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Untyped λ-Calculus: Statics



λ-calculus: Term

Definition 1 (Syntax of λ-calculus)
Given a set V of variables, the term formation judgement is defined
by

Variable
x is in V (var)x TermV

Application of M to the argument N
M TermV N TermV (app)M N TermV

Abstraction with an argument x and a function body M

M TermV x is in V
(abs)

λx.M TermV
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An Example

The judgement
λp. λa. λb. (p a) b TermV

is justified by the following derivation

p is in V
p TermV

a is in V
a TermV

p a TermV
b is in V
b TermV

(p a) b TermV b is in V
λb. (p a) b TermV a is in V

λa. λb. (p a) b TermV p is in V
λp. λa. λb. (p a) b TermV

N.B. brackets ‘(’ and ‘)’ are not parts of terms and they are used only
to group a term.
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More Example and non-examples

1. (x y) z
2. x (y z)
3. λx. y
4. λx. x
5. λs. (λz. (s z))
6. λa. (λb. (a (λc.a b)))
7. (λx. x) (λy. y)

The following are NOT examples

1. λ(λx. x). y
2. λx.
3. λ. x
4. . . .
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Conventions

Consecutive abstractions

λx1 x2 . . . xn.M ≡ λx1. (λx2. (. . . (λxn.M) . . .))

Consecutive applications

M1 M2 M3 . . . Mn ≡ (. . . ((M1 M2) M3) . . . ) Mn

Function body extends as far right as possible

λx.M N ··= λx. (M N)

instead of (λx.M) N.

For example, λx1. (λx2. x1) ≡ λx1 x2. x1 and x y z means (x y) z.
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Examples

1. (x y) z ≡ x y z
2. λs. (λz. (s z)) ≡ λs z. s z
3. λa. (λb. (a (λc.a b))) ≡ λab.a (λc.a b)
4. (λx. x) (λy. y) ≡ (λx. x) λy. y
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Meta-language and object-language

• Meta-language is the language we use to describe the object of
study. E.g. English, or naive set theory.

• Object-language is the object of study. E.g., arithmetic
expressions and λ-terms.

Naming a function is not supported in λ-calculus, so the following

id ··= λx. x

happens in the meta-language.

1. id is a symbol different from ‘λx. x’ in the meta-language.
2. id and λx. x are syntactically equivalent denoted by

id ≡ λx. x

8



Example 2 (Identity function)

id ··= λx. x

Example 3 (Projections)

fst ··= λx. λy. x and snd ··= λx. λy. y

Remember that there are only three constructs in λ-calculus. For
convenience, we normally use a surface language to generate terms
in the object-language.
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α-equivalence, informally

Definition 4
Two terms M an N are α-equivalent

M =α N

if variables bound by abstractions can be renamed to derive the
same term.

Example 5
1. λx. x and λy. y are distinct λ-terms but λx. x =α λy. y.
2. λx. λy. y =α λz. λy. y.
3. λx. λy. x ̸=α λx. λy. y.

α-equivalent terms are programs of the same structure modulo the
name of bound variables.
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Evaluation, informally

The evaluation of λ-calculus is of this form

· · · (λx.M)N︸ ︷︷ ︸
β-redex

· · · −→β1 · · · M [N/x]︸ ︷︷ ︸
substitution of N for x in M

· · ·

For example, (λx. x+ 1) 3 → 3+ 1.

How to evaluate the following terms?

1. (λx.x) z
2. (λx y. x) y
3. (λy y. y) x
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Structural recursion: Free variables

Definition 6
The set FV of free variables of a term M is inductively defined by

FV : ΛV → P(V)
FV(x) = {x}

FV(λx.M) = FV(M)− {x}
FV(M N) = FV(M) ∪ FV(N)

Definition 7
1. A variable y in M is free if y ∈ FV(M).
2. A λ-term M is closed if FV(M) = ∅.
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Exercise

The set of free variables of a term is calculated by definition readily,
e.g.,

FV(x (λy. y) z) = FV(x (λy. y)) ∪ FV(z)
= FV(x) ∪ (FV(y)− {y}) ∪ {z}
= {x} ∪ ({y} − {y}) ∪ {z}
= {x, z}

Calculate the set of free variables of following terms:

1. x (y z)
2. λx. y
3. λx. x
4. λs z. s z
5. (λx. x) λy. y
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Exercise: Height

The height of a term is given informally as follows:

1. the height of a variable is zero;
2. the height of an application is the maximum of the heights of its

subterms plus 1;
3. the height of an abstraction is the height of its body plus 1.

