduction

 Combinational 
equivalence checking 
(CEC)
 Known input 

correspondence
 coNP-complete
 Well solved in practical 

applications 

… …

x1 x2 xn

f g

y1 y2 yn
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Introduction
 Boolean matching 

 P-equivalence
 Unknown input 

permutation
O(n!) CEC iterations

 NP-equivalence
 Unknown input negation 

and permutation
O(2nn!) CEC iterations

 NPN-equivalence
 Unknown input negation, 

input permutation, and 
output negation

O(2n+1n!) CEC iterations

… …

x1 x2 xn

f g

y1 y2 yn

P N

νπ

N
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Introduction

Example

y1 y2 y3

g

x1 x2 x3

f

x1 x2 x3

=
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Introduction
 Motivations

 Theoretically
 Complexity in between 

coNP (for all …) and 
∑2 (there exists … for all …)
in the Polynomial Hierarchy (PH)
 Special candidate to test PH collapse

 Known as Boolean congruence/isomorphism 
dating back to the 19th century

 Practically
 Broad applications

 Library binding
 FPGA technology mapping
 Detection of generalized symmetry
 Logic verification
 Design debugging/rectification
 Functional engineering change order

 Intensively studied over the last two decades

P

PSPACE

coNP NP

Π2 ∑2
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Introduction

 Prior methods

Complete 
?

Function 
type

Equivalence 
type

Solution 
type

Scalability

Spectral 
methods

yes CS mostly P one – –

Signature 
based methods

no mostly CS P/NP N/A – ~ ++

Canonical-form 
based methods

yes CS mostly P one +

SAT based 
methods

yes CS mostly P one/all +

BooM
(QBF/SAT-like)

yes CS / IS NPN one/all ++

CS: completely specified
IS:  incompletely specified
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BooM: A Fast Boolean Matcher

Features of BooM
General computation framework
 Effective search space reduction techniques

Dynamic learning and abstraction
 Theoretical SAT-iteration upper-bound:

O(2nn!) O(22n)
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Formulation

 Reduce NPN-equiv to 2 NP-equiv checks
 Matching f and g; matching f and ¬g

 2nd order formula of NP-equivalence

 fc and gc are the care conditions of f and g, respectively

 Need 1st order formula instead for SAT solving

∃ν。π,∀x ((fc(x) ∧ gc(ν。π(x))) ⇒ (f(x) ≡ g(ν。π(x))))
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Formulation

0-1 matrix representation of ν。π

∑ =1

bij ⇒ (¬xj ≡ yi)aij ⇒ (xj ≡ yi)

∑ =1
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Formulation
 Quantified Boolean formula (QBF) for NP-equivalence

 ϕC: cardinality constraint
 ϕA: /\i,j (aij ⇒ (yi ≡ xj)) (bij ⇒ (yi ≡ ¬xj))

 Look for an assignment to a- and b-variables that satisfies 
ϕC and makes the miter constraint

Ψ = ϕA ∧ (f ≠ g) ∧ fc ∧ gc
unsatisfiable

 Refine ϕC iteratively in a sequence Φ〈0〉, Φ〈1〉, …, Φ〈k〉, for Φ〈i+1〉

⇒ Φ〈i〉 through conflict-based learning

∃a,∃b,∀x,∀y (ϕC ∧ ϕA ∧((fc ∧ gc) ⇒ (f ≡ g))
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BooM Flow
f (and fc) g (and gc)

Preprocess
(sig., abs.)

Solve mapping Φ〈i〉

SAT?

Solve miter Ψ

SAT?

No match

Match 
found

Add learned 
clause to Φ〈i〉

Ψ

Φ〈i〉 characterizes 
all matches

How to compute 
all matches?

Solve Φ〈i〉 ∧ Ψ

i=0

yes

no

i=i+1

no

yes
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NP-Equivalence
Conflict-based Learning

Observation

0       1       1 
ν。π

f g

1       0       1 

1 0

1        0       1 

From SAT 1

≠ How to avoid 
these 6 mappings 

at once?
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a11 b12 a13 b21 a22 b23 b31 a32 b33

Learnt clause generation
( a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33 )

NP-Equivalence
Conflict-based Learning

f g

1 0

ν。π
1 0 1 0 1 1

1 0 1
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NP-Equivalence
Conflict-based Learning
 Proposition:

If f(u) ≠ g(v) with v = ν。π(u) for some ν。π satisfying Φ〈i〉, 
then the learned clause \/ij lij for literals
lij = (vi ≠ uj) ? aij : bij
excludes from Φ〈i〉 the mappings {ν′。π′ | ν′。π′(u) = ν。π(u)}

 Proposition:
The learned clause prunes n! infeasible mappings

 Proposition:
The refinement process Φ〈0〉, Φ〈1〉, …, Φ〈k〉 is bounded by 22n

iterations
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NP-Equivalence
Abstraction
 Abstract Boolean matching

 Abstract 
f(x1,…,xk,xk+1,…,xn) to 
f(x1,…,xk,z,…,z) = 
f*(x1,…,xk,z) 

 Match g(y1,…,yn) against 
f*(x1,…,xk,z)

