Solving String Constraints through
Hardware /Software Model Checking

Jie-Hong R. Jiang! and Fang Yu?

1. Graduate Institute of Electronics Engineering
National Taiwan University, Taiwan
http://alcom.ee.ntu.edu.tw
2. Department of Management Information Systems
National Chengchi University, Taiwan
http://soslab.nccu.edu.tw

Meeting on String Constraints and Applications (MOSCA'19), May 6-9, 2019,
Bertinoro, Italy

MOSCA, August 28, 2019

Overview

Input validation and sanitization is error-prone

e Programs that propagate and use malicious user inputs
without validation and sanitization, or with improper
validation and sanitization, are vulnerable to attacks such as
Injections in Web applications.

e These string-related vulnerabilities are notorious and widely
publicized [OWASP17].

OWASP Top 10 - 2013 > OWASP Top 10 - 2017

A1 - Injection =» A1:2017-Injection
A2 - Broken Authentication and Session Management = =) A2:2017-Broken Authentication

A3 - Cross-Site Scripting (XSS) 3 A3:2017-Sensitive Data Exposure

SIS

Overview

String analysis techniques are needed

e |t drives the need for automated tool support in analyzing
string manipulating programs.

e Hampi [Kiezun et al, ISSTA'09, Ganesh et al. CAV'11,
TOSEM'12]

e 73str, Z3str2, Z3str3, and Z3strBV [Zheng et al. FSE'13,
CAV'15], [Berzish et al. FMCAD'17], [Subramanian et al.,
ICSE'17]

e CVC4 [Liang et al. CAV'14]

e S3, and S3P [Trinh et al.,, CCS'14, CAV'16]

e Norn and TRAU [Abdulla et al, CAV'14, CAV'15], [Abdulla et
al, PLDI'17]

e Sloth [Lin et al., POPL'16, Holik. et al., POPL'18]

e Stranger and ABC [Yu et al, TACAS'10], [Aydin et al.,
and FSE'18]

e Slog and Slent [Wang et al. CAV'16 and ASE'18]

Overview

Solving complex string constraints remains challenging

e String constraint solving can be particularly hard when the
constraints involve complex string operations and involve both
string and integer variables.

e Specifically, it has been shown that solving string constraints
with replace all and length constraints is undecidable. [Chen
et al. POPL'18]

e The replace all operation defines the replace of a match
pattern with a replacement pattern for the sentence within a
given set of language.

e It is widely used in input sanitization functions in Web
applications. e

ssssss

Overview

A motivating example

Is the constraint satisfiable?

X € a",

X> € b,

X3 = X1.X2,

X4 = REPLACE(X3, a' b, ba),
LEN(X1) = LEN(X2),
LEN(X1) > LEN(Xa).

Overview

constraint satisfiable?

(X3 = X1.X2) and (LEN(X;) = LEN(X2)) ensure that X3 is in
the language a"b", for n > 0 being the lengths of Xj and X.
Xy is obtained by performing language to language
replacement on X3.

For X4 = REPLACE(X3,a" b, ba), a substring of the form a™b,
for some 1 < m < n, in the middle of a"b" will be replaced
with ba.

In this case, we have

LEN(X3) =2n— (m+ 1)+ 2 > n= LEN(X1), which
contradicts the last constraint LEN(X1) > LEN(Xa).

Hence the set of constraints is unsatisfiable.

Overview

SMT-based string constraint solving

e The SMT-based approaches, e.g., S3, Z3STR3, CVC4, Norn,
for string constraint solving are native to deal with length
constraints.

e While these DPLL(T)-based solvers handle a variety of string
constraints, including word equations, regular expression
membership, length constraints, and (more rarely)
regular/rational relations; the solvers can not handle
replace-all operation.

e The work [Trinh et al., CAV'16] that extends S3 to S3P
addresses this issue with recurrence to reason such operations.

>

Overview

SMT-based string constraint solving

e Y = REPLACE(X, R1, R2) can be recursively defined:

(Y=X)AX & (X" .R.XY))V

(X = X1.X0.X3) A (X1 ¢ (Z*.R1.Z¥)) A
Xo € RI)A(Y =X1.Y1.Y2) A (Y1 € Ro) A
Y> = REPLACE(X3, Ry, R2)),

(
(
(
(

e However, the recursive operation may cause non-termination,
and lead to non-robust results of constraint solving.