Define the height function h : TermV → N inductively.
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Untyped λ-Calculus: Substitution



Substitution

A substitution is a process of replacing free variables by another
terms on the meta-level. Hence, a substitution of N for a free
variable x is a function

_[N/x] : TermV → TermV

The name of a variable does not matter but its location does.

1. bound variables should remain bound after substitution.
2. free variables which are not x should remain free after

substitution.

Concretely, we want to avoid ...

1. (λy. y)[x/y] ≡ (λy. x)
2. (λy. x)[y/x] ≡ (λy. y)
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Naive substitution I

For x ∈ V and L : TermV, the substitution of L for x is defined by

x[L/x] = L
y[L/x] = y if x ̸= y

(M N)[L/x] = M[L/x] N[L/x]
(λy.M)[L/x] = λy.M[L/x]

A bound variable may become free after substitution, e.g.,

(λx. x)[y/x] = λx. y

so this is not the one we want.
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Naive substitution II

For x ∈ V and L : TermV, the substitution of L for x is defined by

x[L/x] = L
y[L/x] = y if x ̸= y

(MN)[L/x] = M[L/x] N[L/x]
(λy.M)[L/x] = λy.M[L/x] if x ̸= y
(λy.M)[L/x] = λy.M if x = y

A variable may be captured by an abstraction after substitution, e.g.,

(λx.y)[x/y] = λx. x

so again it is not the desired definition.
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Capture-avoiding substitution

Definition 8
Capture-avoiding substitution1 of L for the free occurrences of x is a
partial function _[L/x] : TermV → TermV defined by

x[L/x] = L
y[L/x] = y if x ̸= y

(MN)[L/x] = M[L/x] N[L/x]
(λx.M)[L/x] = λx.M
(λy.M)[L/x] = λy.M[L/x] if x ̸= y and y ̸∈ FV(L)

1Sign, this definition is still not rigorous.
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Renaming of bound variables

Definition 9 (Freshness)
A variable y is fresh for L if y /∈ FV(L).

If a variable y is fresh for M, the bound variable x of λx.M can be
renamed to y without changing the meaning.

Definition 10 (α-conversion)
α-conversion is an judgement M →α N between terms defined by

y is fresh for M
λx.M −→α λy.M[y/x]

Yet, M (λx. x) −→α M (λy. y) does not follow by definition, so we
introduce a new judgement to allow α-conversion in any subterm of
a term.
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α-equivalence

Definition 11

x is a variable
x =α x

M1 →α M2
M1 =α M2

M1 =α M2 N1 =α N2
M1 N1 =α M2 N2

M1 =α M2
λx.M1 =α λx.M2

α-equivalence is an equivalence, i.e.

reflexivity M =α M for any term M;
symmetry N =α M if M =α N;
transitivity L =α N if L =α M and M =α N.

All of these can be proved by induction on the derivation of M =α M.
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Example 12

(λy. y) (λx. x) =α (λx. x) (λy. y)

Why? We use the fact that =α is an equivalence!

Proof.

λx. x →α λy. x[y/x]
λx. x =α λy. y

(λy. y) (λx. x) =α (λy. y) (λy. y)

λy. y →α λx. y[x/y]
λy. y =α λx. x

(λy. y) (λy. y) =α (λx. x) (λy. y)
(λy. y) (λx. x) =α (λx. x) (λy. y)
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Exercise

Which of the following pairs are α-equivalent? Why?

1. x and y
2. λx y. y and λz y. y
3. λx y. x and λy x. y
4. λx y. x and λx y. y

Convention
α-equivalent terms are identified.

In the following development, we do not distinguish M and N if
M =α N at all. Feel free to rename any bound variable whenever
convenient.

22



Untyped λ-Calculus: Dynamics



β-conversion

Definition 13 (β-conversion)
β-conversion is a judgement M −→β N defined by

M[N/x] is defined
(λx.M) N −→β M[N/x]

for any x, M and N.

By definition, we can conclude that

(λx. λy. x) M −→β (λy. x)[M/x]
≡ λy. x[M/x] ≡ λy.M

but not ((λx y. x) M) N −→β (λy.M) N, since the above judgement is
defined only for β-redexes.
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One-step β-reduction

One-step β-reduction extends β-conversion to any subterm of a
term.

Definition 14
The one-step (full) β-reduction is defined inductively by

M[N/x] is defined
(λx.M) N −→β1 M[N/x]

M1 −→β1 M2

λx.M1 −→β1 λx.M2

M1 −→β1 M2

M1 N −→β1 M2 N

N1 −→β1 N2

M N1 −→β1 M N2

((λx y. x) M) N −→β1 (λy.M) N −→β1 M[N/y]
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Multi-step full β-reduction

It is convenient to represents a sequence of β-reductions

M −→β1 M1 −→β1 . . . −→β1 N

by a single judgement M −→β∗ N.

