Functional Programming Practicals 2: Red-Black Tree

Shin-Cheng Mu

FLOLAC 2022

In this practical we aim to prove some essential properties about red-black tree insertion in order to establish the correctness of the insertion algorithm. Some notes:

- In most proofs there could be many repetitive cases. It is sufficient to show only some representative cases.
- Proof about properties of the function balance are mostly routine, tedious, non-inductive proofs. However, these properties are needed in other proofs.

The code are adapted from Okasaki [?]. Those who interested in figuring out how to perform deletion in red-black trees may check out Germane and Might [?].

1. Complete the definitions in the file RedBlackOkasaki.hs.
2. On (black) heights.
(a) Prove that forall t, u and z, bheight (balance $t z u)=1+($ bheight $t \uparrow$ bheight $u)$.

Solution: We need only a non-inductive proof that checks all the cases. We demonstrate only one of them.
Case $(t, z, u):=(\mathrm{R}(\mathrm{R} t x u) y v, z, w)$:

```
    bheight (balance ( \(\mathrm{R}(\mathrm{R} t x u) y v) z w)\)
    \(=\quad\{\) def. of balance \(\}\)
    bheight ( \(\mathrm{R}(\mathrm{B} t x u) y(\mathrm{~B} v z w))\)
    \(=\quad\{\) def. of bheight \(\}\)
    bheight \((\mathrm{B} t \times u) \uparrow\) bheight \((\mathrm{B} v \mathrm{z} w)\)
    \(=\quad\{\) def. of bheight \(\}\)
    \((1+(\) bheight \(t \uparrow\) bheight \(u)) \uparrow\)
    \((1+(\) bheight \(v \uparrow\) bheight w) )
    \(=\quad\{\) since \((k+x) \uparrow(k+y)=k+(x \uparrow y),(\uparrow)\) associative \(\}\)
    \(1+(((\) bheight \(t \uparrow\) bheight \(u) \uparrow\) bheight \(v) \uparrow\) bheight w)
    \(=\quad\{\) definition of bheight \(\}\)
    \(1+(\) bheight \(((\mathrm{R}(\mathrm{R} t \times u) y v)) \uparrow\) bheight w)
```

(b) Prove that for all k and t, bheight (ins $k t$) $=$ bheight t.

Note: as a corollary, we have bheight (insert $k t$) equals either bheight t or $1+$ bheight t, depending on the root color of ins $k t$.

Solution: Induction on n. We show only some representative cases.
Case $t:=\mathrm{E}$.

$$
\begin{aligned}
& \text { bheight (ins k E) } \\
= & \text { bheight (R E } k \text { E) } \\
= & 0 \\
= & \text { bheight E . }
\end{aligned}
$$

Case $t:=\mathrm{R} t x u, k<x:$
bheight (ins $k(\mathrm{R} t \times u))$
$=\quad\{$ def. of ins, $k<x\}$
bheight $(\mathrm{R}($ ins $k t) x u)$
$=\{$ def. of bheight $\}$
bheight (ins $k t$) \uparrow bheight u
$=\{$ induction $\}$
bheight $t \uparrow$ bheight u
$=\{$ def. of bheight $\}$
bheight ($\mathrm{R} t \times u$).
Case $t:=\mathrm{B} t x u, k<x$:

$$
\begin{aligned}
& \text { bheight }(\text { ins } k(\mathrm{~B} t \times u)) \\
= & \{\text { def. of ins, } k<x\} \\
& \text { bheight (balance }(\text { ins } k t) x u) \\
= & \{\text { exercise } 2(\mathrm{a})\} \\
& 1+(\text { bheight } \text { (ins } k t) \uparrow \text { bheight u) } \\
= & \{\text { induction }\} \\
& 1+(\text { bheight } t \uparrow \text { bheight u) } \\
= & \{\text { def. of bheight }\} \\
& \text { bheight }(\mathrm{B} t \times u) .
\end{aligned}
$$

3. On balancing.
(a) The function isBalanced, when taken literally as an algorithm, has time complexity $O\left(n^{2}\right)$, where n is the size of the input tree. Define
isBalHeight :: RBTree $a \rightarrow$ (Bool, Nat)
isBalHeight $t=($ isBalanced t, bheight $t)$.

