A Quick Review

• Functions are the basic building blocks. They may be passed as arguments, may return functions, and can be composed together.

• While one issues commands in an imperative language, in functional programming we specify values, and computers try to reduce the values to their normal forms.

• Formal reasoning: reasoning with the form (syntax) rather than the semantics. Let the symbols do the work!

• ‘Wholemeal’ programming: think of aggregate data as a whole, and process them as a whole.

• Lazy evaluation (an implementation of normal order reduction) enhances modularity — more functions can be reused.

• Once you describe the values as algebraic datatypes, most programs write themselves through structural recursion.

• Programs and their proofs are closely related. They share similar structure, by induction over input data.

• Properties of programs can be reasoned about in equations, just like high school algebra.

1 Some Comments on Efficiency

Constant-Time v.s. Linear-Time Operations

• So far we have (surprisingly) been talking about mathematics without much concern regarding efficiency. Time for a change.
• Our representation of lists is biased: (·), head, and tail are constant-time operations, while init and last takes linear-time.

\[
\begin{align*}
\text{init } [x] & = [] \\
\text{init } (x : xs) & = x : \text{init } xs
\end{align*}
\]

• Consider init [1,2,3,4]:

\[
\begin{align*}
\text{init } (1 : 2 : 3 : 4 : []) & = 1 : \text{init } (2 : 3 : 4 : []) \\
& = 1 : 2 : \text{init } (3 : 4 : []) \\
& = 1 : 2 : 3 : \text{init } (4 : []) \\
& = 1 : 2 : 3 : []
\end{align*}
\]

List Concatenation Takes Linear Time

• Recall (·):

\[
\begin{align*}
\&[] + ys = ys \\
\&(x : xs) + ys = x : (xs + ys)
\end{align*}
\]

• Consider [1,2,3] + [4,5]:

\[
\begin{align*}
(1 : 2 : 3 : []) + (4 : 5 : []) & = 1 : ((2 : 3 : []) + (4 : 5 : [])) \\
& = 1 : 2 : ((3 : []) + (4 : 5 : [])) \\
& = 1 : 2 : 3 : ([] + (4 : 5 : [])) \\
& = 1 : 2 : 3 : 4 : 5 : []
\end{align*}
\]

• (·) runs in time proportional to the length of its left argument.

Sum, Map, etc

• Functions like sum, maximum, etc. needs to traverse through the list once to produce a result. So their running time is definitely \(O(n)\), where \(n\) is the length of the list.

• If \(f\) takes time \(O(t)\), map \(f\) takes time \(O(n \times t)\) to complete. Similarly with filter \(p\).

 – In a lazy setting, map \(f\) produces its first result in \(O(t)\) time. We won’t need lazy features for now, however.
2 Accumulating Parameters

Reversing a List

- The function \textit{reverse} is defined by:

\[
\begin{align*}
\text{reverse } \[] &= [], \\
\text{reverse } (x : xs) &= \text{reverse } xs \ast [x].
\end{align*}
\]

- E.g. \textit{reverse} [1, 2, 3, 4] = ((([] \ast [4]) \ast [3]) \ast [2]) \ast [1] = [4, 3, 2, 1].

- But how about its time complexity? Since (\ast) is \(O(n)\), it takes \(O(n^2)\) time to revert a list this way.

- Can we make it faster?

2.1 Fast List Reversal

Introducing an Accumulating Parameter

- Let us consider a generalisation of \textit{reverse}. Define:

\[
\begin{align*}
\text{revcat} &: [a] \to [a] \to [a] \\
\text{revcat } xs ys &= \text{reverse } xs \ast ys.
\end{align*}
\]

- If we can construct a fast implementation of \textit{revcat}, we can implement \textit{reverse} by:

\[
\text{reverse } xs = \text{revcat } xs [].
\]