Definition 15
The multi-step (full) β-reduction is defined inductively by

(0-step)M −→β∗ M

L −→β1 M M −→β∗ N
(n+ 1-step)L −→β∗ N
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M −→β∗ N is transitive

Lemma 16
For every derivations of L −→β∗ M and M −→β∗ N, there is a
derivation of L −→β∗ N.

We often omit the term “derivation” and say “if L −→β∗ M and
M −→β∗ N then L −→β∗ N” instead.

Proof.
By induction on the derivation d of L −→β∗ M.

1. If d is given by (0-step), then L =α M (by convention).
2. If d is given by (n+1-step), i.e. there exists M′ such that L −→β1 M′

and M′ −→β∗ M. By induction hypothesis, every derivation
M −→β∗ N gives rise to a derivation of M′ −→β∗ N. Hence, by
(n+1-step), we have a derivation of L −→β∗ N.
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α-conversion during β-reduction

Renaming of bound variables may need to happen during reduction:

(λy. y y) (λz x. z x) −→β1 (λz x. z x) (λz x. z x)
−→β1 λx. (λz x. z x) x
=α λx. (λz y. z y) x
−→β1 λx. (λy. x y)

Even worse, we actually need infinitely many variables:

(λy. y s y) (λt z x. z (t x) z)

Exercise
Evaluate the above term.
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Computational meaning

Two terms M and N may not have the same structure or even not
reducible from one to the other, but they may have the same
meaning with respect to computation.

Definition 17
M and N have the same computational meaning if M =β N which is
defined inductively by

M −→β1 N
M =β N

M =β M

M =β N
N =β M

L =β M M =β N
L =β N
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Summary

SUMMARISE HERE ALL THE RELATIONS JUST INTRODUCED.
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Programming in λ-Calculus



Church encoding of boolean values

Boolean and conditional can be encoded as combinators.

Boolean

True ··= λx y. x
False ··= λx y. y

Conditional

if ··= λb x y. b x y
if True M N −→β∗ M

if False M N −→β∗ N

for any two λ-terms M and N.
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Church Encoding of natural numbers i

Natural numbers as well as arithmetic operations can be encoded in
untyped lambda calculus.

Church numerals

c0 ··= λf x. x
c1 ··= λf x. f x
c2 ··= λf x. f (f x)
cn+1 ··= λf x. fn+1 (x)

where f1(x) ··= f x and fn+1(x) ··= f (fn(x)).
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Church Encoding of natural numbers ii

Successor

succ ··= λn. λf x. f (n f x)
succ cn −→β∗ cn+1

for any natural number n ∈ N.
Addition

add ··= λnm. λf x. n f (m f x)
add cn cm −→β∗ cn+m

Conditional

ifz ··= λn x y. n (λz. y) x
ifz c0 M N −→β∗ M
ifz cn+1 M N −→β∗ N
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Exercise

1. Define Boolean operations not, and, and or.
2. Evaluate succ c0 and add c1 c2.
3. Define the multiplication mult over Church numerals.
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General Recursion via self-reference

The summation
∑n

i=0 i for n ∈ N is usually described by
self-reference in mathematics as follows.

sum(n) =
{
0 if n = 0
n+ sum(n− 1) otherwise.

This cannot be done in λ-calculus directly. (Why?)

Observation
If sum is unfolded as many times as it requires, then

sum(n) =



0 if n = 0
1+ sum(0) n = 1
2+ sum(1) n = 2
· · ·
n+ sum(n− 1) otherwise.
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Curry’s paradoxical combinator

The Y combinator is defined as a term

Y ··= λf. (λx. f (x x)) (λx. f (x x)).

Proposition 18
Y is a fixed-point operator, i.e.

YF −→β1 (λx. F (x x)) (λx. F (x x))
−→β1 F ((λx. F (x x)) (λx. F (x x)))

for every λ-term F. In particular, YF =β F(YF).

Intuitively, YF defines recursion where F describes each iteration.

35



Summation via Y

We encode the following recursion

sum(n) =
{
0 if n = 0
n+ sum(n− 1) otherwise.

by generalising each iteration G with an additional function f

G ··= λf n.ifz n c0 (add n (f (pred n)))

so that sum ··= YG. For example,

sum c1 ≡ (YG) c1
−→β1 G′ c1
−→β1 G G′ c1
−→β1 (λn.ifz n c0 (add n (G′ (pred n)))) c1
−→β1 ifz c1 c0 (add c1 (G′ (pred c1)))
−→β1 . . .

where G′ ··= ((λx.G (x x)) (λx.G (x x))). 36



Turing’s fixed-point combinator

Recall that YG =β G(Y G) but YG −→β∗ G(Y G) does not hold. Here is
a fixed-point operator such that ΘF −→β∗ F(ΘF).

