Functional Programming Practicals 02: Program Derivation

Shin-Cheng Mu

FLOLAC 2020

1. Let descend be defined by:
descend :: Nat \rightarrow List Nat
descend $0=$ []
descend $\left(\mathbf{1}_{+} n\right)=\mathbf{1}_{+} n$: descend n.
(a) Let sumseries $=$ sum \cdot descend, synthesise an inductive definition of f.

Solution: It is immediate that sum (descend 0) $=0$. For the inductive case we calculate:

$$
\begin{aligned}
& \quad \text { sum }\left(\text { descend }\left(\mathbf{1}_{+} n\right)\right) \\
= & \{\text { definition of descend }\} \\
& \text { sum }\left(\left(\mathbf{1}_{+} n\right): \text { descend } n\right) \\
= & \{\text { definition of sum }\} \\
& \left.\mathbf{1}_{+} n+\text { sum }(\text { descend } n)\right) \\
= & \{\text { definition of sum }\} \\
& \mathbf{1}_{+} n+\text { sumseries } n .
\end{aligned}
$$

Thus we have

$$
\begin{array}{ll}
\text { sumseries } 0 & =0 \\
\text { sumseries }\left(\mathbf{1}_{+} n\right) & =\mathbf{1}_{+} n+\text { sumseries } n .
\end{array}
$$

(b) The function repeat $N::(N a t, a) \rightarrow$ List a is defined by
repeat $N(n, x)=$ map $($ const $x)($ descend $n)$.
Thus repeat $N(n, x)$ produces n copies of x in a list. E.g. repeat $N\left(3,{ }^{\prime} \mathrm{a}^{\prime}\right)=$ "aaa". Calculate an inductive definition of repeatN.

Solution: It is immediate that repeat $N(0, x)=[]$. For the inductive case we calculate

$$
\begin{aligned}
& \text { repeatN }\left(\mathbf{1}_{+} n, x\right) \\
= & \{\text { definition of } \text { repeatN }\} \\
& \text { map }(\text { const } x)\left(\text { descend }\left(\mathbf{1}_{+} n\right)\right) \\
= & \{\text { definition of descend }\} \\
& \text { map }(\text { const } x)\left(\mathbf{1}_{+} n: \text { descend } n\right) \\
= & \{\text { definition of map and const }\} \\
& x: \text { map }(\text { const } x)(\text { descend } n) \\
= & \{\text { definition of repeatN }\} \\
& x: \operatorname{repeatN}(n, x) .
\end{aligned}
$$

Thus we have

```
repeatN \((0, \quad x)=[]\)
repeat \(N\left(\mathbf{1}_{+} n, x\right)=x\) : repeatN \((n, x)\).
```

(c) The function rld :: List (Nat, a) \rightarrow List a performs run-length decoding:

$$
r l d=\text { concat } \cdot \text { map repeat } N .
$$

For example, rld [(2, 'a'), (3, 'b'), (1, ' $\left.\left.c^{\prime}\right)\right]=$ "aabbbc". Come up with an inductive defintion of $r l d$.

Solution: For the base case:

```
    rld [
    \(=\{\) definition of \(r l d\}\)
    concat (map repeatN [])
    \(=\{\) definitions of map and concat \(\}\)
    []
```

For the inductive case:

```
    rld ((n,x) : xs)
= { definition of rld }
    concat (map repeatN ((n,x) : xs))
= { definitions of map }
    concat (repeatN (n,x) : map repeatN xs)
= { definitions of concat }
    repeatN (n,x) + concat (map repeatN xs)
= { definition of rld }
    repeatN (n,x) + rld xs .
```

We have thus derived:

$$
\begin{array}{ll}
\operatorname{rld}[] & =[] \\
\text { rld }((n, x): x s) & =\text { repeatN }(n, x)+\text { rld } x s .
\end{array}
$$

2. There is another way to define pos such that pos x xs yields the index of the first occurrence of x in $x s$:

$$
\begin{aligned}
& \text { pos }:: \text { Eq } a \Rightarrow a \rightarrow \text { List } a \rightarrow \text { Int } \\
& \text { pos } x=\text { length } \cdot \text { takeWhile }(x \neq)
\end{aligned}
$$

(This pos behaves differently from the one in the lecture when x does not occur in $x s$.) Construct an inductive definition of pos.

