
λ-Calculus
Untyped λ-Calculus

陳亮廷 Chen, Liang-Ting
Formosan Summer School on Logic, Language, and Computation (FLOLAC)
2022

Institute of Information Science, Academia Sinica

1

Assessment guidelines

Deadline 17:00, 10 Aug
Assessment Assignment (15%)

Exam (100%)
Email liang.ting.chen.tw(at)gmail(dot)com

Please follow the instructions below.

1. Use A4 paper.
2. Write down your name and student id.
3. Be clear and brief.
4. Submit assignments in person or by email as PDF with

subject [FLOLAC] PL HW%x%
attachment PL-HW%x% - %STDNO% - %NAME%.pdf

body (optional)

2

Untyped λ-Calculus: Statics

λ-calculus: Term

Definition 1 (Syntax of λ-calculus)
Given a set V of variables, the term formation judgement is defined
by

Variable
x is in V (var)x TermV

Application of M to the argument N
M TermV N TermV (app)M N TermV

Abstraction with an argument x and a function body M

M TermV x is in V
(abs)

λx.M TermV

3

An Example

The judgement
λp. λa. λb. (p a) b TermV

is justified by the following derivation

p is in V
p TermV

a is in V
a TermV

p a TermV
b is in V
b TermV

(p a) b TermV b is in V
λb. (p a) b TermV a is in V

λa. λb. (p a) b TermV p is in V
λp. λa. λb. (p a) b TermV

N.B. brackets ‘(’ and ‘)’ are not parts of terms and they are used only
to group a term.

4

More Example and non-examples

1. (x y) z
2. x (y z)
3. λx. y
4. λx. x
5. λs. (λz. (s z))
6. λa. (λb. (a (λc.a b)))
7. (λx. x) (λy. y)

The following are NOT examples

1. λ(λx. x). y
2. λx.
3. λ. x
4. . . .

5

Conventions

Consecutive abstractions

λx1 x2 . . . xn.M ≡ λx1. (λx2. (. . . (λxn.M) . . .))

Consecutive applications

M1 M2 M3 . . . Mn ≡ (. . . ((M1 M2) M3) . . .) Mn

Function body extends as far right as possible

λx.M N ··= λx. (M N)

instead of (λx.M) N.

For example, λx1. (λx2. x1) ≡ λx1 x2. x1 and x y z means (x y) z.

6

Examples

1. (x y) z ≡ x y z
2. λs. (λz. (s z)) ≡ λs z. s z
3. λa. (λb. (a (λc.a b))) ≡ λab.a (λc.a b)
4. (λx. x) (λy. y) ≡ (λx. x) λy. y

7

Meta-language and object-language

• Meta-language is the language we use to describe the object of
study. E.g. English, or naive set theory.

• Object-language is the object of study. E.g., arithmetic
expressions and λ-terms.

Naming a function is not supported in λ-calculus, so the following

id ··= λx. x

happens in the meta-language.

1. id is a symbol different from ‘λx. x’ in the meta-language.
2. id and λx. x are syntactically equivalent denoted by

id ≡ λx. x

8

Example 2 (Identity function)

id ··= λx. x

Example 3 (Projections)

fst ··= λx. λy. x and snd ··= λx. λy. y

Remember that there are only three constructs in λ-calculus. For
convenience, we normally use a surface language to generate terms
in the object-language.

9

α-equivalence, informally

Definition 4
Two terms M an N are α-equivalent

M =α N

if variables bound by abstractions can be renamed to derive the
same term.

Example 5
1. λx. x and λy. y are distinct λ-terms but λx. x =α λy. y.
2. λx. λy. y =α λz. λy. y.
3. λx. λy. x ̸=α λx. λy. y.

α-equivalent terms are programs of the same structure modulo the
name of bound variables.