8/29

Overview

Automata-based string constraint solving

e For automata-based solvers, e.g., Stranger or ABC, the
replacement operation can be naturally achieved by
automata-based construction.

e However, the satisfying values of variables X1, X5, X3, Xy in
the above example are not regular due to the condition
imposed by the length constraints. They cannot be
represented precisely with finite-state automata.

e The regular approximation on string and length relations leads
imprecision.

Overview

The question is:

Can we take advantage on automata construction to model
complex string operations but also deal with length constraints
precisely?

Overview

The idea is:

Attach an integer variable to track the length information of an
automata.

e Such automata with length encoded integers are referred to as
length-encoded automata.

e A non-epsilon transition of an automaton should incur a
length increment by one, and thus the integer indicates the
length of the string currently taken by the automaton

e By setting the initial value of an integer to zero, after taking
an input sequence, the final value of the integer will be the
length of this sequence.

e Accepting conditions on n can then be added to restrlg thg
accepting language. %Q '

L’

%7/'?«(4 2

2

Overview

Length-encoded Automata

To accept a simple language {aaaa}:
e Attach n to a finite automata A that accepts a*.
e Add n =0 to the initial state

e Add n = 4 to the accepting state
a

@

Overview

Length-encoded automata

To accept the context free language {a"b" | n € N}:

e Concatenate two length encoded automata that recognize a*
and b*, respectively.

e n; counts the number of a's taken so far on state p, and n;
counts the number of b's taken so far on state q.

e Add n; = 0 and ny = 0 to the initial state and n; = ny to the
accepting state.

a b

€
—

Overview

Length-encoded automata

e To accept the language that satisfies the motivating example:

LEN(X;)=LEN(X;) A
LEN(X,;)>LEN(X,)

The constraint solving problem can be reduced to
the language emptiness checking problem.

Symbolic-model-checking constraint solving

Language emptiness checking

To exploit software model checking algorithms to language
emptiness checking:

e We first represent the finite-state automaton
A=(Q,X%,/,0, T) with characteristic functions:
e /[(5): Q@ — B,
e T(X,55): I xQxQ—DB,and
e O(5): Q> B,
e where X, §, and 5 are the input, current-state, and next-state
variables, respectively,

Symbolic-model-checking constraint solving

Language emptiness checking

To exploit software model checking algorithms to language
emptiness checking:
e A (finite) string o1,...,0, is accepted if there exist states
g1, - -, qnt1 such that
e /(g1) =1 (for g1 being an initial state),
e O(gnt1) =1 (for gn41 being an accepting state), and
e the sequence g1, 01, g2, 02, ..., qns+1 Satisfies T (o}, gi, gi+1)
fori=1,....,n
e This can be done by iteratively expanding transition relations
until that an accepting word has been found or a fixpoint has

been reached.

Symbolic-model-checking constraint solving

Infinite-state automata construction

e We extend the characteristic functions of finite state
automata to infinite state automata.

e Insert auxiliary (integer) state variables to track length
information and restrict accepting languages

e We show how to construct corresponding characteristic
functions through automata manipulations.

e length tracking, intersection, union, concatenation, deletion,
replacement, reversion, prefix, suffix, substring, and index
tracking.

Symbolic-model-checking constraint solving

Length Tracking: Al = TRKLEN(A)

e Given a finite automaton A with its characteristic functions
T(%,5,8"), 1(5), and O(3), AL = TRKLEN(A), which embeds
an integer variable n to count the number of transitions in T,
can be constructed as:

TH%, 50,8 0) = T(R8&)A(((X#€)A(n =n+1))

INs) = 1(s)
0L(s) = 0(s)

Symbolic-model-checking constraint solving

Intersection: L(Amwr) = L(A1) N L(A2)

e 5= (.?1,.32) and 7= (ﬁl, 172)
e T¢ denotes the transition relation derived from T with an
additional e self-transition added to each state.

Tinr Iint Oy

xsnsn Sy S, sy S,

Symbolic-model-checking constraint solving

Union:L(Aun) = L(A1) U L(A2)

e Assume |si| < |53]. The state variables s; of A; are merged
into §. §=(%,«), A= (m,).

e An auxiliary bit « is used to distinguish states of A; (if «
valuates to 0) or Ay (if a valuates to 1).