Solution: It is immediate that $\operatorname{pos} x[]=0$. For the inductive case we calculate:

```
    pos \(x(y: x s)\)
\(=\) length (takeWhile \((x \neq)(y: x s))\)
\(=\{\) definition of takeWhile \(\}\)
    length (if \(x \neq y\) then \(y\) : takeWhile \((x \neq) x\) s else [])
\(=\{\) function application distributes into if (for total functions) \(\}\)
    if \(x \neq y\) then length ( \(y:\) takeWhile \((x \neq) x s)\) else length []
\(=\{\) definition of length \(\}\)
    if \(x \neq y\) then \(1_{+}\)length (takeWhile \((x \neq) x s\) ) else 0
\(=\{\) definition of \(p o s\}\)
    if \(x \neq y\) then \(1_{+}\)pos \(x\) xs else 0 .
```

Thus we have constructed:

```
posx[] = 0
pos x (y:xs) = if }x\not=y\mathrm{ then 1+ pos x xs else 0.
```

3. Zipping and mapping.
(a) Let second $f(x, y)=(x, f y)$. Prove that zip xs $(\operatorname{map} f y s)=\operatorname{map}(\operatorname{second} f)($ zip xs ys).

Solution: Recall one of the possible definitions of zip:

$$
\begin{array}{ll}
\operatorname{zip}[] y s & =[] \\
\operatorname{zip}(x: x s)[] & =[] \\
\operatorname{zip}(x: x s)(y: y s) & =(x, y): \text { zip xs ys. }
\end{array}
$$

Following the structure, we prove the proposition by induction on $x s$ and $y s$. A tip for equational reasoning: it is usually easier to go from the more complex side to the simpler side, from the side with more structure to the side with less structure. Thus we start from the left-hand side.
Case $x s:=[]$.

$$
\operatorname{map}(\text { second f) (zip [] ys) }
$$

$=\{$ definition of zip $\}$
map (second f) []
$=\quad\{$ definition of map $\}$
[]
$=\{$ definition of zip $\}$
zip [] (map fys).
Case $x s:=x: x s, y s:=[]$.

$$
\begin{aligned}
& \operatorname{map}(\text { second } f)(\text { zip }(x: x s)[]) \\
= & \{\text { definition of zip }\} \\
& \operatorname{map}(\text { second } f)[] \\
= & \{\text { definition of } \operatorname{map}\} \\
= & {[] } \\
& \{\text { definition of }(x: x s)[] \\
= & \{\text { definition of }\} \\
& \operatorname{zip}(x: x s)(\operatorname{map} f[]) .
\end{aligned}
$$

Case $x s:=x: x s, y s:=y: y s$.

$$
\begin{aligned}
& \text { map }(\text { second } f)(z i p(x: x s)(y: y s)) \\
= & \{\text { definition of zip }\} \\
& \text { map (second } f)((x, y): \text { zip xs ys) } \\
= & \{\text { definition of } \operatorname{map}\} \\
& \text { second } f(x, y): \text { map (second } f)(\text { zip } x s \text { ys })
\end{aligned}
$$

$$
\begin{aligned}
= & \{\text { definition of second }\} \\
& (x, f y): \text { map (second } f)(\text { zip xs ys) } \\
= & \{\text { induction }\} \\
& (x, f y): \text { zip xs (map } f y s) \\
= & \{\text { definition of zip }\} \\
& \text { zip }(x: x s)(f y: \operatorname{map} f y s) \\
= & \{\text { definition of } \operatorname{map}\} \\
& \operatorname{zip}(x: x s)(\operatorname{map} f(y: y s)) .
\end{aligned}
$$

(b) Consider the following definition

```
delete \(\quad::\) List \(a \rightarrow\) List (List \(a)\)
delete[] = []
delete \((x: x s)=x s: \operatorname{map}(x:)(\) delete \(x s)\),
```

such that

$$
\text { delete }[1,2,3,4]=[[2,3,4],[1,3,4],[1,2,4],[1,2,3]] .
$$

That is, each element in the input list is deleted in turns. Let select :: List $a \rightarrow$ List (a, List a) be defined by select $x s=$ zip xs (delete $x s$). Come up with an inductive definition of select. Hint: you may find second useful.