Reversing a List, Base Case

Let us use our old trick. Consider the case when \(xs\) is \([]\):

\[
\begin{align*}
\text{revcat } [] \ ys \\
= & \quad \{ \text{definition of } \text{revcat} \} \\
\text{reverse } [] \ast ys \\
= & \quad \{ \text{definition of } \text{reverse} \} \\
[] \ast ys \\
= & \quad \{ \text{definition of } (\ast) \} \\
y s.
\end{align*}
\]
Reversing a List, Inductive Case

Case $x: xs$:

\[
\begin{align*}
\text{revcat} (x:xs) \; ys &= \{ \text{definition of } \text{revcat} \} \newline
\text{reverse} (x:xs) + ys &= \{ \text{definition of } \text{reverse} \} \\
&= (\text{reverse} \; xs + [x]) + ys \\
&= \{ \text{since } (xs + ys) + zs = xs + (ys + zs) \} \\
&= \text{reverse} \; xs + ([x] + ys) \\
&= \{ \text{definition of } \text{revcat} \} \\
&= \text{revcat} \; xs \; (x:ys).
\end{align*}
\]

Linear-Time List Reversal

- We have therefore constructed an implementation of revcat which runs in linear time!

\[
\begin{align*}
\text{revcat} \; [] \; ys &= ys \\
\text{revcat} \; (x:xs) \; ys &= \text{revcat} \; xs \; (x:ys).
\end{align*}
\]

- A generalisation of reverse is easier to implement than reverse itself? How come?

- If you try to understand revcat operationally, it is not difficult to see how it works.
 - The partially reverted list is accumulated in ys.
 - The initial value of ys is set by $\text{reverse} \; xs = \text{revcat} \; xs \; []$.
 - Hmm... it is like a loop, isn’t it?

2.2 Tail Recursion and Loops

Tracing Reverse

\[
\begin{align*}
\text{reverse} \; [1,2,3,4] &= \text{revcat} \; [1,2,3,4] \; [] \\
&= \text{revcat} \; [2,3,4] \; [1] \\
&= \text{revcat} \; [3,4] \; [2,1] \\
&= \text{revcat} \; [] \; [4,3,2,1] \\
&= [4,3,2,1]
\end{align*}
\]

\[
\begin{align*}
\text{reverse} \; xs &= \text{revcat} \; xs \; [] \\
\text{revcat} \; [] \; ys &= ys \\
\text{revcat} \; (x:xs) \; ys &= \text{revcat} \; xs \; (x:ys)
\end{align*}
\]
xs, ys ← XS, [];
while xs ≠ [] do
 xs, ys ← (tail xs), (head xs : ys);
return ys

Tail Recursion

- Tail recursion: a special case of recursion in which the last operation is the recursive call.

\[
\begin{align*}
& f \ x_1 \ldots \ x_n = \text{(base case)} \\
& f \ x_1 \ldots \ x_n = f \ x'_1 \ldots \ x'_n
\end{align*}
\]

- To implement general recursion, we need to keep a stack of return addresses. For tail recursion, we do not need such a stack.

- Tail recursive definitions are like loops. Each \(x_i\) is updated to \(x'_i\) in the next iteration of the loop.

- The first call to \(f\) sets up the initial values of each \(x_i\).

Accumulating Parameters

- To efficiently perform a computation (e.g. \(\text{reverse } xs\)), we introduce a generalisation with an extra parameter, e.g.:

\[
\text{revcat } xs \ ys = \text{reverse } xs \star ys.
\]

- Try to derive an efficient implementation of the generalised function. The extra parameter is usually used to “accumulate” some results, hence the name.

 - To make the accumulation work, we usually need some kind of associativity.

- A technique useful for, but not limited to, constructing tail-recursive definition of functions.

Accumulating Parameter: Another Example

- Recall the “sum of squares” problem:

\[
\begin{align*}
\text{sumsq } [] &= 0 \\
\text{sumsq } (x : xs) &= \text{square } x + \text{sumsq } xs.
\end{align*}
\]
• The program still takes linear space (for the stack of return addresses). Let us construct a tail recursive auxiliary function.