Tynt Tynt Oynt

Symbolic-model-checking constraint solving

Concatenation: L(Acar) = L(A1).-L(A2)

e Assume |si| < |Sy|. The state variables s} of A; are merged
into . §= (%, a) and 7= (1, m).

e « is used to distinguish states on A; (if a valuates to 0) or on
Az (if « valuates to 1).

Tear

ITear Ocar
) “)
/li\ /02\\
/ [\
/ [\
[N
x sy;n syn' (S2)m 5

Symbolic-model-checking constraint solving

Prefix: L(Apex,) = {G|37.[67 € L(A)] A len(3) = k)

o 5= (5,) and 7= (n, k)

e k is used to track len(&), and « is used to distinguish prefix
states (if « valuates to 0) and tail states (if « valuates to 1).

x=€)A(K

~

~—
S

x synysynyy

Symbolic-model-checking constraint solving

Take Away

e Encode length information to string automata as length
encoded automata

e Construct characteristic functions of length-encoded automata
through automata manipulations that correspond to string
and length constraints

e Leverage a symbolic model checker for infinite state systems
as an engine for language emptiness checking

Evaluation and Conclusion

Tool Implementation and Settings

e The proposed method was implemented as a tool, called
SLENT, using IC31A [Cimtti et al. TACAS'14] as the backend
symbolic model checker for emptiness checking on string and
integer constraints.

e To evaluate the effectiveness of our tool, SLENT is compared
against state-of-the-art mixed string and integer constraint
solvers, including ABC, CVC4, NoRrN, S3P, TrAU, and
Z3STRS3.

e SLOTH does not support length constraint solving in the
current released version and is excluded from the comparison. ..

o~

Evaluation and Conclusion

Concatenation and length constraint solving

e RQ1: How SLENT performs compared to other solvers in
solving pure concatenation and length constraints?

e 2000 test cases randomly sampled from the Kaluza
benchmarks that involve only string concatenation operations
and length constraints.

solver time (s) #SAT #UNSAT #TO
Z3STR3 | 56.46 1017 983 0
CvVC4 88.80 1017 983 0
NORN 2025.30 1013 983 4
ABC 255.76 1013 983 4
S3p 137.90 1015 983 2
TRAU 12385 1017 983 0¢
SLENT 1397.82 1013 983 45

25/29

Evaluation and Conclusion

String to string replace-all operation and length constraint
solving

e RQ2: How SLENT performs compared to other solvers in
solving string-to-string replacement, concatenation and length
constraints?

e 236 test cases from the Stranger benchmarks with additional
length constraints inserted.

solver ‘ time(s) #SAT #UNSAT #TO +#abort
ABC 2282.84 109(31) 111(0) 0 16
S3P 605.79 30(0) 114(3) 22
TRAU | 687.49 54(2) 139(22) 5
SLENT | 26692.55 88(0) 141(0)

26 /29

Evaluation and Conclusion

Language to language replace-all operation and length
constraint solving

¢ RQ3: How SLENT performs compared to other solvers in
solving language-to-language replacement, concatenation and
length constraints?

e 101 test cases from the Stranger benchmarks with additional
length constraints inserted.

solver ‘ time (s) #SAT #UNSAT #TO #abort
ABC | 977.80 46(2) 41(0) 1 13
SLENT | 4413.25 44(0) 38(0) 19 0

Evaluation and Conclusion

Conclusion

e We present a novel symbolic model checking approach for
solving string and integer constraints based on length-encoded
automata.

e Our solver SLENT is particularly suitable for solving complex
string and integer constraints.

e As SLENT precisely maintains the relation among string and
length variables, no approximation is required for constraint
solving unlike other existing automata-based methods.

e The experiment shows the unique benefit of the proposed
method on solving constraints with replace-all operation over
string variables and with complex length relation.

e As SLENT relies on off-the-shelf model checkers, it benefits 73
from model checker advancements. lts performance azﬁj@j‘ g
practicality may be improved over time. G

Evaluation and Conclusion

Thank you

SLENT is available at:
https://github.com/NTU-ALComLab/SLENT

29/29

	Overview
	Symbolic-model-checking constraint solving
	Evaluation and Conclusion

