
Functional Programming
Practicals 2: Red-Black Tree

Shin-Cheng Mu

FLOLAC 2022

In this practical we aim to prove some essential properties about red-black tree insertion in
order to establish the correctness of the insertion algorithm. Some notes:

• In most proofs there could be many repetitive cases. It is sufficient to show only some
representative cases.

• Proof about properties of the function balance are mostly routine, tedious, non-inductive
proofs. However, these properties are needed in other proofs.

The code are adapted from Okasaki [?]. Those who interested in figuring out how to perform
deletion in red-black trees may check out Germane and Might [?].

1. Complete the definitions in the file RedBlackOkasaki.hs.

2. On (black) heights.

(a) Prove that forall t , u and z , bheight (balance t z u) = 1 + (bheight t ↑ bheight u).

Solution: Weneed only a non-inductive proof that checks all the cases. We demon-
strate only one of them.
Case (t , z , u) := (R (R t x u) y v , z ,w):

bheight (balance (R (R t x u) y v) z w)
= { def. of balance }
bheight (R (B t x u) y (B v z w))

= { def. of bheight }
bheight (B t x u) ↑ bheight (B v z w)

= { def. of bheight }
(1 + (bheight t ↑ bheight u)) ↑
(1 + (bheight v ↑ bheight w))

= { since (k + x) ↑ (k + y) = k + (x ↑ y), (↑) associative }
1 + (((bheight t ↑ bheight u) ↑ bheight v) ↑ bheight w)

= { definition of bheight }
1 + (bheight ((R (R t x u) y v)) ↑ bheight w)

1



(b) Prove that for all k and t , bheight (ins k t) = bheight t .
Note: as a corollary, we have bheight (insert k t) equals either bheight t or 1+bheight t ,
depending on the root color of ins k t .

Solution: Induction on n. We show only some representative cases.
Case t := E.

bheight (ins k E)
= bheight (R E k E)
= 0
= bheight E .

Case t := R t x u, k < x :

bheight (ins k (R t x u))
= { def. of ins, k < x }
bheight (R (ins k t) x u)

= { def. of bheight }
bheight (ins k t) ↑ bheight u

= { induction }
bheight t ↑ bheight u

= { def. of bheight }
bheight (R t x u) .

Case t := B t x u, k < x :

bheight (ins k (B t x u))
= { def. of ins, k < x }
bheight (balance (ins k t) x u)

= { exercise 2(a) }
1 + (bheight (ins k t) ↑ bheight u)

= { induction }
1 + (bheight t ↑ bheight u)

= { def. of bheight }
bheight (B t x u) .

3. On balancing.

(a) The function isBalanced , when taken literally as an algorithm, has time complexity
O(n2), where n is the size of the input tree. Define

isBalHeight :: RBTree a → (Bool, Nat)
isBalHeight t = (isBalanced t , bheight t) .

Page 2



Derive an implementation of isBalHeight that runs in time linear to the size of the input
tree.

Solution: Do a case analysis on t . When t := E we clearly have isBalHeight E =
(True, 0).
For t := B t x u, we calculate:

isBalHeight (B t x u)
= { def. of isBalHeight }
(isBalanced (B t x u), bheight (B t x u))

= { def. of isBalanced and bheight }
(bheight t = = bheight u ∧ isBalanced t ∧ isBalanced u,

1 + (bheight t ↑ bheight u))
= { grouping calls to isBalanced and bheight together }
let (bt , ht) = (isBalanced t , bheight t)

(bu, hu) = (isBalanced u, bheight u)
in (ht = = hu ∧ bt ∧ bu, 1 + (ht ↑ hu))

= { def. of isBalHeight }
let (bt , ht) = isBalHeight t

(bu, hu) = isBalHeight u
in (ht = = hu ∧ bt ∧ bu, 1 + (ht ↑ hu)) .

The case for t := R t x u is similar. In summary we have:

isBalHeight :: RBTree a → (Bool, Nat)
isBalHeight E = (True, 0)
isBalHeight (R t x u) =
let (bt , ht) = isBalHeight t

(bu, hu) = isBalHeight u
in (ht = = hu ∧ bt ∧ bu, (ht ↑ hu))

isBalHeight (B t x u) =
let (bt , ht) = isBalHeight t

(bu, hu) = isBalHeight u
in (ht = = hu ∧ bt ∧ bu, 1 + (ht ↑ hu)) .

(b) Prove that for all t and u,

isBalanced t ∧ isBalanced u ∧
bheight t = bheight u ⇒ isBalanced (balance t x u) .