 Infeasible matching 
solutions of f* and g are 
also infeasible for f and g

y1 yk yn

g

yk+1

……

x1 xk

f*

z

…

x1 xk z

f

z

……

x1 xk xn

f

xk+1

……

P N
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NP-Equivalence
Abstraction

Abstract Boolean matching
Similar matrix representation of 

negation/permutation

Similar cardinality constraints, except for allowing 
multiple y-variables mapped to z

∑ =1

∑ =1
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NP-Equivalence
Abstraction

Used for preprocessing

Information learned for abstract model is 
valid for concrete model

Simplified matching in reduced Boolean 
space
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P-Equivalence
Conflict-based Learning

 Proposition: 
If f(u) ≠ g(v) with v = π(u) for some π satisfying 
Φ〈i〉, then the learned clause \/ij lij for literals
lij = (vi=0 and uj=1) ? aij : ∅
excludes from Φ〈i〉 the mappings {π′ | π′(u) = π(u)}
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P-Equivalence
Abstraction

Abstraction enforces search in biased truth 
assignments and makes learning strong
 For f* having k support variables, a learned 

clause converted back to the concrete model 
consists of at most (k–1)(n–k+1) literals
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QSAT & Logic Synthesis 
Relation Determinization
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Relation vs. Function
 Relation R(X, Y)

 Allow one-to-many 
mappings
Can describe non-

deterministic 
behavior

 More generic than 
functions

 Function F(X)
 Disallow one-to-many 

mappings 
Can only describe 

deterministic 
behavior

 A special case of 
relation

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00

11
10
01
00

x1x2 y1y2

f1 = x1 x2
f2 = ¬ x1¬ x2
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Relation

 Total relation
 Every input element is 

mapped to at least one 
output element

 Partial relation
 Some input element is 

not mapped to any 
output element

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y
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Relation

A partial relation can be totalized
Assume that the input element not mapped to 

any output element is a don’t care

11
10
01
00

1

0

x1x2 y

11
10
01
00

1

0

x1x2 y
Partial relation

Totalize

Total relation

T(X, y) = R(X, y) ∨ ∀y. ¬ R(X, y)
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Motivation

 Applications of Boolean relation
 In high-level design, Boolean relations can be used to 

describe (nondeterministic) specifications
 In gate-level design, Boolean relations can be used to 

characterize the flexibility of sub-circuits
Boolean relations are more powerful than traditional don’t-

care representations

11
10
01
00

11
10
01
00

x1x2 y1y2

System 
Spec.

x1

x2

y1

y2
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Motivation

Relation determinization
 For hardware implement of a system, we need 

functions rather than relations
Physical realization are deterministic by nature
One input stimulus results in one output response

 To simplify implementation, we can explore 
the flexibilities described by a relation for 
optimization
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Motivation

Example

f1 = x1 x2
f2 = ¬ x1¬ x2

f1 = x2
f2 = ¬ x1

11
10
01
00

11
10
01
00

x1x2 y1y2

11
10
01
00
z1z2

z1

z2

z1

z2

y1

y2

y1

y2

x1
x2

x1

x2
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Relation Determinization

Given a nondeterministic Boolean relation 
R(X, Y), how to determinize and extract 
functions from it?

For a deterministic total relation, we can 
uniquely extract the corresponding 
functions
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Relation Determinization

Approaches to relation determinization
 Iterative method (determinize one output at a 

time)
BDD- or SOP-based representation

 Not scalable
 Better optimization 

AIG representation
 Focus on scalability with reasonable optimization 

quality

Non-iterative method (determinize all ouputs 
at once)
QBF solving
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Iterative Relation Determinization
 Single-output relation

 For a single-output total relation R(X, y), we derive a 
function f for variable y using interpolation

11
10
01
00

1

0

x1x2 y
I

φBφA

φA : ¬ R(X,0)
Minimal care onset of f

φB : ¬ R(X,1)
Minimal care offset of f

00

11

¬ R(X,0)∧¬ R(X,1) UNSAT

10
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Iterative Relation Determinization

 Multi-output relation
 Two-phase computation:

1. Backward reduction
 Reduce to single-output case 

R(X, y1, …, yn) → ∃y2, …, ∃yn. R(X, y1, …, yn)
2. Forward substitution

 Extract functions
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Iterative Relation Determinization

Example

Phase1: (expansion reduction)
∃y3.R(X, y1, y2 , y3) → R(3)(X, y1, y2)
∃y2.R(3)(X, y1, y2)   → R(2)(X, y1) 

y1 y2X y3

f3

X

RR(3)R(2)

Phase2:
R(2)(X, y1) → y1 = f1 (X)
R(3)(X, y1, y2)    → R(3)(X, f1(X), y2)        → y2 = f2 (X)
R(X, y1, y2 , y3) → R(X, f1(X), f2(X), y2) → y3 = f3 (X)

f1

X
f2

X
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Non-Iterative Relation Determinization

Solve QBF 
∀x1,…,∀xm,∃y1,…,∃yn. R(x1,…,xm, y1, …, yn)

