
Functional Programming
Practicals 02: Program Derivation

Shin-Cheng Mu

FLOLAC 2020

1. Let descend be defined by:

descend :: Nat→ List Nat
descend 0 = []
descend (1+ n) = 1+ n : descend n .

(a) Let sumseries = sum · descend , synthesise an inductive definition of f .

Solution: It is immediate that sum (descend 0) = 0. For the inductive case
we calculate:

sum (descend (1+ n))
= { definition of descend }

sum ((1+ n) : descend n)
= { definition of sum }

1+ n + sum (descend n))
= { definition of sum }

1+ n + sumseries n .

Thus we have

sumseries 0 = 0
sumseries (1+ n) = 1+ n + sumseries n .

(b) The function repeatN :: (Nat, a)→ List a is defined by

repeatN (n, x) = map (const x) (descend n) .

Thus repeatN (n, x) produces n copies of x in a list. E.g. repeatN (3, ’a’) =
"aaa". Calculate an inductive definition of repeatN.

1

Solution: It is immediate that repeatN (0, x) = []. For the inductive case we
calculate

repeatN (1+ n, x)
= { definition of repeatN }

map (const x) (descend (1+ n))
= { definition of descend }

map (const x) (1+ n : descend n)
= { definition of map and const }

x : map (const x) (descend n)
= { definition of repeatN }

x : repeatN (n, x) .

Thus we have

repeatN (0, x) = []
repeatN (1+ n, x) = x : repeatN (n, x) .

(c) The function rld :: List (Nat, a)→ List a performs run-length decoding:

rld = concat ·map repeatN .

For example, rld [(2, ’a’), (3, ’b’), (1, ’c’)] = "aabbbc". Come up with an induc-
tive defintion of rld .

Solution: For the base case:

rld []
= { definition of rld }

concat (map repeatN [])
= { definitions of map and concat }

[]

For the inductive case:

rld ((n, x) : xs)
= { definition of rld }

concat (map repeatN ((n, x) : xs))
= { definitions of map }

concat (repeatN (n, x) : map repeatN xs)
= { definitions of concat }

repeatN (n, x) ++ concat (map repeatN xs)
= { definition of rld }

repeatN (n, x) ++ rld xs .

2

We have thus derived:

rld [] = []
rld ((n, x) : xs) = repeatN (n, x) ++ rld xs .

2. There is another way to define pos such that pos x xs yields the index of the first
occurrence of x in xs:

pos :: Eq a⇒ a→ List a→ Int
pos x = length · takeWhile (x 6=)

(This pos behaves differently from the one in the lecture when x does not occur in
xs.) Construct an inductive definition of pos.

Solution: It is immediate that pos x [] = 0. For the inductive case we calculate:

pos x (y : xs)
= length (takeWhile (x 6=) (y : xs))
= { definition of takeWhile }

length (if x 6= y then y : takeWhile (x 6=) xs else [])
= { function application distributes into if (for total functions) }

if x 6= y then length (y : takeWhile (x 6=) xs) else length []
= { definition of length }

if x 6= y then 1+ length (takeWhile (x 6=) xs) else 0
= { definition of pos }

if x 6= y then 1+ pos x xs else 0 .

Thus we have constructed:

pos x [] = 0
pos x (y : xs) = if x 6= y then 1+ pos x xs else 0 .

3. Zipping and mapping.

(a) Let second f (x , y) = (x , f y). Prove that zip xs (map f ys) = map (second f) (zip xs ys).

3

Solution: Recall one of the possible definitions of zip:

zip [] ys = []
zip (x : xs) [] = []
zip (x : xs) (y : ys) = (x , y) : zip xs ys.

Following the structure, we prove the proposition by induction on xs and ys. A
tip for equational reasoning: it is usually easier to go from the more complex
side to the simpler side, from the side with more structure to the side with
less structure. Thus we start from the left-hand side.
Case xs := [].

map (second f) (zip [] ys)
= { definition of zip }

map (second f) []
= { definition of map }

[]
= { definition of zip }

zip [] (map f ys).

Case xs := x : xs, ys := [].

map (second f) (zip (x : xs) [])
= { definition of zip }

map (second f) []
= { definition of map }

[]
= { definition of zip }

zip (x : xs) []
= { definition of map }

zip (x : xs) (map f []).

Case xs := x : xs, ys := y : ys.

map (second f) (zip (x : xs) (y : ys))
= { definition of zip }

map (second f) ((x , y) : zip xs ys)
= { definition of map }

second f (x , y) : map (second f) (zip xs ys)

4

= { definition of second }
(x , f y) : map (second f) (zip xs ys)

= { induction }
(x , f y) : zip xs (map f ys)

= { definition of zip }
zip (x : xs) (f y : map f ys)

= { definition of map }
zip (x : xs) (map f (y : ys)).