Solution: The base case [] is immediate. For the inductive case:

```
    select ( \(x\) : xs)
\(=\quad\{\) definition of select \(\}\)
    zip (x:xs) (delete (x:xs))
\(=\{\) definition of delete \(\}\)
    zip (x : xs) (xs : map (x:) (delete xs))
\(=\quad\{\) definition of zip \(\}\)
    ( \(x, x s\) ) : zip xs (map (x:) (delete \(x s)\) )
\(=\quad\{\) property proved above \(\}\)
    ( \(x, x s\) ) : map (second (x:)) (zip xs (delete xs))
\(=\quad\{\) definition of select \(\}\)
    ( \(x, x s\) ) : map (second ( \(x\) :)) (select \(x s\) ) .
```

We thus have

```
select [] = []
select (x : xs) = (x, xs) : map (second (x:)) (select xs) .
```

(c) An alternative specification of delete is

$$
\begin{aligned}
& \text { delete } x s=\operatorname{map}(\text { del } x s)[0 \text {.. length } x s-1] \\
& \text { where del xs } i=\text { take } i x s+\text { drop }(1+i) x s,
\end{aligned}
$$

(here we take advantage of the fact that [0..n] returns [] when n is negative). From this specification, derive the inductive definition of delete given above. Hint: you may need the following property:

$$
\begin{equation*}
[0 . . n]=0: \operatorname{map}\left(\mathbf{1}_{+}\right)[0 \ldots n-1], \quad \text { if } n \geqslant 0 \tag{1}
\end{equation*}
$$

and the map-fusion law (??) given below.

Solution:

```
    delete (x:xs)
\(=\{\) definition of delete \(\}\)
    map (del (x:xs)) [0 .. length (x:xs) - 1]
\(=\{\) defintion of length, arithmetics \(\}\)
    map (del (x : xs)) [0 .. length xs]
    \(=\quad\{\) length \(x s \geqslant 0\), by (??) \}
    \(\operatorname{map}(\operatorname{del}(x: x s))\left(0: \operatorname{map}\left(\mathbf{1}_{+}\right)[0\right.\).. length xs -1\(\left.]\right)\)
\(=\quad\{\) definition of \(\operatorname{map}\}\)
    del ( \(x\) : xs) 0 : map (del (x:xs)) (map (1+) [0.. length xs -1])
\(=\quad\{\operatorname{map}\) fusion (??) \(\}\)
    del (x : xs) 0 : map (del (x:xs) \(\left.\cdot\left(\mathbf{1}_{+}\right)\right)\)[0 .. length xs -1]
```

Now we pause for a while to inspect del (x:xs). Apparently, del (x:xs) $0=x s$. For del $(x: x s) \cdot\left(\mathbf{1}_{+}\right)$we calculate:

```
    (del (x:xs) •(1+)) i
\(=\{\) definition of \((\cdot)\}\)
    del ( \(x\) : xs) \(\left(\mathbf{1}_{+} i\right)\)
\(=\{\) definition of del \(\}\)
    take \(\left(\mathbf{1}_{+} i\right)(x: x s)+\operatorname{drop}\left(\mathbf{1}_{+}\left(\mathbf{1}_{+} i\right)\right)(x: x s)\)
\(=\quad\{\) definitions of take and drop \(\}\)
    \(x\) : take \(i x s+\operatorname{drop}\left(\mathbf{1}_{+} i\right) x s\)
\(=\{\) definition of \(d e l\}\)
    \(x\) : del \(x s i\)
\(=\{\) definition of \((\cdot)\}\)
    ((x:) • del xs) i .
```

We resume the calculation:

```
        del (x : xs) 0 : map (del (x : xs) ·(1+)) [0 .. length xs - 1]
= { calculation above }
    xs : map ((x:) · del xs) [0 .. length xs - 1]
= { map fusion (??) }
    xs : map (x:) (map (del xs) [0 .. length xs - 1])
= {definition of delete }
    xs : map (x:) (delete xs) .
```

We have thus derived the first, inductive definition of delete.
4. Prove the following map-fusion law:

$$
\begin{equation*}
\operatorname{map} f \cdot \operatorname{map} g=\operatorname{map}(f \cdot g) \tag{2}
\end{equation*}
$$

