String Analysis for Software Verification and
Security

Fang Yu

Software Security Lab.
Department of Management Information Systems
College of Commerce, National Chengchi University
http://soslab.nccu.edu.tw

FLOLAC 2019, August 27, 2019

About Me

Yu, Fang

2014-present: Associate Professor, Department of
Management Information Systems, National Chengchi
University

2010-2014: Assistant Professor, Department of Management
Information Systems, National Chengchi University

2005-2010: Ph.D. and M.S., Department of Computer
Science, University of California at Santa Barbara

2001-2005: Institute of Information Science, Academia Sinica -

1994-2000: M.B.A. and B.B.A., Department of Informatlon
Management, National Taiwan University %

Book Reference

® String Analysis for Software Verification and Security
Tevfik Bultan, Fang Yu, Muath Alkhalaf, Abdulbaki Aydin. [Springer. 2018]

® https://www.springer.com/gp/book/9783319686684

Tevfik Bultan - Fang Yu
Muath Alkhalaf - Abdulbaki Aydin

String Analysis
for Software

Verification and
Security

&) Springer

Recent Work

Parameterized Model Counting for String and Numeric Constraints
Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov,
Tevfik Bultan and Fang Yu. [ACM ESEC/FSE '18]

A Symbolic Model Checking Approach to the Analysis of String and Length
Constraints
Hung-En Wang, Shih-Yu Chen, Fang Yu, Jie-Hong R. Jiang. [ACM ASE'18]

Static API Call Vlulnerability Detection in iOS Applications
Chun-Han Lin, Fang Yu, Jie-Hong Jiang, and Tevfik Bultan. [ACM/IEEE
ICSE'18]

Optimal Sanitization Synthesis for Web Application Vulnerability Repair
Fang Yu, ChinYuan Shueh, ChunHan Lin, YuFang Chen, BowYaw Wang, Tevfik
Bultan. [ACM ISSTA'16]

String Analysis via Automata Manipulation with Logic Circuit Representation
HungEn Wang, ThungLin Tsai, ChunHan Lin, Fang Yu, JieHong R Jiang.
[CAV'16] %

HENGOR

4/136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Automatic Verification of String Manipulating Programs

Web Applications = String Manipulating Programs

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Web Applications

Web applications are used extensively in many areas
e Commerce: online banking, online shopping, etc.

e Entertainment: online game, music and videos, etc.

e [nteraction: social networks

GROUPON

ective Buying

Web Software
Security Issues
Vulnerabilities
Detection
Removal

Introduction

Overview

Web Applications

We may rely on web applications more in the future
e Health Records: Google Health, Microsoft HealthVault

e Controlling and monitoring national infrastructures: Google
Powermeter

Google health KO}

FigalthVault = Lo

Mcrosort

T
RO o

Web Software
Security Issues
Vulnerabilities
Detection
Removal

Introduction

Overview

Web Applications

Web software is also rapidly replacing desktop applications.

r Google 1~
amazon Al 228 %E

webservices™ \Windows Azure - Microsoft" (e .
== S >

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

One Major Road Block

Web applications are not trustworthy!

Web applications are notorious for security vulnerabilities

e Their global accessibility makes them a target for many
malicious users

Web applications are becoming increasingly dominant and their use
in safety critical areas is increasing

e Their trustworthiness is becoming a critical issue

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Web Application Vulnerabilities

Introduction

e The top two vulnerabilities of the Open Web Application
Security Project (OWASP)'s top ten list in 2007, 2010, 2013,
and 2017

@ Cross Site Scripting (XSS)
@ Injection Flaws (such as SQL Injection)

10/136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Web Application Vulnerabilities

Percentage of the Cross-site Scripting (XSS) and SQL Injection
(SQLI) vulnerabilities among all the computer security

vulnerabilities reported in the CVE repository.
40%

35%
30%
25%

20%
satl

15% m XSS

10%

5%

0%

2006 NN
2007 N
2008 N —
2009 ENEE——
2010 ———
2011 E——

2012 E—
2013 -

2014 E——

2004 EEE——
2005 N ——

i
2002

2003 -

2000
2001

11/136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Why are web applications error prone?