• Introduce \(ssp \; xs \; n = sumsq \; xs + n \).

• Initialisation: \(sumsq \; xs = ssp \; xs \; 0 \).

• Construct \(ssp \):

\[
ssp \; [] \; n = 0 + n = n \\
ssp \; (x:xs) \; n = (square \; x + sumsq \; xs) + n \\
\quad = sumsq \; xs + (square \; x + n) \\
\quad = ssp \; xs \; (square \; x + n).
\]

2.3 Being Quicker by Doing More!

Being Quicker by Doing More?

• A more generalised program can be implemented more efficiently?

 – A common phenomena! Sometimes the less general function cannot be implemented inductively at all!

 – It also often happens that a theorem needs to be generalised to be proved. We will see that later.

• An obvious question: how do we know what generalisation to pick?

• There is no easy answer — finding the right generalisation one of the most difficulty act in programming!

• For the past few examples, we choose the generalisation to exploit associativity.

• Sometimes we simply generalise by examining the form of the formula.

Labelling a List

• Consider the task of labelling elements in a list with its index.

\[
index :: \texttt{[a]} \rightarrow \texttt{[(Int, a)]} \\
index = \texttt{zip} \; [0..]
\]

• To construct an inductive definition, the case for \([] \) is easy. For the \(x : xs \) case:

\[
\begin{align*}
index \; (x : xs) & = \texttt{zip} \; [0..] \; (x : xs) \\
& = (0, x) : \texttt{zip} \; [1..] \; xs
\end{align*}
\]

• Alas, \(\texttt{zip} \; [1..] \) cannot be fold back to \(index \)!

• What if we turn the varying part into...a variable?
Labelling a List, Second Attempt

- Introduce \(idxFrom : [a] \rightarrow \text{Int} \rightarrow ([\text{Int}, a]) \):
 \[
 idxFrom \; xs \; n = \text{zip} \; [n..] \; xs
 \]

- Initialisation: \(index \; xs = idxFrom \; xs \; 0 \).

- We reason:
 \[
 idxFrom \; (x : xs) \; n
 = \text{zip} \; [n..] \; (x : xs)
 = (n, x) : \text{zip} \; [n + 1..] \; xs
 = (n, x) : idxFrom \; xs \; (n + 1)
 \]

3 Proof by Strengthening

Summing Up a List in Reverse

- Prove: \(\text{sum} \cdot \text{reverse} = \text{sum} \), using the definition \(\text{reverse} \; xs = \text{revcat} \; xs \; [] \). That is, proving \(\text{sum} \; (\text{revcat} \; xs \; []) = \text{sum} \; xs \).

- Base case trivial. For the case \(x : xs \):
 \[
 \text{sum} \; (\text{reverse} \; (x : xs))
 = \text{sum} \; (\text{revcat} \; (x : xs) \; [])
 = \text{sum} \; (\text{revcat} \; xs \; [x])
 \]

- Then we are stuck, since we cannot use the induction hypothesis \(\text{sum} \; (\text{revcat} \; xs \; []) = \text{sum} \; xs \).

- Again, generalise \([x]\) to a variable.

Summing Up a List in Reverse, Second Attempt

- Second attempt: prove a lemma:
 \[
 \text{sum} \; (\text{revcat} \; xs \; ys) = \text{sum} \; xs + \text{sum} \; ys
 \]

- By letting \(ys = [] \) we get the previous property.

- For the case \(x : xs \) we reason:
 \[
 \text{sum} \; (\text{revcat} \; (x : xs) \; ys)
 = \text{sum} \; (\text{revcat} \; xs \; (x : ys))
 = \{ \; \text{induction hypothesis} \; \}
 \text{sum} \; xs + \text{sum} \; (x : ys)
 = \text{sum} \; xs + x + \text{sum} \; ys
 = \text{sum} \; (x : xs) + \text{sum} \; ys
 \]
Work Less by Proving More

- A stronger theorem is easier to prove! Why is that?