(b) Consider the following definition

delete :: List a→ List (List a)
delete [] = []
delete (x : xs) = xs : map (x :) (delete xs) ,

such that

delete [1, 2, 3, 4] = [[2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3]] .

That is, each element in the input list is deleted in turns. Let select :: List a →
List (a, List a) be defined by select xs = zip xs (delete xs). Come up with an
inductive definition of select . Hint: you may find second useful.

Solution: The base case [] is immediate. For the inductive case:

select (x : xs)
= { definition of select }

zip (x : xs) (delete (x : xs))
= { definition of delete }

zip (x : xs) (xs : map (x :) (delete xs))
= { definition of zip }

(x , xs) : zip xs (map (x :) (delete xs))
= { property proved above }

(x , xs) : map (second (x :)) (zip xs (delete xs))
= { definition of select }

(x , xs) : map (second (x :)) (select xs) .

We thus have

select [] = []
select (x : xs) = (x , xs) : map (second (x :)) (select xs) .

5

(c) An alternative specification of delete is

delete xs = map (del xs) [0 .. length xs − 1]
where del xs i = take i xs ++ drop (1 + i) xs ,

(here we take advantage of the fact that [0 .. n] returns [] when n is negative).
From this specification, derive the inductive definition of delete given above. Hint:
you may need the following property:

[0 .. n] = 0 : map (1+) [0 .. n − 1], if n > 0, (1)

and the map-fusion law (??) given below.

Solution:

delete (x : xs)
= { definition of delete }

map (del (x : xs)) [0 .. length (x : xs)− 1]
= { defintion of length, arithmetics }

map (del (x : xs)) [0 .. length xs]
= { length xs > 0, by (??) }

map (del (x : xs)) (0 : map (1+) [0 .. length xs − 1])
= { definition of map }

del (x : xs) 0 : map (del (x : xs)) (map (1+) [0 .. length xs − 1])
= { map fusion (??) }

del (x : xs) 0 : map (del (x : xs) · (1+)) [0 .. length xs − 1]

Now we pause for a while to inspect del (x :xs). Apparently, del (x :xs) 0 = xs.
For del (x : xs) · (1+) we calculate:

(del (x : xs) · (1+)) i
= { definition of (·) }

del (x : xs) (1+ i)
= { definition of del }

take (1+ i) (x : xs) ++ drop (1+ (1+ i)) (x : xs)
= { definitions of take and drop }

x : take i xs ++ drop (1+ i) xs
= { definition of del }

x : del xs i
= { definition of (·) }

((x :) · del xs) i .

We resume the calculation:

6

del (x : xs) 0 : map (del (x : xs) · (1+)) [0 .. length xs − 1]
= { calculation above }

xs : map ((x :) · del xs) [0 .. length xs − 1]
= { map fusion (??) }

xs : map (x :) (map (del xs) [0 .. length xs − 1])
= { definition of delete }

xs : map (x :) (delete xs) .

We have thus derived the first, inductive definition of delete.

4. Prove the following map-fusion law:

map f ·map g = map (f · g) . (2)

Solution:

map f ·map g = map (f · g)
≡ { extensional equality }

(∀xs :: (map f ·map g) xs = map (f · g) xs)
≡ { definition of (·) }

(∀xs :: (map f (map g xs) = map (f · g) xs).

We prove the proposition by induction on xs.

Case xs := []. Omitted.

Case xs := x : xs.

map f (map g (x : xs))
= { definition of map, twice }

f (g x) : map f (map g xs)
= { induction }

f (g x) : map (f · g) xs
= { definition of (·) }

(f · g) x : map (f · g) xs
= { definition of map }

map (f · g) (x : xs).

7

5. Assume that multiplication (×) is a constant-time operation. One possible definition
for exp m n = mn could be:

exp :: Nat → Nat → Nat
exp m 0 = 1
exp m (1 + n) = m × exp m n

Therefore, to compute exp m n, multiplication is called n times: m ×m × ...×m × 1.
Can we do better?

Yet another way to represent a natural number is to use the binary representation.

(a) The function binary :: Nat → [Bool] returns the reversed binary representation
of a natural number. For example:

binary 0 = [],
binary 1 = [T],
binary 2 = [F , T],
binary 3 = [T , T],
binary 4 = [F , F , T],

where T and F abbreviates True and False. Given the following functions:

even :: Nat → Bool , returning true iff the input is even,
odd :: Nat → Bool , returning true iff the input is odd, and
div :: Nat → Nat → Nat , for integral division,

define binary . You may just present the code.
Hint One possible implementation discriminates between 3 cases – the input is
0, the input is odd, and the input is even.