Introduction

Extensive string manipulation:

e Web applications use extensive string manipulation

e To construct html pages, to construct database queries in
SQL, to construct system commands

e The user input comes in string form and must be validated
and sanitized before it can be used

e This requires the use of complex string manipulation functions
such as string-replace

e String manipulation is error prone

12/136

SQL Injection

Introduction

Exploits of a Mom.

HL THIS 15

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

R

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TRBLE Shderts; —~ 7

~ OH. YES. LITIE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECCRDS.
T HOPE YPURE HAPPY.

AND T HOPE
~~ YOUVE LEARNED
L TOSANMZE YOUR
DATABASE INPUTS.

Source: XKCD.com

HENGO

13/136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

SQL Injection

Access students’ data by $name (from a user input).
| 1:<?php
| 2: $name =$_GET|["name”];

| 3: $user_data = $db->query('SELECT * FROM students
WHERE name = "$name” ');

| 4:7>

14 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

SQL Injection

I 1:<?php
| 2: $name = $_GET["name”];

| 3: $user.data = $db->query("SELECT * FROM students
WHERE name = "Robert '); DROP TABLE students; - -"");

| 4:7>

15/136

Web Software
Security Issues
Vulnerabilities
Detection
Removal

Introduction

Overview

Cross Site Scripting (XSS) Attack

A PHP Example:
I 1:<?php
I 2: $www = $_GET["www"[;
| 3: $l_otherinfo = "URL";
| 4: echo "<td>" . $lotherinfo . ": " . $Swww . "</td>";
I 5:7>

e The echo statement in line 4 can contain a Cross Site
Scripting (XSS) vulnerability

16 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

XSS Attack

An attacker may provide an input that contains <script and
execute the malicious script.

I 1:<7php
I 2: $www = <script ... >;
| 3: $l_otherinfo = "URL";
| 4: echo " <td>" . $l_otherinfo . ": " .<script ... >.
"< /td>"
| 5:7> o

o 1057 £ /¢
€S S
HENGOR

17 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Is it Vulnerable?

A simple taint analysis, e.g., [Huang et al. WWW04], would report
this segment as vulnerable using taint propagation.

I 1:<?php

I 2: Swww = $_GET["www"];

| 3: $l_otherinfo = "URL";

| 4: echo " <td>" . $l_otherinfo .
| 5:7>

2 Swww. "< /td>";

18 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Is it Vulnerable?

Add a sanitization routine at line s.
I 1:<?php
20 Swww = $_GET["www"|;
| 3: $l_otherinfo = "URL";
|
| 4: echo " <td>" . $l_otherinfo .
| 5:7>

S Swww L < /td>"

19/136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Sanitization Routines are Erroneous

Introduction

However,
sanitize the input properly.

does not

e Removes all characters that are not in { A-Za-z0-9 .-Q:/ }.

. denotes (including
"< and " >")

e " .-Q@" should be ".\-Q@"

20 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

A buggy sanitization routine

I 1:<?php

| 2: $www = <script ... >;

| 3: $l_otherinfo = "URL";

[

| 4: echo " <td>" . $l_otherinfo . ": " . <script ... > .
"< /td>"

| 5:7>

e A buggy sanitization routine used in MyEasyMarket-4.1 that
causes a vulnerable point at line 218 in trans.php [Balzarotti
et al., S&P'08] e

e Our string analysis identifies that the segment is vulnerable iﬁ
with respect to the attack pattern: ¥* <scriptX*.

21/136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Eliminate Vulnerabilities

Input <!sc+rip!t ...> does not match the attack pattern
> * <scriptX*, but still can cause an attack

[1:<?php

I 2: $Swww =<Isc+riplt ...>;

| 3: $l_otherinfo = "URL":

| s: $www = ereg_replace(” [*A-Za-z0-9 .-@://]","", <!sc+riplt
L)

| 4: echo "<td>" . $l otherinfo . ": "’
"< td>"

| 5:7>

1

. <script ...> .