 The Skolem functions of variables y1, …, yn correspond to 
the functions we want

2023/8/24
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Dependency Quantified 
Boolean Satisfiability
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Dependency Quantified Boolean 
Formula
 A dependency quantified Boolean formula (DQBF) 

is commonly written in a prenex form as

Φ = ∀𝑋𝑋,∃𝑦𝑦1 𝐷𝐷1 , … ,∃𝑦𝑦𝑚𝑚(𝐷𝐷𝑚𝑚). 𝜑𝜑

for 𝐷𝐷𝑖𝑖 ⊆ 𝑋𝑋 being the dependency set of 𝑦𝑦𝑖𝑖 and 𝜑𝜑 a 
quantifier-free formula

Φ is true if and only if there exist Skolem
functions 𝑓𝑓𝑖𝑖(𝐷𝐷𝑖𝑖) for 𝑦𝑦𝑖𝑖 such that 𝜑𝜑|𝑓𝑓1 𝐷𝐷1 /𝑦𝑦1,…,𝑓𝑓𝑚𝑚 𝐷𝐷𝑚𝑚 /𝑦𝑦𝑚𝑚
is a tautology

prefix matrix

2023/8/24



Dependency Quantified Boolean 
Formula
 A game interpretation of DQBF 

 Multi-player game played between 
∀-player (to falsity the formula) 
and multiple ∃-players with partial 
information (to satisfy the 
formula)
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a

b

c

d

0 11 00 0 1 1 1 11 1 0 0 0 0
Skolem functions

∀a ∀c ∃b(a) ∃d(c). 
(¬a+¬b)(¬b+¬c+¬d)(¬b+c+d)(a+b+c)

∃Fb(a) ∃Fd(c) ∀a ∀c.
(¬a+¬Fb)(¬Fb+¬c+¬Fd)(¬Fb+c+Fd)(a+Fb+c)
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Dependency Quantified Boolean 
Formula
 Deciding DQBF 

satisfiability is 
NEXPTIME-complete

 DQBF solvers and 
preprocessors have been 
significantly advanced in 
recent years

More applications have 
been identified

P

PSPACE

coNP NP

Π2 ∑2

2023/8/24
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Application: Combinational ECO

Combinational ECO
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X

F

x
x

x
𝑡𝑡1

𝑡𝑡2

𝑡𝑡3

𝐷𝐷1
𝐷𝐷2

𝐷𝐷3

G
= = =

∀𝑋𝑋,𝑌𝑌,∃𝑇𝑇 𝐷𝐷 . 𝑌𝑌 = 𝐸𝐸 𝑋𝑋 → 𝐹𝐹 𝑋𝑋,𝑇𝑇 = 𝐺𝐺 𝑋𝑋

where 𝑌𝑌 are internal signals referred to by 𝐷𝐷𝑖𝑖, and 𝐸𝐸 are functions of 𝑌𝑌 signals 



Application: Sequential ECO

Sequential ECO

2023/8/24 FLOLAC 2023 114

∀𝑋𝑋,𝑌𝑌, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆1′ , 𝑆𝑆2′ ,∃𝑇𝑇 𝐷𝐷 ,𝑄𝑄 𝑆𝑆1 ∪ 𝑆𝑆2 ,𝑄𝑄′ 𝑆𝑆1′ ∪ 𝑆𝑆2′ .
𝐼𝐼 𝑆𝑆1, 𝑆𝑆2 → 𝑄𝑄 ∧
𝑄𝑄 ∧ 𝑌𝑌 = 𝐸𝐸 𝑋𝑋, 𝑆𝑆1 ∧ 𝑅𝑅 𝑋𝑋, 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆1′ , 𝑆𝑆2′ → 𝑄𝑄′ ∧
𝑄𝑄 → 𝐹𝐹 𝑋𝑋, 𝑆𝑆1,𝑇𝑇 = 𝐺𝐺 𝑋𝑋, 𝑆𝑆2 ∧

( 𝑆𝑆1, 𝑆𝑆2 = (𝑆𝑆1′ , 𝑆𝑆2′)) → 𝑄𝑄 = 𝑄𝑄′

where 𝑆𝑆1 and 𝑆𝑆2 (𝑆𝑆1′ and 𝑆𝑆2′) are current-state (next-state) variables of circuits 
F and G, respectively, 
𝐷𝐷 = {𝐷𝐷𝑖𝑖} with 𝐷𝐷𝑖𝑖 ⊆ 𝑋𝑋 ∪ 𝑌𝑌 ∪ 𝑆𝑆1, and
𝑅𝑅 = (𝑆𝑆1′ = Δ1 𝑋𝑋, 𝑆𝑆1,𝑇𝑇 ) ∧ (𝑆𝑆2′ = Δ2(𝑋𝑋, 𝑆𝑆2)) with Δ1 and Δ2 being the transition 
functions of circuits F and G, respectively
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Second-Order Quantified 
Boolean Satisfiability

2023/8/24



Motivation
 The great success of SAT-solving technology has motivated 

building solvers for more complex problems
 E.g., from SAT (NP-complete) to QBF (PSPACE-complete), 

further to DQBF (S-form: NEXP-complete, H-form: coNEXP-
complete) 