10

Evaluation, informally

The evaluation of λ-calculus is of this form

· · · (λx.M)N︸ ︷︷ ︸
β-redex

· · · −→β1 · · · M [N/x]︸ ︷︷ ︸
substitution of N for x in M

· · ·

For example, (λx. x+ 1) 3 → 3+ 1.

How to evaluate the following terms?

1. (λx.x) z
2. (λx y. x) y
3. (λy y. y) x

11

Structural recursion: Free variables

Definition 6
The set FV of free variables of a term M is inductively defined by

FV : ΛV → P(V)
FV(x) = {x}

FV(λx.M) = FV(M)− {x}
FV(M N) = FV(M) ∪ FV(N)

Definition 7
1. A variable y in M is free if y ∈ FV(M).
2. A λ-term M is closed if FV(M) = ∅.

12

Exercise

The set of free variables of a term is calculated by definition readily,
e.g.,

FV(x (λy. y) z) = FV(x (λy. y)) ∪ FV(z)
= FV(x) ∪ (FV(y)− {y}) ∪ {z}
= {x} ∪ ({y} − {y}) ∪ {z}
= {x, z}

Calculate the set of free variables of following terms:

1. x (y z)
2. λx. y
3. λx. x
4. λs z. s z
5. (λx. x) λy. y

13

Exercise: Height

The height of a term is given informally as follows:

1. the height of a variable is zero;
2. the height of an application is the maximum of the heights of its

subterms plus 1;
3. the height of an abstraction is the height of its body plus 1.

Define the height function h : TermV → N inductively.

14

Untyped λ-Calculus: Substitution

Substitution

A substitution is a process of replacing free variables by another
terms on the meta-level. Hence, a substitution of N for a free
variable x is a function

_[N/x] : TermV → TermV

The name of a variable does not matter but its location does.

1. bound variables should remain bound after substitution.
2. free variables which are not x should remain free after

substitution.

Concretely, we want to avoid ...

1. (λy. y)[x/y] ≡ (λy. x)
2. (λy. x)[y/x] ≡ (λy. y)

15

Naive substitution I

For x ∈ V and L : TermV, the substitution of L for x is defined by

x[L/x] = L
y[L/x] = y if x ̸= y

(M N)[L/x] = M[L/x] N[L/x]
(λy.M)[L/x] = λy.M[L/x]

A bound variable may become free after substitution, e.g.,

(λx. x)[y/x] = λx. y

so this is not the one we want.

16

Naive substitution II

For x ∈ V and L : TermV, the substitution of L for x is defined by

x[L/x] = L
y[L/x] = y if x ̸= y

(MN)[L/x] = M[L/x] N[L/x]
(λy.M)[L/x] = λy.M[L/x] if x ̸= y
(λy.M)[L/x] = λy.M if x = y

A variable may be captured by an abstraction after substitution, e.g.,

(λx.y)[x/y] = λx. x

so again it is not the desired definition.

17

Capture-avoiding substitution

Definition 8
Capture-avoiding substitution1 of L for the free occurrences of x is a
partial function _[L/x] : TermV → TermV defined by

x[L/x] = L
y[L/x] = y if x ̸= y

(MN)[L/x] = M[L/x] N[L/x]
(λx.M)[L/x] = λx.M
(λy.M)[L/x] = λy.M[L/x] if x ̸= y and y ̸∈ FV(L)

1Sign, this definition is still not rigorous.

18

Renaming of bound variables

Definition 9 (Freshness)
A variable y is fresh for L if y /∈ FV(L).

If a variable y is fresh for M, the bound variable x of λx.M can be
renamed to y without changing the meaning.

Definition 10 (α-conversion)
α-conversion is an judgement M →α N between terms defined by

y is fresh for M
λx.M −→α λy.M[y/x]

Yet, M (λx. x) −→α M (λy. y) does not follow by definition, so we
introduce a new judgement to allow α-conversion in any subterm of
a term.