Solution:

$$
\begin{aligned}
& \operatorname{map} f \cdot \operatorname{map} g=\operatorname{map}(f \cdot g) \\
\equiv & \{\text { extensional equality }\} \\
& (\forall x s::(\operatorname{map} f \cdot \operatorname{map} g) x s=\operatorname{map}(f \cdot g) x s) \\
\equiv & \{\text { definition of }(\cdot)\} \\
& (\forall x s::(\operatorname{map} f(\operatorname{map} g x s)=\operatorname{map}(f \cdot g) x s) .
\end{aligned}
$$

We prove the proposition by induction on $x s$.
Case $x s$:= []. Omitted.
Case $x s:=x: x s$.
$\operatorname{map} f(\operatorname{map} g(x: x s))$
$=\{$ definition of map, twice $\}$
$f(g x)$: map $f(\operatorname{map} g x s)$
$=\{$ induction $\}$
$f(g x): \operatorname{map}(f \cdot g) x s$
$=\{$ definition of $(\cdot)\}$
$(f \cdot g) x: \operatorname{map}(f \cdot g) x s$
$=\quad\{$ definition of map $\}$
$\operatorname{map}(f \cdot g)(x: x s)$.
5. Assume that multiplication (\times) is a constant-time operation. One possible definition for $\exp m n=m^{n}$ could be:

$$
\begin{array}{ll}
\exp & :: N a t \rightarrow N a t \rightarrow N a t \\
\exp m 0 & =1 \\
\exp m(1+n) & =m \times \exp m n
\end{array}
$$

Therefore, to compute $\exp m n$, multiplication is called n times: $m \times m \times \ldots \times m \times 1$. Can we do better?

Yet another way to represent a natural number is to use the binary representation.
(a) The function binary $::$ Nat \rightarrow [Bool] returns the reversed binary representation of a natural number. For example:

$$
\begin{aligned}
\text { binary } 0 & =[], \\
\text { binary } 1 & =[T] \\
\text { binary } 2 & =[F, T], \\
\text { binary } 3 & =[T, T], \\
\text { binary } 4 & =[F, F, T],
\end{aligned}
$$

where T and F abbreviates True and False. Given the following functions:
even :: Nat \rightarrow Bool, returning true iff the input is even, odd :: Nat \rightarrow Bool, returning true iff the input is odd, and div $:: N a t \rightarrow N a t \rightarrow N a t$, for integral division,
define binary. You may just present the code.
Hint One possible implementation discriminates between 3 cases - the input is 0 , the input is odd, and the input is even.

Solution:

binary $\quad::$ Nat \rightarrow List Bool
binary 0 = []
binary $n \mid$ even $n=$ False : binary (n 'div' 2)
| odd $n=$ True : binary (($n-1$) 'div' 2)
(b) Briefly explain in words whether your implementation of binary terminates for all input in Nat, and why.

Solution: All non-zero natural numbers strictly decreases when being divided by 2 , and thus we eventually reaches the base case for 0 .
(c) Define a function decimal :: List Bool \rightarrow Nat that takes the reversed binary representation and returns the corresponding natural number. E.g. decimal $[T, T, F, T]=$ 11. You may just present the code.

Solution:

$$
\begin{array}{ll}
\text { decimal } & :: \text { List Bool } \rightarrow \text { Nat } \\
\text { decimal }[] & =0 \\
\text { decimal }(\text { False }: x s) & =2 \times \text { decimal xs } \\
\text { decimal }(\text { True }: x s) & =1+(2 \times \text { decimal } x s)
\end{array}
$$

(d) Let roll $m=\exp m \cdot$ decimal. Assuming we have proved that $\exp m n$ satisfies all arithmetic laws for m^{n}. Construct (with algebraic calculation) a definition of roll that does not make calls to exp or decimal.

Solution: Let's calculate roll $m x s=\exp m$ (decimal $x s$) by distinguishing between the three cases of n : Case xs := []:

```
    roll m []
    = exp m (decimal [])
    = { definition of decimal }
    exp m 0
= { definition of exp }
    1
```