Page 3



Solution: A tedious but routine check. We show only one of the cases.
Case: (t , x , u) := (R (R t x u) y v , z ,w).

isBalanced (balance (R (R t x u) y v) z w)
= { def. of balance }
isBalanced (R (B t x u) y (B v z w))
= { def. of isBalanced }
bheight (B t x u) = bheight (B v z w) ∧
isBalanced (B t x u) ∧ isBalanced (B v z w)
= { def. of bheight }
1 + (bheight t ↑ bheight u) = 1 + (bheight v ↑ beight w) ∧
bheight t = bheight u ∧ isBalanced t ∧ isBalanced u ∧
bheight v = bheight w ∧ isBalanced v ∧ isBalanced w

⇐ { def. of isBalanced and bheight , arithmetics }
bheight (R t x u) = bheight v ∧
isBalanced (R t x u) ∧ isBalanced v ∧ isBalanced w ∧
bheight t ↑ bheight u ↑ bheight v = bheight w
= { def. of isBalanced and bheight }
isBalanced (R (R t x u) y v) ∧ isBalanced w ∧
bheight R (R t x u) y v = bheight w .

(c) Prove that for all k and t , isBalanced t ⇒ isBalanced (ins k t).
Note: since isBalanced t ⇒ isBalanced (blacken t), as a corollarywe have isBalanced t ⇒
isBalanced (insert k t).

Solution: Induction on t . The base case t := E is omitted. We demonstrate one of
the cases.
Case t := B t x u, k < x :

isBalanced (ins k (B t x u))
= { def. of ins, k < x }
isBalanced (balance (ins k t) x u)

⇐ { exercise 3(b) }
isBalanced (ins k t) ∧ isBalanced u ∧ bheight (ins k t) = bheight u
= { exercise 2(b) }
isBalanced (ins k t) ∧ isBalanced u ∧ bheight t = bheight u

⇐ { induction }
isBalanced t ∧ isBalanced u ∧ bheight t = bheight u
= { def. of isBalanced }
isBalanced (B t x u) .

Page 4



4. On color invariants.

(a) Prove that for all t and u, isIRB t ∧ isRB u ⇒ isRB (balance t x u).

Solution: Note that with the constraint isRB u, we need to check only the 1st, 2nd,
and last case of balance. The proof is rather straight forward. Take for example the
1st case:
Case: (t , x , u) := (R (R t x u) y v , z ,w):

isRB (balance (R (R t x u) y v) z w)
= { def. of balance }
isRB (R (B t x u) y (B v z w))

= { def. of isRB }
color (B t x u) = Blk ∧ color (B v z w) = Blk ∧
isRB (B t x u) ∧ isRB (B v z w)

= { def. of color }
isRB (B t x u) ∧ isRB (B v z w)

= { def. of isRB }
color t = color u = color v = color w = Blk ∧
isRB t ∧ isRB u ∧ isRB v ∧ isRB w

= { def. of isRB }
color v = color w = Blk ∧
isRB (R t x u) ∧ isRB v ∧ isRB w

= { def. of isIRB }
isIRB (R (R t x u) y v) ∧ isRB w .

(b) Prove that for all t :

1. isRB t ∧ color t = R ⇒ isIRB (ins k t),
2. isRB t ∧ color t = B ⇒ isRB (ins k t).

Hints: 1. The two properties shall be proved simultaneously in one inductive proof. 2.
Since isRB t ⇒ isIRB t , the two properties above imply that isRB t ⇒ isIRB (ins k t),
which you may need in the proof.
Note: since isIRB t ⇒ isRB (blacken t), as a corollary we have isRB t ⇒ isRB (insert k t).

Solution: Induction on t . We demonstrate two cases:
Case t := B t x u, k < x .

isRB (ins k (B t x u))
= { def. of ins, k < x }
isRB (balance (ins k t) x u)

⇐ { exercise 4(a) }

Page 5



isIRB (ins k t) ∧ isRB u
⇐ { induction, noting that isRB t ⇒ isIRB (ins k t) }
isRB t ∧ isRB u
= { def. of isRB }
isRB (B t x u) .

Case t := R t x u, k < x .

isIRB (ins k (R t x u))
= { def. of ins }
isRB (R (ins k t) x u)
= { def. of isIRB }
(color (ins k t) = Blk ∨ color u = Blk) ∧ isRB (ins k t) ∧ isRB u
= { induction }
(color (ins k t) = Blk ∨ color u = Blk) ∧ isRB t ∧ isRB u

⇐ { logic: ((P | Q) ∧ R) ⇐ (Q ∧ R) }
color u = Blk ∧ isRB t ∧ isRB u

⇐ { logic: P ⩽ P ∧ Q }
color t = color u = Blk ∧ isRB t ∧ isRB u
= { def. of isRB }
isRB (R t x u) .

Page 6