22 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Eliminate Vulnerabilities

e We generate vulnerability signature that characterizes all
malicious inputs that may generate attacks (with respect to
the attack pattern)

e The vulnerability signature for $_GET["www"] is
YF < afsafcatrafiaf patty*, where
a & { A-Za-z0-9 -@:/ } and X is any ASCII character
e Any string accepted by this signature can cause an attack

e Any string that dose not match this signature will not cause
an attack. l.e., one can filter out all malicious inputs using o,
our signature)

o 1057 £ /¢
€S S
HENGOR

23 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Prove the Absence of Vulnerabilities

Introduction

Fix the buggy routine by inserting the escape character \.
I 1:<?php
20 Swww = $_GET["www"|;
| 3: $l_otherinfo = "URL";
| s $www = ereg_replace(” [*A-Za-z0-9 .\-@://]"."" ,$www);
| 4: echo "<td>" . $l_otherinfo . ": " . $www . " </td>";
[5:7>

Using our approach, this segment is proven not to be vulnerable
against the XSS attack pattern: ¥* <scriptX*.

24 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Multiple Inputs?

Things can be more complicated while there are multiple inputs.
| 1:<?php
I 2: Swww = $_ GET["www"[;
| 3: $l_otherinfo = $_GET["other"];
| 4: echo "<td>" . $l otherinfo . ": " . $www . "< /td>";
[5:7>

e An attack string can be contributed from one input, another
input, or their combination

e We can generate relational vulnerability signatures and
automatically synthesize effective patches.

o 1057 £ /¢
€S S
HENGOR

25 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

String Analysis

e String analysis determines all possible values that a string
expression can take during any program execution

e Using string analysis we can identify all possible input values
of the sensitive functions. Then we can check if inputs of
sensitive functions can contain attack strings

o If string analysis determines that the intersection of the attack
pattern and possible inputs of the sensitive function is empty.
Then we can conclude that the program is secure

e If the intersection is not empty, then we can again use string
analysis to generate a vulnerability signature that %
characterizes all malicious inputs

26 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

Automata-based String Analysis

e Finite State Automata can be used to characterize sets of
string values
e We use automata based string analysis

e Associate each string expression in the program with an
automaton

e The automaton accepts an over approximation of all possible
values that the string expression can take during program
execution

e Using this automata representation we symbolically execute
the program, only paying attention to string manipulation
operations

e Attack patterns are specified as regular expressions

X3
HENGOR

27 /136

Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

String Analysis Stages

Scripts (Tainted) Dependency

A Graphs

E& Reachable Attack
Strings
Attack E)
Patterns Malicious
Inputs

E! e
Sanitization

Statements

Vi

28 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

A Language-based Replacement

M=REPLACE(M;, My, M3)
e My, My, and M3 are DFAs.

o M; accepts the set of original strings,
o M), accepts the set of match strings, and
e M; accepts the set of replacement strings

o Let s € L(M1), x € L(M2), and ¢ € L(M3):

e Replaces all parts of any s that match any x with any c.
e Qutputs a DFA that accepts the result to M.

29 /136

Automata Manipulations LEITHIEREE Replacenleqt
Language Concatenation
Widening Automata
Symbolic Encoding

M=REPLACE(My, M,, Ms)

Some examples:

L(My) L(Ms) | L(M3) | L(M)
{ baaabaa} | {aa} {c}
{baaabaa} at €
{baaabaa} | a*b {c}
{baaabaa} at {c}

ba*th at {c}

30/136

Automata Manipulations LEITHIEREE Replacenleqt
Language Concatenation
Widening Automata
Symbolic Encoding

M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} | {bacbc, bcabc}
{baaabaa} at €

{baaabaa} | a*b {c}
{baaabaa} at {c}
ba*th at {c}

31/136

Automata Manipulations LEITHIEREE Replacenleqt
Language Concatenation
Widening Automata
Symbolic Encoding

M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} | {bacbc, bcabc}
{baaabaa} at € {bb}

{baaabaa} | a*b {c}
{baaabaa} at {c}
ba*th at {c}

32/136

Automata Manipulations LEITHIEREE Replacenleqt
Language Concatenation
Widening Automata
Symbolic Encoding