Case $x s=$ False : $x s$:
roll m (False : xs)
$=\{$ definition of roll $\}$
exp m (decimal (False : xs))
$=\{$ definition of decimal $\}$
$\exp m(2 \times$ decimal xs $)$
$=\left\{\right.$ arithmetic: $\left.m^{2 n}=\left(m^{2}\right)^{n}\right\}$
$\exp (m \times m)$ (decimal xs)
$=\{$ definition of roll $\}$
roll $(m \times m) x s$
Case $x s=$ True : $x s$:
roll m (True : xs)

$$
\begin{aligned}
= & \{\text { definition of roll }\} \\
& \exp m(\text { decimal }(\text { True }: x s)) \\
= & \{\text { definition of decimal }\} \\
& \exp m(1+2 \times \text { decimal } x s) \\
= & \{\text { definition of exp }\} \\
& m \times \exp m(2 \times \text { decimal } x s) \\
= & \left\{\text { arithmetic: } m^{2 n}=\left(m^{2}\right)^{n}\right\} \\
& m \times \exp (m \times m)(\text { decimal xs }) \\
= & \{\text { definition of roll }\} \\
& m \times \operatorname{roll}(m \times m) x s
\end{aligned}
$$

We have thus constructed:

$$
\begin{array}{ll}
\text { roll } m[] & =1 \\
\text { roll } m(\text { False : xs }) & =\text { roll }(m \times m) x s \\
\text { roll } m(\text { True : xs }) & =m \times \text { roll }(m \times m) x s
\end{array}
$$

Remark If the fusion succeeds, we have derived a program computing m^{n} :
fastexp $m=$ roll $m \cdot$ binary.
The algorithm runs in time proportional to the length of the list generated by binary, which is $O\left(\log _{2} n\right)$.
6. Recall the internally labelled binary tree:
data ITree $a=$ Null \mid Node $a($ ITree $a)$ (ITree a).
A baobab tree is a kind of tree with very thick trunks. An Itree Int is called a baobab tree if every label in the tree is larger than the sum of the labels in its two subtrees. The following function determines whether a tree is a baobab tree (where sumT :: ITree Int \rightarrow Int computes the sum of labels in a tree):

$$
\begin{aligned}
& \text { baobab :: ITree Int } \rightarrow \text { Bool } \\
& \text { baobab Null }=\text { True } \\
& \text { baobab }(\text { Node } x t u)=\text { baobab } t \wedge \text { baobab } u \wedge \\
& \\
& \qquad \quad x>(\operatorname{sumT} t+\operatorname{sumT} u) .
\end{aligned}
$$

What is the time complexity of baobab? Define a variation of baobab that runs in time proportional to the size of the input tree by tupling.
7. Recall the externally labelled binary tree:

$$
\text { data Etree } a=\text { Tip } a \mid \operatorname{Bin}(\text { ETree } a)(\text { ETree } a)
$$

The function size computes the size (number of labels) of a tree, while repl $t x s$ tries to relabel the tips of t using elements in xs. Note the use of take and drop in rep/:

```
size (Tip _) = 1
size (Bin tu) = size t + size u .
repl :: ETree a List b A ETree b
repl (Tip _) xs = Tip (head xs)
repl(Bin tu) xs = Bin (repl t (take n xs)) (repl u (drop n xs))
```

 where \(n=\) size \(t\).
 The function repl runs in time $O\left(n^{2}\right)$ where n is the size of the input tree. Can we do better? Hint: try calculating the following function:

```
repTail :: ETree a List b (ETree b List b)
repTail s xs = (repl s (take n xs), drop n xs) ,
    where n= size s .
```

You might need properties including:

```
take m (take (m+n) xs) = take m xs ,
drop m (take (m+n) xs) = take n(drop m xs),
    drop (m+n) xs = drop n (drop mxs).
```

8. The function tags returns all labels of an internally labelled binary tree:
```
tags :: ITree a }->\mathrm{ List a
tags Null = []
tags (Node x tu) = tags t+[x]+ tags u .
```

Try deriving a faster version of tags by Calculating

$$
\begin{aligned}
& \text { tagsAcc }:: \text { ITree } a \rightarrow \text { List } a \rightarrow \text { List a } \\
& \text { tagsAcc } t y s=\text { tags } t+y s .
\end{aligned}
$$

9. Define the following function expAcc:

$$
\begin{aligned}
& \operatorname{expAcc}:: \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \rightarrow \text { Nat } \\
& \operatorname{expAcc} b n x=x \times \exp b n .
\end{aligned}
$$

Calculate a definition of expAcc that uses only $O(\log n)$ multiplications to compute b^{n}. You may assume all the usual arithmetic properties about exponentials. Hint: consider the cases when n is zero, non-zero even, and odd.