19

α-equivalence

Definition 11

x is a variable
x =α x

M1 →α M2
M1 =α M2

M1 =α M2 N1 =α N2
M1 N1 =α M2 N2

M1 =α M2
λx.M1 =α λx.M2

α-equivalence is an equivalence, i.e.

reflexivity M =α M for any term M;
symmetry N =α M if M =α N;
transitivity L =α N if L =α M and M =α N.

All of these can be proved by induction on the derivation of M =α M.

20

Example 12

(λy. y) (λx. x) =α (λx. x) (λy. y)

Why? We use the fact that =α is an equivalence!

Proof.

λx. x →α λy. x[y/x]
λx. x =α λy. y

(λy. y) (λx. x) =α (λy. y) (λy. y)

λy. y →α λx. y[x/y]
λy. y =α λx. x

(λy. y) (λy. y) =α (λx. x) (λy. y)
(λy. y) (λx. x) =α (λx. x) (λy. y)

21

Exercise

Which of the following pairs are α-equivalent? Why?

1. x and y
2. λx y. y and λz y. y
3. λx y. x and λy x. y
4. λx y. x and λx y. y

Convention
α-equivalent terms are identified.

In the following development, we do not distinguish M and N if
M =α N at all. Feel free to rename any bound variable whenever
convenient.

22

Untyped λ-Calculus: Dynamics

β-conversion

Definition 13 (β-conversion)
β-conversion is a judgement M −→β N defined by

M[N/x] is defined
(λx.M) N −→β M[N/x]

for any x, M and N.

By definition, we can conclude that

(λx. λy. x) M −→β (λy. x)[M/x]
≡ λy. x[M/x] ≡ λy.M

but not ((λx y. x) M) N −→β (λy.M) N, since the above judgement is
defined only for β-redexes.

23

One-step β-reduction

One-step β-reduction extends β-conversion to any subterm of a
term.

Definition 14
The one-step (full) β-reduction is defined inductively by

M[N/x] is defined
(λx.M) N −→β1 M[N/x]

M1 −→β1 M2

λx.M1 −→β1 λx.M2

M1 −→β1 M2

M1 N −→β1 M2 N

N1 −→β1 N2

M N1 −→β1 M N2

((λx y. x) M) N −→β1 (λy.M) N −→β1 M[N/y]

24

Multi-step full β-reduction

It is convenient to represents a sequence of β-reductions

M −→β1 M1 −→β1 . . . −→β1 N

by a single judgement M −→β∗ N.

Definition 15
The multi-step (full) β-reduction is defined inductively by

(0-step)M −→β∗ M

L −→β1 M M −→β∗ N
(n+ 1-step)L −→β∗ N

25

M −→β∗ N is transitive

Lemma 16
For every derivations of L −→β∗ M and M −→β∗ N, there is a
derivation of L −→β∗ N.

We often omit the term “derivation” and say “if L −→β∗ M and
M −→β∗ N then L −→β∗ N” instead.

Proof.
By induction on the derivation d of L −→β∗ M.

1. If d is given by (0-step), then L =α M (by convention).
2. If d is given by (n+1-step), i.e. there exists M′ such that L −→β1 M′

and M′ −→β∗ M. By induction hypothesis, every derivation
M −→β∗ N gives rise to a derivation of M′ −→β∗ N. Hence, by
(n+1-step), we have a derivation of L −→β∗ N.

26

α-conversion during β-reduction

Renaming of bound variables may need to happen during reduction:

(λy. y y) (λz x. z x) −→β1 (λz x. z x) (λz x. z x)
−→β1 λx. (λz x. z x) x
=α λx. (λz y. z y) x
−→β1 λx. (λy. x y)

Even worse, we actually need infinitely many variables:

(λy. y s y) (λt z x. z (t x) z)

Exercise
Evaluate the above term.

27

Computational meaning

Two terms M and N may not have the same structure or even not
reducible from one to the other, but they may have the same
meaning with respect to computation.