M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} {bacbc, bcabc}
{baaabaa} at € {bb}

{baaabaa} | a*b {c} | {baacaa, bacaa, bcaa}
{baaabaa} at {c}
ba*th at {c}

33/136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} {bacbc, bcabc}
{baaabaa} at € {bb}
{baaabaa} | ath {c} {baacaa, bacaa, bcaa}

{baaabaa} at {c} {bcecbcec, becebe,
beebee, beebe, bebec, bebe}

ba*tb at {c}

34 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} {bacbc, bcabc}
{baaabaa} at € {bb}
{baaabaa} | ath {c} {baacaa, bacaa, bcaa}
{baaabaa} at {c} {bcecbcec, becebe,
beebee, beebe, bebec, bebe}
ba*tb at {c} bcthb

35/136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

M=REPLACE(My, M,, Ms)

e An over approximation with respect to the
leftmost/longest(first) constraints
e Many string functions in PHP can be converted to this form:

e htmlispecialchars, tolower, toupper, str_replace, trim, and
o preg_replace and ereg_replace that have regular expressions as
their arguments.

36 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Formal Definition

A DFA M is a replaced-DFA of a DFA tuple (My, Ma, M3), if and
only if LM) ={w | k>0, wixjwy ... wgxgwiy1 € L(My),

w = W1C1W2...WkaWk+1,V1 <i<kx € L(MQ),C,' € L(Mg,),V]. <
i<k+1,w&{wx'wh|x e€L(M),w,w)eX}}

37/136

ge Replacement
age Concatenation
ng Automata

lic Encoding

Automata Manipulations

A Language-based Replacement

Implementation of REPLACE(M;, My, M3):
e Mark matching sub-strings
e Insert marks to M;
e Insert marks to M,
e Replace matching sub-strings
o |dentify marked paths
e Insert replacement automata
In the following, we use two marks: < and > (not in X), and a
duplicate set of alphabet: ¥’ = {o/|a € £}. We use an example to
illustrate our approach.

OF Coy,
. OF Cony,

38/136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

An Example

Construct M = REPLACE(M;y, My, M3).
e [(M;) = {baab}
o (M) =a" ={a, aa,aaa,...}
o L(M3) = {c}

39/136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Construct M from M;:

e Duplicate My using ¥’

e Connect the original and duplicated states with < and >
For instance, M] accepts b < a’'a’ > b, b < & > ab.

40 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Construct M} from My:
e Construct M5 that accepts strings that do not contain any
substring in L(M). (a)
e Duplicate M, using ¥'. (b)
e Connect (a) and (b) with marks. (c)
For instance, M} accepts b < d’a’ > b, b< a > bc < a' >.

\ < ’
P {a} © a .’

\©:j\{a} o 2 =
>

(a) (b) (c)

41/136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Intersect My and Mj,.
e The matched substrings are marked in X'
e Identify (s,s’), so that s =< ... =~ ¢,

In the example, we idenitfy three pairs:(i,j), (i,k), (j.k).

42/136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Construct M:

e Insert M3 for each identified pair. (d)

e Determinize and minimize the result. (e)
L(M) = {bcb, becb}.

43/136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Compute M=REPLACE(M;, M, M3), where L(M;) = {baabc},
L(Mp)= ath, L(M3) = {c}.

44 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Concatenation

We introduce concatenation transducers to specify the relation
X=YZ
e A concatenation transducer is a 3-track DFA M over the
alphabet ¥ x (XU {A}) x (X U{A}), where A & ¥ is a special
symbol for padding.
o Vw e L(M), w[l] = w'[2].w/[3]
e w[i] (1 < i< 3) to denote the i*" track of w € 3
e w'[2] € L* is the A\-free prefix of w[2] and
e w'[3] € * is the A-free suffix of w[3]

45/136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Suffix

Consider X = (ab)™.Z
Assume L(Mx) = {ab, abc}. What are the values of Z7

o We first build the transducer M for X = (ab)*Z
e We intersect M with Mx on the first track
e The result is the third track of the intersection, i.e., {¢, c}.

a
a

a
a A

OG-0

Q >Q
Q >Q

>oToT

46 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Prefix

Consider X = Y.(ab)™.
Assume L(Mx) = {ab, cab}. What are the values of Y?
o We first build the transducer M for X = Y.(ab)™
e We intersect M with Mx on the first track
e The result is the second track of the intersection, i.e., {e, c}.

a
a A
A a
: O
b
a)\ Cc a
a b c A
)\ A a {/(r),,,“‘cym\v

47 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

What is the concatenation transducer for the general case X=YZ,
ie, X\ Y, ZeXx*?