- By strengthening the theorem, we also have a stronger induction hypothesis, which makes an inductive proof possible.
 - Finding the right generalisation is an art — it’s got to be strong enough to help the proof, yet not too strong to be provable.

- The same with programming. By generalising a function with additional arguments, it is passed more information it may use, thus making an inductive definition possible.
 - The speeding up of \textit{revcat}, in retrospect, is an accidental “side effect” — \textit{revcat}, being inductive, goes through the list only once, and is therefore quicker.

A Real Case

- A property I actually had to prove for a paper:
 \[
 \text{smsp} \ (\text{trim} \ (x \cdot xs)) = \text{smsp} \ (\text{trim} \ (x \cdot \text{win} \ xs)) \\
 \iff \text{smsp} \ (\text{trim} \ (x \cdot xs)) >_d \text{mds} \ xs
 \]

- It took me a week to construct the right generalisation:
 \[
 \text{smsp} \ (\text{trim} \ (zs + xs)) = \text{smsp} \ (\text{trim} \ (zs + \text{win} \ xs)) \\
 \iff \text{smsp} \ (\text{trim} \ (zs + xs)) >_d \text{mds} \ xs
 \]

- Once the right property is found, the actual proof was done in about 20 minutes.

- “Someone once described research as ‘finding out something to find out, then finding it out’; the first part is often harder than the second.”

Remark

- The \textit{sum} \cdot \textit{reverse} example is superficial — the same property is much easier to prove using the $O(n^2)$-time definition of \textit{reverse}.

- That’s one of the reason we defer the discussion about efficiency — to prove properties of a function we sometimes prefer to roll back to a slower version.

- In our exercises there is an example where you need \textit{revcat} to prove a property about \textit{reverse}.
 - Show that \textit{reverse} \cdot \textit{reverse} = \textit{id}
4 Tupling

Steep Lists

• A steep list is a list in which every element is larger than the sum of those to its right:

\[
\begin{align*}
steep & :: [\text{Int}] \rightarrow \text{Bool} \\
steep \ [\] & = \text{True} \\
steep \ (x : xs) & = \text{steep} \ xs \land x > \text{sum} \ xs.
\end{align*}
\]

• The definition above, if executed directly, is an \(O(n^2)\) program. Can we do better?

• Just now we learned to construct a generalised function which takes more input. This time, we try the dual technique: to construct a function returning more results.

Generalise by Returning More

• Recall that \textit{fst} \ (a, b) = a and \textit{snd} \ (a, b) = b.

• It is hard to quickly compute \textit{steep} alone. But if we define

\[
\text{steepsum} \ xs = (\text{steep} \ xs, \text{sum} \ xs),
\]

• and manage to synthesise a quick definition of \textit{steepsum}, we can implement \textit{steep} by \textit{steep} = \textit{fst} \cdot \textit{steepsum}.

• We again proceed by case analysis. Trivially,

\[
\text{steepsum} \ [\] = (\text{True}, 0).
\]

Deriving for the Non-Empty Case

For the case for non-empty inputs:

\[
\begin{align*}
\text{steepsum} \ (x : xs) & = \{ \text{definition of steepsum} \} \\
& \quad (\text{steep} \ (x : xs), \text{sum} \ (x : xs)) \nonumber \\
& = \{ \text{definitions of steep and sum} \} \\
& \quad (\text{steep} \ xs \land x > \text{sum} \ xs, x + \text{sum} \ xs) \nonumber \\
& = \{ \text{extracting sub-expressions involving xs} \} \\
& \quad \text{let} \ (b, y) = (\text{steep} \ xs, \text{sum} \ xs) \\
& \quad \text{in} \ (b \land x > y, x + y) \nonumber \\
& = \{ \text{definition of steepsum} \} \\
& \quad \text{let} \ (b, y) = \text{steepsum} \ xs \\
& \quad \text{in} \ (b \land x > y, x + y).
\end{align*}
\]
Synthesised Program

- We have thus come up with a $O(n)$ time program:

\[
\begin{align*}
\text{steep} & \quad = \text{fst} \cdot \text{steepsum} \\
\text{steepsum} [_] & \quad = (\text{True}, 0) \\
\text{steepsum} (x \mathbin{:} xs) & \quad = \text{let } (b, y) = \text{steepsum } xs \\
& \quad \text{in } (b \mathbin{\&\&} x > y, x + y),
\end{align*}
\]

- Again we observe the phenomena that a more general function is easier to implement.