Solution:

binary :: Nat → List Bool
binary 0 = []
binary n | even n = False : binary (n ‘div ‘ 2)

| odd n = True : binary ((n − 1) ‘div ‘ 2)

(b) Briefly explain in words whether your implementation of binary terminates for all
input in Nat , and why.

Solution: All non-zero natural numbers strictly decreases when being di-
vided by 2, and thus we eventually reaches the base case for 0.

8

(c) Define a function decimal :: List Bool → Nat that takes the reversed binary rep-
resentation and returns the corresponding natural number. E.g. decimal [T , T , F , T] =
11. You may just present the code.

Solution:

decimal :: List Bool → Nat
decimal [] = 0
decimal (False : xs) = 2× decimal xs
decimal (True : xs) = 1 + (2× decimal xs)

(d) Let roll m = exp m · decimal . Assuming we have proved that exp m n satisfies all
arithmetic laws for mn. Construct (with algebraic calculation) a definition of roll
that does not make calls to exp or decimal .

Solution: Let’s calculate roll m xs = exp m (decimal xs) by distinguishing
between the three cases of n: Case xs := []:

roll m []
= exp m (decimal [])
= { definition of decimal }

exp m 0
= { definition of exp }

1

Case xs = False : xs:

roll m (False : xs)
= { definition of roll }

exp m (decimal (False : xs))
= { definition of decimal }

exp m (2× decimal xs)
= { arithmetic: m2n = (m2)n }

exp (m ×m) (decimal xs)
= { definition of roll }

roll (m ×m) xs

Case xs = True : xs:

roll m (True : xs)

9

= { definition of roll }
exp m (decimal (True : xs))

= { definition of decimal }
exp m (1 + 2× decimal xs)

= { definition of exp }
m × exp m (2× decimal xs)

= { arithmetic: m2n = (m2)n }
m × exp (m ×m) (decimal xs)

= { definition of roll }
m × roll (m ×m) xs

We have thus constructed:

roll m [] = 1
roll m (False : xs) = roll (m ×m) xs
roll m (True : xs) = m × roll (m ×m) xs

Remark If the fusion succeeds, we have derived a program computing mn:

fastexp m = roll m · binary .

The algorithm runs in time proportional to the length of the list generated by binary ,
which is O(log2 n).

6. Recall the internally labelled binary tree:

data ITree a = Null | Node a (ITree a) (ITree a) .

A baobab tree is a kind of tree with very thick trunks. An Itree Int is called a baobab
tree if every label in the tree is larger than the sum of the labels in its two subtrees.
The following function determines whether a tree is a baobab tree (where sumT ::
ITree Int→ Int computes the sum of labels in a tree):

baobab :: ITree Int→ Bool
baobab Null = True
baobab (Node x t u) = baobab t ∧ baobab u ∧

x > (sumT t + sumT u) .

What is the time complexity of baobab? Define a variation of baobab that runs in time
proportional to the size of the input tree by tupling.

10

7. Recall the externally labelled binary tree:

data Etree a = Tip a | Bin (ETree a) (ETree a) .

The function size computes the size (number of labels) of a tree, while repl t xs tries
to relabel the tips of t using elements in xs. Note the use of take and drop in repl :

size (Tip) = 1
size (Bin t u) = size t + size u .
repl :: ETree a→ List b → ETree b
repl (Tip) xs = Tip (head xs)
repl (Bin t u) xs = Bin (repl t (take n xs)) (repl u (drop n xs))

where n = size t .

The function repl runs in time O(n2) where n is the size of the input tree. Can we do
better? Hint: try calculating the following function:

repTail :: ETree a→ List b → (ETree b × List b)
repTail s xs = (repl s (take n xs), drop n xs) ,

where n = size s .

You might need properties including:

take m (take (m + n) xs) = take m xs ,
drop m (take (m + n) xs) = take n (drop m xs) ,

drop (m + n) xs = drop n (drop m xs) .

8. The function tags returns all labels of an internally labelled binary tree:

tags :: ITree a→ List a
tags Null = []
tags (Node x t u) = tags t ++ [x] ++ tags u .

Try deriving a faster version of tags by Calculating

tagsAcc :: ITree a→ List a→ List a
tagsAcc t ys = tags t ++ ys .

9. Define the following function expAcc:

expAcc :: Nat→ Nat→ Nat→ Nat
expAcc b n x = x × exp b n .

Calculate a definition of expAcc that uses only O(log n) multiplications to compute
bn. You may assume all the usual arithmetic properties about exponentials. Hint:
consider the cases when n is zero, non-zero even, and odd.

11