Definition 17
M and N have the same computational meaning if M =β N which is
defined inductively by

M −→β1 N
M =β N

M =β M

M =β N
N =β M

L =β M M =β N
L =β N

28

Summary

SUMMARISE HERE ALL THE RELATIONS JUST INTRODUCED.

29

Programming in λ-Calculus

Church encoding of boolean values

Boolean and conditional can be encoded as combinators.

Boolean

True ··= λx y. x
False ··= λx y. y

Conditional

if ··= λb x y. b x y
if True M N −→β∗ M

if False M N −→β∗ N

for any two λ-terms M and N.

30

Church Encoding of natural numbers i

Natural numbers as well as arithmetic operations can be encoded in
untyped lambda calculus.

Church numerals

c0 ··= λf x. x
c1 ··= λf x. f x
c2 ··= λf x. f (f x)
cn+1 ··= λf x. fn+1 (x)

where f1(x) ··= f x and fn+1(x) ··= f (fn(x)).

31

Church Encoding of natural numbers ii

Successor

succ ··= λn. λf x. f (n f x)
succ cn −→β∗ cn+1

for any natural number n ∈ N.
Addition

add ··= λnm. λf x. n f (m f x)
add cn cm −→β∗ cn+m

Conditional

ifz ··= λn x y. n (λz. y) x
ifz c0 M N −→β∗ M
ifz cn+1 M N −→β∗ N

32

Exercise

1. Define Boolean operations not, and, and or.
2. Evaluate succ c0 and add c1 c2.
3. Define the multiplication mult over Church numerals.

33

General Recursion via self-reference

The summation
∑n

i=0 i for n ∈ N is usually described by
self-reference in mathematics as follows.

sum(n) =
{
0 if n = 0
n+ sum(n− 1) otherwise.

This cannot be done in λ-calculus directly. (Why?)

Observation
If sum is unfolded as many times as it requires, then

sum(n) =



0 if n = 0
1+ sum(0) n = 1
2+ sum(1) n = 2
· · ·
n+ sum(n− 1) otherwise.

34

Curry’s paradoxical combinator

The Y combinator is defined as a term

Y ··= λf. (λx. f (x x)) (λx. f (x x)).

Proposition 18
Y is a fixed-point operator, i.e.

YF −→β1 (λx. F (x x)) (λx. F (x x))
−→β1 F ((λx. F (x x)) (λx. F (x x)))

for every λ-term F. In particular, YF =β F(YF).

Intuitively, YF defines recursion where F describes each iteration.

35

Summation via Y

We encode the following recursion

sum(n) =
{
0 if n = 0
n+ sum(n− 1) otherwise.

by generalising each iteration G with an additional function f

G ··= λf n.ifz n c0 (add n (f (pred n)))

so that sum ··= YG. For example,

sum c1 ≡ (YG) c1
−→β1 G′ c1
−→β1 G G′ c1
−→β1 (λn.ifz n c0 (add n (G′ (pred n)))) c1
−→β1 ifz c1 c0 (add c1 (G′ (pred c1)))
−→β1 . . .

where G′ ··= ((λx.G (x x)) (λx.G (x x))). 36

Turing’s fixed-point combinator

Recall that YG =β G(Y G) but YG −→β∗ G(Y G) does not hold. Here is
a fixed-point operator such that ΘF −→β∗ F(ΘF).

Proposition 19
Define

Θ ··= (λx f. f (x x f)) (λx f. f (x x f))

Then,
ΘF −→β∗ F(ΘF)

Try Turing’s fixed-point combinator with G to define
∑n

i=0 i.

G ··= λf n.ifz n c0 (add n (f (pred n)))
sum ··= ΘG

37

Exercise

1. Evaluate sum c1 to its normal form in detail.
2. Define the factorial n! with Church numerals.

38

Properties of λ-Calculus

Example 20
Suppose M Termλ and y ̸∈ FV(M). Then, consider

(λy.M) ((λx. x x)(λx. x x))

Observations:

• Some evaluation may diverge while some may converge.
• Full β-reduction lacks for determinacy.