Proposition 19
Define

Θ ··= (λx f. f (x x f)) (λx f. f (x x f))

Then,
ΘF −→β∗ F(ΘF)

Try Turing’s fixed-point combinator with G to define
∑n

i=0 i.

G ··= λf n.ifz n c0 (add n (f (pred n)))
sum ··= ΘG
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Exercise

1. Evaluate sum c1 to its normal form in detail.
2. Define the factorial n! with Church numerals.
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Properties of λ-Calculus



Example 20
Suppose M Termλ and y ̸∈ FV(M). Then, consider

(λy.M) ((λx. x x)(λx. x x))

Observations:

• Some evaluation may diverge while some may converge.
• Full β-reduction lacks for determinacy.

Question:

• Does every path give the same evaluation?
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Confluence

Theorem 21 (Church-Rosser)
Given N1 and N2 with M −→β∗ N1 and M −→β∗ N2, there is L such
that N1 −→β∗ L and N2 −→β∗ L.

M
β∗

  
@@

@@
@@

@@
β∗

~~~~
~~
~~
~~

N1

β∗
  
@@

@@
@@

@@
N2

β∗
~~~~
~~
~~
~~

L

No matter which way we choose we can always find a confluent term.
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Normal form

Definition 22
M is in normal form if there is no N such that M −→β1 N,
abbreviated to M−̸→β1.

Lemma 23
Suppose that M is in normal form. Then M −→β∗ N implies M =α N.

Proof.
By induction on the derivation d of M −→β∗ N.

1. If d is given by (0-step), then M −→β∗ N where M =α N by
definition.

2. If d is given by (n+1-step), then M −→β1 M′ and M′ −→β∗ N are
derivable for some M′. By assumption M −→β1 N is not derivable
for any N, so by contradiction the statement follows.

41



Corollaries of confluence

Corollary 24 (Uniqueness of normal forms)
Let M be a term with M −→β∗ N1 and M −→β∗ N2 where Ni’s are in
normal form. Then, N1 =α N2.

Corollary 25 (Computationally equal terms have a confluent term)
If M =β N, then there exists L satisfying

M

β∗
��
>>

>>
>>

>>
=β N

β∗
����
��
��
��

L

Proof sketch.
By induction on the derivation of M =β N.
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Homework

1. (2.5%) Show Corollary 24
2. (2.5%) Show Corollary 25.
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Appendix: Evaluation strategy



Evaluation strategies i

An evaluation strategy is a procedure of selecting β-redexes to
reduce. It is a subset −→ev of the full β-reduction −→β1.

Innermost β-redex does not contain any β-redex.
Outermost β-redex is not contained in any other β-redex.



Evaluation strategies ii

the leftmost-outermost (normal order) strategy reduces the
leftmost outermost β-redex in a term first. For
example,

(λx. (λy. y) x) (λx. (λy. y y) x)

−→β1(λy. y) (λx. (λy. y y) x)

−→β1λx. (λy. y y) x

−→β1(λx. x x)
−̸→β1



Evaluation strategies iii

the leftmost-innermost strategy reduces the leftmost innermost
β-redex in a term first. For example,

(λx. (λy. y) x) (λx. (λy. y y) x)

−→β1(λx. x) (λx. (λy. y y) x)

−→β1(λx. x) (λx. x x)

−→β1(λx. x x)
−̸→β1

the rightmost-innermost/outermost strategy are defined similarly
where terms are reduced from right to left instead.



CBV versus CBN

Call-by-value strategy rightmost-outermost but not under any
abstraction

Call-by-name strategy leftmost-outermost but not under any
abstraction

Proposition 26 (Determinacy)
Each of evaluation strategies is deterministic, i.e. if M −→β1 N1 and
M −→β1 N2 then N1 = N2.



Exercise

Define following terms

Ω ··= (λx. x x) (λx. x x)
K1 ··= λx y. x

Evaluate
K1 z Ω

using the call-by-value and the call-by-name strategy respectively.



Normalisation

Definition 27
1. M is in normal form if M−̸→β1N for any N.
2. M is weakly normalising if M −→β∗ N for some N in normal form.

1. Ω is not weakly normalising.
2. K1 is normal and thus weakly normalising.
3. K1 z Ω is weakly normalising.

Theorem 28
The normal order strategy reduces every weakly normalising term
to a normal form.
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