 Second-order quantified Boolean formula (SOQBF) extends 
DQBF to the entire Exponential Time Hierarchy (EXPH)
 Σ1EXP: ∃𝐹𝐹1,∀𝑋𝑋.𝜑𝜑 (S-form DQBF); Π1EXP: ∀𝐹𝐹1,∃𝑋𝑋.𝜑𝜑 (H-form DQBF)
 Σ2EXP: ∃𝐹𝐹1,∀𝐹𝐹2,∃𝑋𝑋.𝜑𝜑; Π2EXP: ∀𝐹𝐹1,∃𝐹𝐹2,∀𝑋𝑋.𝜑𝜑
 Σ3EXP: ∃𝐹𝐹1,∀𝐹𝐹2,∃𝐹𝐹3,∀𝑋𝑋.𝜑𝜑; Π3EXP: ∀𝐹𝐹1,∃𝐹𝐹2,∀𝐹𝐹3,∃𝑋𝑋.𝜑𝜑
 …
 SOQBF𝑘𝑘 is Σ𝑘𝑘EXP-complete (Π𝑘𝑘EXP-complete) if starting with ∃ (∀)
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Complexity Classes
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EXP

EXPSPACE

coNEXP NEXP

Σ2𝐸𝐸𝐸𝐸𝐸𝐸

ELEMENTARY

2-EXPTIME

Π2𝐸𝐸𝐸𝐸𝐸𝐸
Although SOQBF𝑖𝑖 well 
corresponds to the 
Exponential Hierarchy 
(EXPH), SOQBF is unlikely 
to be EXPSPACE-
complete!



Syntax of SOQBF

 General form 
Φ ∷= 0 1 𝑥𝑥 𝑓𝑓 ¬Φ Φ1 ∧ Φ2 ∃𝑥𝑥.Φ | ∃𝑓𝑓.Φ
 𝑥𝑥: proposition (atomic) variable, 𝑓𝑓: function variable
 ∃𝑥𝑥: first-order quantifier, ∃𝑓𝑓: second-order quantifier
 Assume each function variable 𝑓𝑓 has a fixed support set, 

denoted 𝐒𝐒(𝑓𝑓), of atomic variables
Convertible by Ackermann’s expansion for functions with 

unfixed arguments
 E.g., 𝑓𝑓 𝑓𝑓 𝑥𝑥,𝑦𝑦 , 𝑧𝑧 can be rewritten as 
∃𝑤𝑤. (𝑓𝑓1∧ 𝑤𝑤 ↔ 𝑓𝑓2 ) ∧ ∀𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑤𝑤. ( 𝑥𝑥 ↔ 𝑤𝑤 𝑦𝑦 ↔ 𝑧𝑧 ) → (𝑓𝑓1↔ 𝑓𝑓2))
for 𝐒𝐒 𝑓𝑓1 = {𝑤𝑤, 𝑧𝑧}, 𝐒𝐒 𝑓𝑓2 = {𝑥𝑥,𝑦𝑦}, 

 General form can be converted to prenex form 
via variable renaming

2023/8/24 FLOLAC 2023 118



Syntax of SOQBF
 Prenex form

𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋1, … ,𝑄𝑄𝑛𝑛+𝑚𝑚𝑋𝑋𝑚𝑚.𝜑𝜑
 𝑄𝑄𝑖𝑖 = ∀,∃ ,𝑄𝑄𝑖𝑖 ≠ 𝑄𝑄𝑖𝑖+1 for 𝑖𝑖 ∈ [1,𝑛𝑛 − 1] and 𝑖𝑖 ∈ [𝑛𝑛 + 1,𝑛𝑛 + 𝑚𝑚 − 1]
 𝐹𝐹𝑖𝑖 and 𝑋𝑋𝑗𝑗 are sets of function and atomic variables, respectively
 Each 𝑓𝑓 ∈ 𝐹𝐹𝑖𝑖 is associated with a support set 𝐒𝐒 𝑓𝑓 ⊆ 𝑋𝑋1 ∪ ⋯∪ 𝑋𝑋𝑚𝑚
 𝜑𝜑: a quantifier-free formula over variables 𝐹𝐹1 ∪ ⋯∪ 𝐹𝐹𝑛𝑛 ∪ 𝑋𝑋1 ∪ ⋯∪

𝑋𝑋𝑚𝑚
 SO-quantification level 𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓 = 𝑖𝑖 for 𝑓𝑓 ∈ 𝐹𝐹𝑖𝑖; FO-quantification 

level 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 = 𝑗𝑗 for 𝑥𝑥 ∈ 𝑋𝑋𝑗𝑗
 Assume all valuables in an SOQBF are quantified (with no free 

variables)
 Prenex form with multiple levels of atomic quantifiers can 

be converted to prenex form with a single level of atomic 
quantifiers
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Syntax of SOQBF

 Prenex form with a single atomic quantification 
level
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑
 𝑄𝑄𝑖𝑖 = ∀,∃ for 𝑖𝑖 ∈ 1, … ,𝑛𝑛+1, and 𝑄𝑄𝑗𝑗 ≠ 𝑄𝑄𝑗𝑗+1 for 𝑗𝑗 ∈ [1,𝑛𝑛]

 Collapsing atomic quantifiers into one level may 
incur level increase in second-order quantifiers
 E.g., 

𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,∀𝑋𝑋1,∃𝑦𝑦,∀𝑋𝑋2.𝜑𝜑
can be converted to
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,∃𝑓𝑓𝑦𝑦,∀𝑋𝑋1,∀𝑦𝑦,∀𝑋𝑋2. 𝑦𝑦 ↔ 𝑓𝑓𝑦𝑦 → 𝜑𝜑
for 𝐒𝐒 𝑓𝑓𝑦𝑦 = 𝑋𝑋1
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Semantics of SOQBF

Circuit representation of the matrix of 
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑
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Semantics of SOQBF

In evaluating an SOQBF, an assignment to 
a function variable 𝑓𝑓𝑖𝑖 with 𝐒𝐒 𝑓𝑓𝑖𝑖 = 𝑘𝑘
corresponds to determining the truth-table 
values 𝑡𝑡0, 𝑡𝑡1, … , 𝑡𝑡2𝑘𝑘−1

Given an assignment 𝛼𝛼 to all function 
variables ⋃𝑖𝑖 𝐹𝐹𝑖𝑖, the SOQBF Φ =
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑 under assignment 𝛼𝛼
is true if the QBF 𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑|𝛼𝛼 induced under 𝛼𝛼 is 
true
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Semantics of SOQBF
 𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑛𝑛+1𝑋𝑋.𝜑𝜑 can be evaluated by a series of 

QBF evaluations with respect to function variable 
assignments that follow the prefix of the second-order 
quantifiers 𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛

 Game-theoretic semantics
 A two-player game interpretation: The ∃-player (∀-player) assigns 

existential (universal) function variables to satisfy (falsify) the 
formula. The prefix of the SOQBF determines the order of the players’ 
moves. The SOQBF is true (false) iff the ∃-player (∀-player) has a 
winning strategy.

 An SOQBF is true if there exists a model (∃-player’s winning 
strategy), i.e., a set of Skolem functionals for the 
existential function variables such that substituting each 
existential function variable with its corresponding Skolem
functional makes the induced formula a tautology
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Converting SOQBF to QBF
 An SOQBF can be converted to a model-equivalent QBF via 

ground instantiation, where every function variable is 
instantiated with respect to a full assignment over its 
support set
 Iteratively eliminating the innermost atomic variable through 

formula expansion until no more atomic variable is left
 Specifically, 
𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑋𝑋,∀𝑦𝑦.𝜑𝜑 is converted to 𝑄𝑄1𝐹𝐹1

𝑦𝑦 ∪ 𝐹𝐹1
¬𝑦𝑦 , … ,𝐹𝐹1

𝑦𝑦 ∪
𝐹𝐹1

¬𝑦𝑦 ,𝑄𝑄𝑋𝑋.𝜑𝜑|𝑦𝑦 ∧ 𝜑𝜑|¬𝑦𝑦

𝑄𝑄1𝐹𝐹1,𝑄𝑄2𝐹𝐹2, … ,𝑄𝑄𝑛𝑛𝐹𝐹𝑛𝑛,𝑄𝑄𝑋𝑋,∃𝑦𝑦.𝜑𝜑 is converted to 𝑄𝑄1𝐹𝐹1
𝑦𝑦 ∪ 𝐹𝐹1

¬𝑦𝑦 , … ,𝐹𝐹1
𝑦𝑦 ∪

𝐹𝐹1
¬𝑦𝑦 ,𝑄𝑄𝑋𝑋.𝜑𝜑|𝑦𝑦 ∨ 𝜑𝜑|¬𝑦𝑦

where 𝐹𝐹𝑖𝑖
𝑦𝑦 = 𝑓𝑓𝛼𝛼∧𝑦𝑦 𝑓𝑓𝛼𝛼 ∈ 𝐹𝐹𝑖𝑖 , 𝑦𝑦 ∈ 𝐒𝐒 𝑓𝑓𝛼𝛼 ∪ 𝑓𝑓𝛼𝛼 𝑓𝑓𝛼𝛼 ∈ 𝐹𝐹𝑖𝑖 , 𝑦𝑦 ∉ 𝐒𝐒 𝑓𝑓𝛼𝛼 and 
𝐹𝐹𝑖𝑖

¬𝑦𝑦 = 𝑓𝑓𝛼𝛼∧¬𝑦𝑦 𝑓𝑓𝛼𝛼 ∈ 𝐹𝐹𝑖𝑖 , 𝑦𝑦 ∈ 𝐒𝐒 𝑓𝑓𝛼𝛼 ∪ 𝑓𝑓𝛼𝛼 𝑓𝑓𝛼𝛼 ∈ 𝐹𝐹𝑖𝑖 ,𝑦𝑦 ∉ 𝐒𝐒 𝑓𝑓𝛼𝛼
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Converting SOQBF to QBF
 Example