48 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Consider X = Y.(abc)*.
Assume L(Mx) = (cab)Tc. What are the values of Y?

49 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Widening Automata: MV M’

Compute an automaton so that L(MVM’) D L(M) U L(M"). We

can use widening to accelerate the fixpoint computation.

50 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Widening Automata: MV M’

Here we introduce one widening operator originally proposed by
Bartzis and Bultan [CAVO04]. Intuitively,

e |dentify equivalence classes, and

e Merge states in an equivalence class
o L(MVM') D L(M)UL(M)

51/136

. . Language Replacement
Automata Manipulations STe P .
Language Concatenation

g
Widening Automata
Symbolic Encoding

State Equivalence

g, q are equivalent if one of the following condition holds:
o Yw € L*, w is accepted by M from g then w is accepted by
M’ from ¢’, and vice versa.
e dw € X*, M reaches state g and M’ reaches state q’ after
consuming w from its initial state respectively.
e 3¢, g and q" are equivalent, and g’ and " are equivalent.

52 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

An Example for MV M’

o L(M)={e,ab} and L(M') = {e, ab, abab}.
e The set of equivalence classes: C = {q(, g7}, where
9 = {90, 90, 92, 9. g4} and qf = {q1, g1, G5}

(a) M (b) M’ (c) MVM’

Figure: Widening automata

53 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Compute MV M’, where L(M) = {a, ab, ac} and
L(M') = {a, ab, ac, abc, acc}.

54 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

A Fixed Point Computation

Recall that we want to compute the least fixpoint that corresponds
to the reachable values of string expressions.

e The fixpoint computation will compute a sequence My, My,
. M, ..., where My = | and M; = M;_1 U post(M;_1)

55 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

A Fixed Point Computation

Consider a simple example:

e Start from an empty string and concatenate ab at each
iteration

e The exact computation sequence My, My, ..., M;, ... will
never converge, where L(Mp) = {€} and
L(M;) = {(ab)k |1 <k <i}U{e}.

56 /136

e Replacement
e Concatenation
Automata
Symbolic Encoding

Automata Manipulations

Accelerate The Fixed Point Computation

Use the widening operator V.
o Compute an over-approximate sequence instead: M|, My, ...,
e My = My, and for i >0, M/ = M!_;V(M!_; U post(M:_,)).

An over-approximate sequence for the simple example:

a) My (b) M} M, (d) M3

((c)

57 /136

Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Automata Representation

A DFA Accepting [A-Za-z0-9]* (ASC II).

0|1]2
0110000, 0110000 bit 1
0110001, : .
62" 0110001, bit 2 LX«
1111010 . bit 3
1111010
O bit 4 ¥\“

bit 5 | 7 L\
bit 6 \
0000000
: 0000000,
66 0000001,

0000001, bit 7 .
1111111 1111111 1] Mw S

(a) Explicit Representation

CH wcn\“

58 /136

Language Concatenation
Widening Automata

=
o
@
S
]
-y
Q
4
[
&0
]
80
]
-

anipulations

Automata M.