A Maximum Segment Sum

Recall that the maximum segment sum problem (mss) can be specified by

\[
mss = \text{maximum} \cdot \text{map sum} \cdot \text{segments},
\]

where $\text{segments} = \text{concat} \cdot \text{map inits} \cdot \text{tails}$. That is, the specification enumerates all segments of the input list, computes the sum of each of the segment, and pick the maximum. Also recall the definitions of inits and tails (not init and tail!):

\[
\begin{align*}
\text{inits} [_] & \quad = [[]] \\
\text{inits} (x \mathbin{:} xs) & \quad = [] : \text{map } (x :) \text{ (inits } xs),
\end{align*}
\]

\[
\begin{align*}
\text{tails} [_] & \quad = [[]] \\
\text{tails} (x \mathbin{:} xs) & \quad = (x : xs) : \text{tails } xs,
\end{align*}
\]

and let maximum be defined on non-empty lists:

\[
\begin{align*}
\text{maximum} [x] & \quad = x \\
\text{maximum} (x : xs) & \quad = x \mathbin{\ast max} \text{ maximum } xs.
\end{align*}
\]

We start with considering a simpler problem: given a list, compute the maximum sum among its prefixes. Denote this problem by mps (maximum prefix sum):

\[
mps = \text{maximum} \cdot \text{map sum} \cdot \text{inits}.
\]

Can we come up with an inductive definition of mps? Yes, you can already do that using
what you have learned. The base case for \([\,]\) is easy. For the inductive case:

\[
\text{mps} \ (x : xs) \\
= \text{maximum} \ (\text{map} \ \text{sum} \ (\text{inits} \ (x : xs))) \\
= \text{maximum} \ (\text{map} \ \text{sum} \ ([\,] : \text{map} \ (x) \ (\text{inits} \ xs))) \\
= \text{maximum} \ (0 : \text{map} \ \text{sum} \ (\text{map} \ (x) \ (\text{inits} \ xs))) \\
= \{ \text{map} \ f \cdot \text{map} \ g = \text{map} \ (f \cdot g) \} \\
\text{maximum} \ (0 : \text{map} \ (\text{sum} \cdot (x)) \ (\text{inits} \ xs)) \\
= \{ \text{sum} \ (x : ys) = x + \text{sum} \ ys \} \\
\text{maximum} \ (0 : \text{map} \ ((x+) \cdot \text{sum}) \ (\text{inits} \ xs)) \\
= \{ \text{defn. of maximum } \} \\
0 \, '\text{max}' \ \text{maximum} \ (\text{map} \ ((x+) \cdot \text{sum}) \ (\text{inits} \ xs)) \\
= \{ \text{maximum} \ (\text{map} \ (x+) \ ys) = x + \text{maximum} \ ys \} \\
0 \, '\text{max}' \ (x + \text{maximum} \ (\text{map} \ \text{sum} \ (\text{inits} \ xs))) \\
= 0 \, '\text{max}' \ (x + \text{mps} \ xs)
\]

Thus we have an inductive definition for \(\text{mps}\):

\[
\text{mps} \ [\,] = 0 \\
\text{mps} \ (x : xs) = 0 \, '\text{max}' \ (x + \text{mps} \ xs),
\]

which runs in linear time. The key step is the one using the lemma that \(\text{maximum} \ (\text{map} \ (x+) \ ys) = x + \text{maximum} \ ys\). It needs a separate proof using the fact:

\((x + y) \, '\text{max}' \ (x + z) = x + (y \, '\text{max}' \ z)\),

that is, addition distributes over maximum. This is the key property that makes an efficient implementation of \(\text{mps}\) (and thus \(\text{mss}\)) possible.