 ∀𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 ,∃𝑓𝑓 𝑥𝑥1, 𝑥𝑥3 ,∀𝑥𝑥1,∃𝑥𝑥2,∀𝑥𝑥3. (𝑔𝑔 + 𝑓𝑓 + ¬𝑥𝑥1 + ¬𝑥𝑥2 + 𝑥𝑥3)(𝑔𝑔 + ¬𝑓𝑓)
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= ∀𝑔𝑔 𝑥𝑥1, 𝑥𝑥2 ,∃𝑓𝑓𝑥𝑥3 𝑥𝑥1 , 𝑓𝑓¬𝑥𝑥3 𝑥𝑥1 ,∀𝑥𝑥1,∃𝑥𝑥2.
(𝑔𝑔 + 𝑓𝑓¬𝑥𝑥3 + ¬𝑥𝑥1 + ¬𝑥𝑥2)(𝑔𝑔 + ¬𝑓𝑓¬𝑥𝑥3)(𝑔𝑔 + ¬𝑓𝑓𝑥𝑥3)

= ∀𝑔𝑔𝑥𝑥2 𝑥𝑥1 ,𝑔𝑔¬𝑥𝑥2 𝑥𝑥1 ,∃𝑓𝑓𝑥𝑥3 𝑥𝑥1 ,𝑓𝑓¬𝑥𝑥3 𝑥𝑥1 ,∀𝑥𝑥1.
𝑔𝑔𝑥𝑥2 + 𝑓𝑓¬𝑥𝑥3 + ¬𝑥𝑥1 𝑔𝑔𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥3 𝑔𝑔𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥3 + (𝑔𝑔¬𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥3)(𝑔𝑔¬𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥3)

= ∀𝑔𝑔𝑥𝑥1𝑥𝑥2 ,𝑔𝑔𝑥𝑥1¬𝑥𝑥2 ,𝑔𝑔𝑥𝑥1𝑥𝑥2 ,𝑔𝑔𝑥𝑥1¬𝑥𝑥2 ,∃𝑓𝑓𝑥𝑥1𝑥𝑥3 ,𝑓𝑓𝑥𝑥1¬𝑥𝑥3 ,𝑓𝑓¬𝑥𝑥1𝑥𝑥3 , 𝑓𝑓¬𝑥𝑥1¬𝑥𝑥3 .
( 𝑔𝑔𝑥𝑥1𝑥𝑥2 + 𝑓𝑓𝑥𝑥1¬𝑥𝑥3 𝑔𝑔𝑥𝑥1𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥1¬𝑥𝑥3 𝑔𝑔𝑥𝑥1𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥1𝑥𝑥3 + 𝑔𝑔𝑥𝑥1¬𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥1¬𝑥𝑥3 𝑔𝑔𝑥𝑥1¬𝑥𝑥2 + ¬𝑓𝑓𝑥𝑥1𝑥𝑥3 )
( 𝑔𝑔¬𝑥𝑥1𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥1¬𝑥𝑥3 𝑔𝑔¬𝑥𝑥1𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥1𝑥𝑥3 + 𝑔𝑔¬𝑥𝑥1¬𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥1¬𝑥𝑥3 𝑔𝑔¬𝑥𝑥1¬𝑥𝑥2 + ¬𝑓𝑓¬𝑥𝑥1𝑥𝑥3 )



Application: Secure Unknown 
Function Synthesis

 Synthesize an unknown function 𝐹𝐹, its 
composition with the context 𝐶𝐶 satisfies property 
𝑃𝑃 regardless of the operation of 𝐺𝐺
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∃𝐹𝐹,∀𝐺𝐺,∃𝐻𝐻,∀𝑋𝑋,𝑌𝑌,𝑍𝑍,𝑊𝑊.𝜑𝜑

𝐻𝐻: function variables for normal form conversion
𝑊𝑊: atomic variables for normal form conversion
𝐒𝐒 𝐹𝐹 = 𝑌𝑌, 𝐒𝐒 𝐺𝐺 = 𝑍𝑍, 𝐒𝐒 𝐻𝐻 = 𝑋𝑋 ∪ 𝑌𝑌 ∪ 𝑍𝑍 ∪𝑊𝑊



Other Applications

Quantified bit-vector formulas of SMT
Memory consistency checking
Planning for agents with opposing goals
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Stochastic Boolean 
Satisfiability
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Decision under Uncertainty 
(Example 1)

 Evaluation of probabilistic circuits [Lee, J 14]
 Each gate produces correct value under a certain 

probability
 Query about the average output error rate, the 

maximum error rate under some input assignment, etc.
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Decision under Uncertainty 
(Example 2)

 Probabilistic planning: Robot charge [Huang 06]
 States: {S0, …, S15}

Initial state: S0; goal state: S15

 Actions: {↑, ↓, ←, →}
 Succeed with prob. 0,8
 Proceed to its right w.r.t. the intended direction with prob. 0,2
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Decision under Uncertainty 
(Example 3)
 Probabilistic planning: Sand-Castle-67 [Majercik, Littman 

98]
 States: (moat, castle) = {(0,0), (0,1), (1,0), (1,1)}

 Initial state: (0,0); goal states: (0,1), (1,1)
 Actions: {dig-moat, erect-castle}
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Decision under Uncertainty
(Example 4)

 Belief network inference [Dechter 96, Peot 98]
 BN queries, e.g., belief assessment, most probable 

explanation, maximum a posteriori hypothesis, 
maximum expected utility
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From SAT to #SAT
#SAT – A Counting Problem 

The #SAT problem asks how many 
satisfying solutions are there for a given 
CNF formula
 E.g., (a+¬b+c)(a+¬c)(b+d)(¬a+b) has 5 

solutions, (a,b,c,d) = (0,0,0,1), (1,1,-,-)
A #P-complete problem
A.k.a. model counting