Example

Another Automata

S

g

£ZOF Con:

59 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
o Relational String Analysis
e Composite String Analysis

o 1057 £ /¢
€S S
HENGOR

60 /136

Vulnerability Analysis
Sigr re Generation
Sanitiza Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Symbolic String Vulnerability Analysis

Given a program, types of sensitive functions, and an attack
pattern, we say

e A program is vulnerable if a sensitive function at some
program point can take a string that matches the attack
pattern as its input

e A program is not vulnerable (with respect to the attack
pattern) if no such functions exist in the program

61/136

lity Analysis

Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

String Analysis Stages

(Tainted) Dependency
A Graphs

Scripts

E& Reachable Attack
Strings
Attack E)
Patterns Malicious
Inputs

E! e
Sanitization

Statements

62 /136

Vulnerability Analysis

Signature Generation
ion Generation

Relational String Analysis

Symbolic String Vulnerability Analysis

Front End

Consider the following segment.
| <?php
1 Swww = $_GET["www"];
[2: $url = "URL:";
| 3: $www = preg_replace(”’ [*A-Z.-Q]","" $www);

4: echo $url. Swww;

[7>

63 /136

Vulnerability Analysis

Signature Generation
ion Generation

Relational String Analysis

Symbolic String Vulnerability Analysis

Front End

A dependency graph specifies how the values of input nodes flow
to a sink node (i.e., a sensitive function)

[ore | raz-@ |[=][swww |

NEXT: Compute all possible values of a sink node

64 /136

Vulnerability Analysis
Signat Generation
Sani on Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Detecting Vulnerabilities

e Associates each node with an automaton that accepts an over
approximation of its possible values

e Uses automata-based forward symbolic analysis to identify the
possible values of each node
e Uses post-image computations of string operations:

e postConcat(M;, M) returns M, where M=M,;.M,
e postReplace(M;, M, Mjs) returns M, where
M=REPLACE(My, M, M3)

4, front forward »|backward
end analysis analysis

65 /136

Vulnerability Analysis

Signature Generation
ion Generation

Relational String Analysis

Symbolic String Vulnerability Analysis

Forward Analysis

o Allows arbitrary values, i.e., X*, from user inputs
e Propagates post-images to next nodes iteratively until a fixed
point is reached

’CURL:Q A \4© \‘@Dz
[“UFI{L:” Il [AA-zl.-@]_H " 1w] B

66 /136

Vulnerability Analysis

Signature Generation
ion Generation

Relational String Analysis

Symbolic String Vulnerability Analysis

Forward Analysis

e At the first iteration, for the replace node, we call
postReplace():* s Y \ {A _7Z - @}’ n ||)

\ URL: S\(A-Z.-@} \@ \4 sz

| “UTL:" I [AA-zl.-(Lll " e | R

1: URL:3

67 /136

Vulnerability Analysis

Signature Generation
ion Generation

Relational String Analysis

Symbolic String Vulnerability Analysis

Forward Analysis

e At the second iteration, we call postConcat ("URL:",
{(A—Z. —@e})

\ URL: S\(A-Z.-@} \@ \4 sz

| “UTL:" I [AA-zl.-(Lll " e | R

68 /136

Vulnerability Analysis
Generation
on Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Forward Analysis

e The third iteration is a simple assignment
e After the third iteration, we reach a fixed point

’: URL'@ PNA-Z-@} \4© \Q)Z

[“UTL:" I[[AA-zl.-@]_ll | Y |1

NEXT: Is it vulnerable?

69 /136

Vulnerability Analysis

. . . . Signature Generation
Symbolic String Vulnerability Analysis Sanitization Generation

Relational String Analysis

Detecting Vulnerabilities

e We know all possible values of the sink node (echo)
e Given an attack pattern, e.g., (X\ <)* < X*, if the

intersection is not an empty set, the program is vulnerable.

Otherwise, it is not vulnerable with respect to the attack

pattern
‘ ‘ b n \C)URL {A-Z.-@}
{AZ -@}
" U

{A-2-=-@}

NEXT: What are the malicious inputs?

70 /136

Symbolic String Vulnerability Analysis

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Generating Vulnerability Signatures

e A vulnerability signature is a characterization that includes all
malicious inputs that can be used to generate attack strings

e Uses backward analysis starting from the sink node

e Uses pre-image computations on string operations:
e preConcatPrefix(M, M) returns M; and
preConcatSuffix (M, M) returns My, where M = My.M,.
e preReplace(M, My, Ms) retunrs My, where
M=REPLACE(My, My, M3).