Derive an implementation of isBalHeight that runs in time linear to the size of the input tree.

Solution: Do a case analysis on t. When $t:=\mathrm{E}$ we clearly have isBalHeight $\mathrm{E}=$ (True, 0).
For $t:=\mathrm{B} t x u$, we calculate:

```
    isBalHeight (B txu)
    = {def. of isBalHeight }
    (isBalanced (B txu), bheight (B txu))
    = { def. of isBalanced and bheight }
    (bheight t== bheight }u\wedge\mathrm{ isBalanced t ^ isBalanced u,
        1 + (bheight t\uparrow bheight u))
    = { grouping calls to isBalanced and bheight together }
    let (bt,ht)=(isBalanced t, bheight t)
        (bu,hu)=(isBalanced u, bheight u)
    in (ht == hu ^bt ^bu,1+(ht\uparrowhu))
    = {def. of isBalHeight }
    let (bt,ht)= isBalHeight t
        (bu,hu) = isBalHeight u
    in (ht == hu^bt^bu,1+(ht\uparrowhu)).
```

The case for $t:=\mathrm{R} t x u$ is similar. In summary we have:

```
isBalHeight :: RBTree }a->\mathrm{ (Bool, Nat)
isBalHeight E = (True,0)
isBalHeight (R t x u) =
    let (bt,ht) = isBalHeight t
        (bu,hu) = isBalHeight u
    in (ht == hu ^bt^bu,(ht\uparrowhu))
isBalHeight (B txu)=
    let (bt,ht)= isBalHeight t
        (bu,hu)= isBalHeight u
    in (ht == hu ^bt ^bu,1+(ht\uparrowhu)).
```

(b) Prove that for all t and u,

```
isBalanced t ^ isBalanced u ^
    bheight t= bheight u}=>\mathrm{ isBalanced (balance t x u).
```

Solution: A tedious but routine check. We show only one of the cases.
Case: $(t, x, u):=(\mathrm{R}(\mathrm{R} t x u) y v, z, w)$.

> isBalanced $($ balance $(\mathrm{R}(\mathrm{R} t \times u) y v) z w)$
> $=\quad\{$ def. of balance $\}$
> isBalanced $(\mathrm{R}(\mathrm{B} t \times u) y(\mathrm{~B} v z w))$
> $=\quad\{$ def. of isBalanced $\}$
> bheight $(\mathrm{B} t \times u)=$ bheight $(\mathrm{B} v z w) \wedge$
> isBalanced $(\mathrm{B} t \times u) \wedge$ isBalanced $(\mathrm{B} v z w)$
> $=\quad\{$ def. of bheight $\}$
> $1+($ bheight $t \uparrow$ bheight $u)=1+($ bheight $v \uparrow$ beight $w) \wedge$
> bheight $t=$ bheight $u \wedge$ isBalanced $t \wedge$ isBalanced $u \wedge$
> bheight $v=$ bheight $w \wedge$ isBalanced $v \wedge$ isBalanced w
> $\Leftarrow \quad\{$ def. of isBalanced and bheight, arithmetics $\}$
> bheight $(\mathrm{R} t \times u)=$ bheight $v \wedge$
> isBalanced $(\mathrm{R} t x u) \wedge$ isBalanced $v \wedge$ isBalanced $w \wedge$
> bheight $t \uparrow$ bheight $u \uparrow$ bheight $v=$ bheight w
> $=\quad\{$ def. of isBalanced and bheight $\}$
> isBalanced $(\mathrm{R}(\mathrm{R} t \times u) y$ v) \wedge isBalanced $w \wedge$ \quad bheight $\mathrm{R}(\mathrm{R} t x u) y v=$ bheight w.
(c) Prove that for all k and t, isBalanced $t \Rightarrow$ isBalanced (ins $k t$).

Note: since isBalanced $t \Rightarrow$ isBalanced (blacken t), as a corollary we have isBalanced $t \Rightarrow$ isBalanced (insert $k t$).