Exact vs. approximate model counting
Weighted model counting: variables are weighted 

under a function 𝑤𝑤:𝑙𝑙𝑎𝑎𝑟𝑟(𝜙𝜙)→[0,1]
 Compute the sum of weights of satisfying assignments 

of 𝜙𝜙

2023/8/24 FLOLAC 2023 133



Motivation

Decision vs. counting problems
SAT vs. #SAT
HAMILTON PATH vs. #HAMILTON PATH
MATCHING vs. PERMANET 
GRAPH REACHABILITY vs. GRAPH RELIABILITY

From correctness verification to 
quantitative verification
System reliability
AI planning under uncertainty
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Concerned Problems in a Nutshell

 SAT: Given a CNF Boolean formula, decide its satisfiability
 #SAT: Given a CNF Boolean formula, count its number of 

solutions
 QBF: Given a PCNF quantified Boolean formula, decide its 

satisfiability
 SSAT: Given a PCNF quantified Boolean formula, maximize 

its satisfying probability
 SSAT (D): decide whether its maximum satisfying probability ≥ θ

 DQBF: Given a PCNF dependency quantified Boolean 
formula, decide its satisfiability

 DSSAT: Given a PCNF dependency quantified Boolean 
formula, maximize its satisfying probability
 DSSAT (D): decide whether its maximum satisfying probability ≥ θ

2023/8/24 FLOLAC 2023 135



Related Complexity Classes
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NP

PSPACE

NEXP
DQBF, DSSAT (D)

PH

QBF, SSAT (D)

SAT

PP

PPP

MAJSAT (#SAT (D))

Counting is powerful!
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From QBF to SSAT
Stochastic Boolean Satisfiability
 A stochastic Boolean satisfiability (SSAT) formula 

is commonly written in a prenex form as

Φ = 𝑄𝑄1𝑋𝑋1,𝑄𝑄2𝑋𝑋2, … ,𝑄𝑄𝑛𝑛𝑋𝑋𝑛𝑛. 𝜑𝜑

for 𝑄𝑄𝑖𝑖 ∈ {ℛ𝑝𝑝,∃}, 𝑄𝑄𝑖𝑖 ≠ 𝑄𝑄𝑖𝑖+1, and 𝜑𝜑 a quantifier-free 
formula often in CNF
 Randomized quantification ℛ𝑝𝑝𝑥𝑥: variable 𝑥𝑥 valuates to 
TRUE with probability 𝑝𝑝 (different variables can have 
different probabilities)

 A variable 𝑥𝑥 ∈ 𝑋𝑋𝑘𝑘 is of (quantification) level 𝑘𝑘

prefix matrix
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From QBF to SSAT
Stochastic Boolean Satisfiability
 Semantics of SSAT formula Φ = 𝑄𝑄1𝑙𝑙1 …𝑄𝑄𝑛𝑛𝑙𝑙𝑛𝑛.𝜑𝜑 𝑙𝑙1, … , 𝑙𝑙𝑛𝑛

 Satisfying probability (SP): Expectation of satisfying 𝜑𝜑
w.r.t. the prefix structure
 Pr ⊤ = 1; Pr ⊥ = 0
 Pr Φ = max Pr Φ|¬𝑣𝑣 , Pr Φ|𝑣𝑣 , for outermost quantification ∃𝑙𝑙
 Pr Φ = 1 − 𝑝𝑝 Pr Φ|¬𝑣𝑣 + 𝑝𝑝 Pr Φ|𝑣𝑣 , for outermost quantification ℛ𝑝𝑝𝑙𝑙

 Optimization version: Find the SP maximum among all 
assignments of existential variables

 Decision version: Determine whether SP ≥ 𝜃𝜃
 E.g., Φ = ∃𝑥𝑥,ℛ0.7𝑦𝑦. 𝑥𝑥 ∨ 𝑦𝑦 ¬𝑥𝑥 ∨ ¬𝑦𝑦
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𝑥𝑥

𝑦𝑦 𝑦𝑦

⊤ ⊤ ⊥⊥

0.70.7 0.30.3

0.30.7

0.7

Pr Φ = 0.7



From QBF to SSAT
Stochastic Boolean Satisfiability
 A game (against nature) 

interpretation of SSAT
 Two-player game played by ∃-player 

(to maximize the expectation of 
satisfaction) and ℛ -player (to make 
random moves)
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a

b

c

d

0 11 00 0 1 1 1 11 1 0 0 0 0
Skolem functions

ℛ0.6a ∃b ℛ0.5c ∃d. 
(¬a+¬b)(¬b+¬c+¬d)(¬b+c+d)(a+b+c)

∃Fb(a) ∃Fd(a,c) ℛ0.6a ℛ0.5c.
(¬a+¬Fb)(¬Fb+¬c+¬Fd)(¬Fb+c+Fd)(a+Fb+c)