Question:

• Does every path give the same evaluation?

39

Confluence

Theorem 21 (Church-Rosser)
Given N1 and N2 with M −→β∗ N1 and M −→β∗ N2, there is L such
that N1 −→β∗ L and N2 −→β∗ L.

M
β∗

@@

@@
@@

@@
β∗

~~~~
~~
~~
~~

N1

β∗
  
@@

@@
@@

@@
N2

β∗
~~~~
~~
~~
~~

L

No matter which way we choose we can always find a confluent term.

40

Normal form

Definition 22
M is in normal form if there is no N such that M −→β1 N,
abbreviated to M−̸→β1.

Lemma 23
Suppose that M is in normal form. Then M −→β∗ N implies M =α N.

Proof.
By induction on the derivation d of M −→β∗ N.

1. If d is given by (0-step), then M −→β∗ N where M =α N by
definition.

2. If d is given by (n+1-step), then M −→β1 M′ and M′ −→β∗ N are
derivable for some M′. By assumption M −→β1 N is not derivable
for any N, so by contradiction the statement follows.

41

Corollaries of confluence

Corollary 24 (Uniqueness of normal forms)
Let M be a term with M −→β∗ N1 and M −→β∗ N2 where Ni’s are in
normal form. Then, N1 =α N2.

Corollary 25 (Computationally equal terms have a confluent term)
If M =β N, then there exists L satisfying

M

β∗
��
>>

>>
>>

>>
=β N

β∗
����
��
��
��

L

Proof sketch.
By induction on the derivation of M =β N.

42

Homework

1. (2.5%) Show Corollary 24
2. (2.5%) Show Corollary 25.

43

Appendix: Evaluation strategy

Evaluation strategies i

An evaluation strategy is a procedure of selecting β-redexes to
reduce. It is a subset −→ev of the full β-reduction −→β1.

Innermost β-redex does not contain any β-redex.
Outermost β-redex is not contained in any other β-redex.

Evaluation strategies ii

the leftmost-outermost (normal order) strategy reduces the
leftmost outermost β-redex in a term first. For
example,

(λx. (λy. y) x) (λx. (λy. y y) x)

−→β1(λy. y) (λx. (λy. y y) x)

−→β1λx. (λy. y y) x

−→β1(λx. x x)
−̸→β1

Evaluation strategies iii

the leftmost-innermost strategy reduces the leftmost innermost
β-redex in a term first. For example,

(λx. (λy. y) x) (λx. (λy. y y) x)

−→β1(λx. x) (λx. (λy. y y) x)

−→β1(λx. x) (λx. x x)

−→β1(λx. x x)
−̸→β1

the rightmost-innermost/outermost strategy are defined similarly
where terms are reduced from right to left instead.

CBV versus CBN

Call-by-value strategy rightmost-outermost but not under any
abstraction

Call-by-name strategy leftmost-outermost but not under any
abstraction

Proposition 26 (Determinacy)
Each of evaluation strategies is deterministic, i.e. if M −→β1 N1 and
M −→β1 N2 then N1 = N2.

Exercise

Define following terms

Ω ··= (λx. x x) (λx. x x)
K1 ··= λx y. x

Evaluate
K1 z Ω

using the call-by-value and the call-by-name strategy respectively.

Normalisation

Definition 27
1. M is in normal form if M−̸→β1N for any N.
2. M is weakly normalising if M −→β∗ N for some N in normal form.

1. Ω is not weakly normalising.
2. K1 is normal and thus weakly normalising.
3. K1 z Ω is weakly normalising.

Theorem 28
The normal order strategy reduces every weakly normalising term
to a normal form.

	Untyped -Calculus: Statics
	Untyped -Calculus: Substitution
	Untyped -Calculus: Dynamics
	Programming in -Calculus
	Properties of -Calculus
	Appendix
	Appendix: Evaluation strategy