Solution: Induction on t. The base case $t:=\mathrm{E}$ is omitted. We demonstrate one of the cases.

```
Case \(t:=\mathrm{B} t x u, k<x:\)
    isBalanced (ins \(k(\mathrm{~B} t \times u))\)
    \(=\quad\{\) def. of ins, \(k<x\}\)
    isBalanced (balance (ins \(k t\) ) \(\times u\) )
    \(\Leftarrow \quad\{\) exercise 3(b) \(\}\)
    isBalanced (ins \(k t) \wedge\) isBalanced \(u \wedge\) bheight (ins \(k t\) ) \(=\) bheight \(u\)
    \(=\{\) exercise 2(b) \(\}\)
    isBalanced \((\) ins \(k t) \wedge\) isBalanced \(u \wedge\) bheight \(t=\) bheight \(u\)
    \(\Leftarrow \quad\{\) induction \(\}\)
    isBalanced \(t \wedge\) isBalanced \(u \wedge\) bheight \(t=\) bheight \(u\)
    \(=\{\) def. of isBalanced \(\}\)
    isBalanced ( \(\mathrm{B} t \times u\) ).
```

4. On color invariants.
(a) Prove that for all t and u, isIRB $t \wedge$ isRB $u \Rightarrow$ isRB (balance $t x u$).

Solution: Note that with the constraint is $R B u$, we need to check only the 1st, 2nd, and last case of balance. The proof is rather straight forward. Take for example the 1st case:
Case: $(t, x, u):=(\mathrm{R}(\mathrm{R} t x u) y v, z, w)$:

$$
\begin{aligned}
& \text { is RB (balance }(\mathrm{R}(\mathrm{R} t x u) y v) z w) \\
& =\{\text { def. of balance }\} \\
& \text { isRB (} \mathrm{R}(\mathrm{~B} t x u) y(\mathrm{~B} v z w)) \\
& =\{\text { def. of is } R B\} \\
& \text { color }(\mathrm{B} t \times u)=\mathrm{Blk} \wedge \text { color }(\mathrm{B} v z w)=\mathrm{Blk} \wedge \\
& \text { isRB }(\mathrm{B} t x u) \wedge i s R B(\mathrm{~B} v z w) \\
& =\{\text { def. of color }\}
\end{aligned}
$$

(b) Prove that for all t :

1. is $R B t \wedge$ color $t=R \Rightarrow$ is $R B$ (ins $k t$),
2. is $R B t \wedge$ color $t=\mathrm{B} \Rightarrow$ is $R B$ (ins $k t$).

Hints: 1. The two properties shall be proved simultaneously in one inductive proof. 2. Since is $R B t \Rightarrow$ is $I R B t$, the two properties above imply that is $R B t \Rightarrow$ is $I R B$ (ins $k t$), which you may need in the proof.
Note: since is $I R B t \Rightarrow$ is $R B$ (blacken t), as a corollary we have is $R B t \Rightarrow$ is $R B$ (insert $k t$).

Solution: Induction on t. We demonstrate two cases:
Case $t:=\mathrm{B} t x u, k<x$.

$$
\begin{aligned}
& \text { isRB }(\text { ins } k(\mathrm{~B} t \times u)) \\
= & \quad \text { def. of ins, } k<x\} \\
& \text { isRB }(\text { balance }(\text { ins } k t) \times u) \\
\Leftarrow & \{\text { exercise } 4(\mathrm{a})\}
\end{aligned}
$$

```
    isIRB (ins k t) ^ isRB u
\Leftarrow \mp@code { \{ i n d u c t i o n , ~ n o t i n g ~ t h a t ~ i s R B t \Rightarrow ~ i s I R B ~ ( i n s ~ k t ) \} }
    isRB t^ isRB u
= {def. of isRB }
    isRB (B txu).
Case t:= R tx u,k<x.
    isIRB (ins k (R txu))
    = {def. of ins }
    isRB (R (ins kt) x u)
    = { def. of isIRB }
    (color (ins kt)= Blk \vee color u = Blk) }\wedge isRB (ins kt) \wedge isRB 
    = { induction}
        (color (ins k t)= Blk \vee color }u=\textrm{Blk})\wedge isRB t\wedge isRB 
    \Leftarrow { logic: ((P|Q)\wedgeR)\Leftarrow(Q\wedgeR)}
    color u = Blk ^ isRB t\wedge isRB u
    \Leftarrow { logic: P}\leqslant\textrm{P}\wedge\textrm{Q}
        color t = color }u=\textrm{Blk}\wedge isRB t\wedge isRB u
    = { def. of isRB }
    isRB(Rtxu).
```