0.4 0.6

0.5 0.5 0.5 0.5 0.5
10 1 1 1 1 0 0

0110.5

1 1

1



Recent SSAT Solvers

ClauSSat [CHJ22] 
Combining QBF clause selection techniques 

and model counting
Allowing both exact and approximate solution 

search
ElimSSat [WTJS22] 
Solving based on quantifier elimination

SharpSSat [FJ23] 
Solving based on component analysis
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Applications

AI planning under uncertainty [Littman et al.
2001]

Belief network inference [Littman et al. 2001]

Trust management [Freudenthal et al. 2003]

Equivalence verification of probabilistic 
circuits [Lee et al. 2018]
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Dependency Stochastic 
Boolean Satisfiability
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From DQBF to DSSAT 
Dependency SSAT
 A dependency SSAT (DSSAT) formula is 

commonly written in a prenex form as

Φ = ℛ𝑋𝑋,∃𝑦𝑦1 𝐷𝐷1 , … ,∃𝑦𝑦𝑚𝑚(𝐷𝐷𝑚𝑚). 𝜑𝜑

for 𝐷𝐷𝑖𝑖 ⊆ 𝑋𝑋 being the dependency set of 𝑦𝑦𝑖𝑖 and 𝜑𝜑 a 
quantifier-free formula

 SP of Φ w.r.t. Skolem functions 𝑓𝑓1, … ,𝑓𝑓𝑚𝑚 is 
Pr[ℛ𝑋𝑋.𝜑𝜑|𝑓𝑓1 𝐷𝐷1 /𝑦𝑦1,…,𝑓𝑓𝑚𝑚 𝐷𝐷𝑚𝑚 /𝑦𝑦𝑚𝑚]

Optimization version: Find the maximum SP
 Decision version: Determine whether SP ≥ 𝜃𝜃

prefix matrix

2023/8/24
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From DQBF to DSSAT
Dependency SSAT

DSSAT (D) is NEXP-complete
By the fact that DSSAT (D) is in NEXP and 

polynomial-time reducible from DQBF
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DSSAT Solver

DSSATpre [CJ23]
A preprocessing-based solver converting a 

DSSAT instance to an SSAT instance
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Application: Probabilistic Partial 
Design

 Probabilistic design is a new 
paradigm in VLSI design, 
which allows logic gates to 
have probabilistic errors

 Black-box synthesis for 
probabilistic circuit design
 Black-box outputs 𝑡𝑡1, 𝑡𝑡2, … with 

their respective inputs 𝐷𝐷1,𝐷𝐷2, …
 𝑋𝑋: primary inputs, 𝑍𝑍: error-

source pseudo-inputs, 𝑌𝑌:
intermediate variables
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X

F

𝑡𝑡1
𝑡𝑡2

𝐷𝐷1
𝐷𝐷2

G

Z

𝑧𝑧1
𝑧𝑧2

≡ ≡ ≡

ℛ𝑋𝑋,ℛ𝑍𝑍,∀𝑌𝑌,∃𝑇𝑇 𝐷𝐷 . 𝑌𝑌 = 𝐸𝐸 𝑋𝑋 → (𝐹𝐹 𝑋𝑋,𝑍𝑍,𝑇𝑇 = 𝐺𝐺(𝑋𝑋))



Application: Dec-POMDP

 Decentralized Partially Observable Markov 
Decision Process (Dec-POMDP) generalizes 
POMDP from single agent to multiple agents 
 𝑀𝑀 = (𝐼𝐼, 𝑆𝑆, 𝐴𝐴𝑖𝑖 ,𝑇𝑇,𝜌𝜌, 𝑂𝑂𝑖𝑖 ,Ω,Δ0, ℎ)

Agents 𝐼𝐼 = {1, … ,𝑛𝑛}
States 𝑆𝑆
Actions 𝐴𝐴𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼
Transition distribution 𝑇𝑇: 𝑆𝑆 × 𝐴𝐴1 × ⋯× 𝐴𝐴𝑛𝑛 × 𝑆𝑆 → 0,1
Reward 𝜌𝜌: 𝑆𝑆 × 𝐴𝐴1 × ⋯× 𝐴𝐴𝑛𝑛 → R
Observations 𝑂𝑂𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼
Observation distribution Ω: 𝑆𝑆 × 𝐴𝐴1 × ⋯× 𝐴𝐴𝑛𝑛 × (𝑂𝑂1 × ⋯× 𝑂𝑂𝑛𝑛) →

0,1
Initial state distribution Δ0: 𝑆𝑆 → [0,1]
Horizon ℎ
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Application: Dec-POMDP

Goal: Find optimal joint policy to maximize 
the expected total reward 𝐸𝐸[∑𝑡𝑡=0ℎ−1 𝜌𝜌(𝑠𝑠𝑡𝑡, �⃗�𝑎𝑡𝑡)]

Dec-POMDP is NEXP-complete and 
polynomial-time reducible to DSSAT
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Summary and Outlook

 Subjects covered
 Logic synthesis in a nutshell
 Boolean satisfiability
 Quantified Boolean satisfiability
 Beyond QBF

DQBF, SOQBF 
#SAT, SSAT, DSSAT

 Satisfiability and counting are fundamental in 
computation
 Crucial in applications such as EDA, AI, software 

engineering, etc. 
 New formalisms, solvers, and applications await further 

exploration
2023/8/24



Thanks for Your Attention!
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