How is \(\text{mps}\) related to \(\text{mss}\)? In fact, solutions of many segment problems start with factoring the problem into the form computing “optimal prefix for each suffix”. Here is how it works for \(\text{mss}\):

\[
\text{maximum} \cdot \text{map} \ \text{sum} \cdot \text{segments} \\
= \text{maximum} \cdot \text{map} \ \text{sum} \cdot \text{concat} \cdot \text{map} \ \text{inits} \cdot \text{tails} \\
= \{ \text{map} \ \text{sum} \cdot \text{concat} = \text{concat} \cdot \text{map} \ (\text{map} \ \text{sum}) \} \\
\text{maximum} \cdot \text{concat} \cdot \text{map} \ (\text{map} \ \text{sum}) \cdot \text{map} \ \text{inits} \cdot \text{tails} \\
= \{ \text{maximum} \cdot \text{concat} = \text{maximum} \cdot \text{map} \ \text{maximum} \} \\
\text{maximum} \cdot \text{map} \ \text{maximum} \cdot \text{map} \ (\text{map} \ \text{sum}) \cdot \text{map} \ \text{inits} \cdot \text{tails} \\
= \{ \text{map} \ f \cdot \text{map} \ g = \text{map} \ (f \cdot g) \} \\
\text{maximum} \cdot \text{map} \ (\text{maximum} \cdot \text{map} \ \text{sum} \cdot \text{inits}) \cdot \text{tails}.
\]

Thus we have

\[
\text{mss} = \text{maximum} \cdot \text{map} \ \text{mps} \cdot \text{tails}.
\]
To compute the best segment-sum, we compute the best prefix-sum for each suffix.

Since \(\text{mps}\) runs in linear time, the definition of \(\text{mss}\) above still runs in \(O(n^2)\) time. However, there is a useful “scan lemma” saying that \(\text{map} \, f \cdot \text{tails}\) can be compute efficiently, if \(f\) has the form:

\[
\begin{align*}
 f [] &= e \\
 f (x:xs) &= g \, x \, (f \, xs)
\end{align*}
\]

(that is, if \(f\) is an instance of a \textit{foldr}, an important concept we unfortunately cannot cover yet). The function \(\text{mps}\) fits the pattern if we let \(e = 0\) and \(g \, x \, y = 0 \cdot \text{max} \cdot (x + y)\).

Let \(\text{scan} = \text{map} \, f \cdot \text{tails}\). To derive the scan lemma we will need a property that

\[
\text{head} \,(\text{tails} \, xs) = xs,
\]

whose proof is easy. We try to construct an inductive definition of \(\text{scan}\). The base case \(\text{scan} \, [] = [e]\) is easy. For the inductive case:

\[
\begin{align*}
 \text{scan} \, (x:xs) &= \text{map} \, f \, (\text{tails} \, (x:xs)) \\
 &= \text{map} \, f \, ((x:xs):\text{tails} \, xs) \\
 &= f \, (x:xs):\text{map} \, f \, (\text{tails} \, xs) \\
 &= g \, x \, (f \, xs):\text{map} \, f \, (\text{tails} \, xs) \\
 &= \{ \, \text{let } ys = \text{map} \, f \, (\text{tails} \, xs) \, \text{ in } \, g \, x \, (\text{head} \, ys):ys \, \}
\end{align*}
\]

Thus we have shown that

\[
\text{mss} = \text{maximum} \cdot \text{scan},
\]

where \(\text{scan}\) is given by

\[
\begin{align*}
 \text{scan} \, [] &= [0] \\
 \text{scan} \, (x:xs) &= \text{let } ys = \text{scan} \, xs \\
 &\quad \text{in } 0 \cdot \text{max} \cdot (x + \text{head} \, ys):ys.
\end{align*}
\]

You may compare that with the imperative algorithm you may know.