F » front
end

forwar(_j - backwqrd
analysis analysis

HENGOR

71/136

Vulnerability Analysis

Signature Generation
ization Generation

Relational String Analysis

Symbolic String Vulnerability Analysis

Backward Analysis

e Computes pre-images along with the path from the sink node
to the input node
e Uses forward analysis results while computing pre-images

SA-Z-@}
URL;
W U

I “URL” || [A-Z-@] || * || Swww I

URL: {A-Z-@}
/‘)
(A—Z.—.——@}

72/136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Backward Analysis

e The first iteration is a simple assignment.

\ URL: S(A-Z-@) \@

Ry J[Crazeer | [[sww |

73/136

Vulnerability Analysis
. . P . Signature Generation
Symbolic String Vulnerability Analysis ization Generation
Relational String Analysis

Backward Analysis

e At the second iteration, we call

preConcatSuffix(URL: {A—-Z.—;= -0} < {A-Z. —Q}",
"URL:").
e M = Ml.M2
\) S(A-Z-@) \
URL ©
[wre JTraze@ [1 swww |

74 /136

Vulnerability Analysis
Signature Generation
ation Generation

Symbolic String Vulnerability Analysis
Relational String Analysis

Backward Analysis

e We call preReplace({A—Z.—;=-@}* < {A-Z. - @}",
Y\ {A-Z —@}, "") at the third iteration.

e M= replace(Ml, M2, M3)

e After the third iteration, we reach a fixed point.

b{»@%
1: URL'@ 2AZ-@) \© 2T)

Rt |[Traze@l | [[swww |

75/136

Vulnerability Analysis
Signature Generation

a ation Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Vulnerability Signatures

e The vulnerability signature is the result of the input node,
which includes all possible malicious inputs

e An input that does not match this signature cannot exploit
the vulnerability

NEXT: How to detect and prevent malicious inputs

76 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Patch Vulnerable Applications

e Match-and-block: A patch that checks if the input string
matches the vulnerability signature and halts the execution if
it does

e Match-and-sanitize: A patch that checks if the input string
matches the vulnerability signature and modifies the input if it
does

77 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Sanitize

The idea is to modify the input by deleting certain characters (as
little as possible) so that it does not match the vulnerability
signature

e Given a DFA, an alphabet cut is a set of characters that after
"removing" the edges that are associated with the characters
in the set, the modified DFA does not accept any non-empty

string
5iq, 2 n

78 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Find An Alphabet Cut

e Finding a minimum alphabet cut of a DFA is an NP-hard
problem (one can reduce the vertex cover problem to this
problem)

e We apply a min-cut algorithm to find a cut that separates the
initial state and the final states of the DFA

e We give higher weight to edges that are associated with
alpha-numeric characters

e The set of characters that are associated with the edges of the
min cut is an alphabet cut

k
D<Al AZ

\ /o \ /
o \J

{<} is an alphabet cut

79 /136

rability Analysis
re Generation
tion Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Patch Vulnerable Applications

A match-and-sanitize patch: If the input matches the vulnerability
signature, delete all characters in the alphabet cut

| <?php

| if (preg-match(’/[" <[*<.*/"$_GET["www"]))

| $_ GET["www"] = preg_replace(<,"" ,$_GET["www"]);

1 $www = $_GET["www"|;

| 2: $url = "URL:";

| 3: $www = preg_replace(” [*A-Z.-Q]","" ,$www);

| 4: echo $url. $www;

[7>

80 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Experiments

We evaluated our approach on five vulnerabilities from three open
source web applications:

e (1) MyEasyMarket-4.1 (a shopping cart program),

e (2) BloggIT-1.0 (a blog engine), and

e (3) proManager-0.72 (a project management system).
We used the following XSS attack pattern ¥* < SCRIPTYL*.

HENGOR

81/136

Vulnerability Analysis
Sigr re Generation
on Generation
ational String Analysis

Symbolic String Vulnerability Analysis

Dependency Graphs

e The dependency graphs of these benchmarks are built for
sensitive sinks
e Unrelated parts have been removed using slicing

| [F#nodes [#edges [F#concat [Freplace [F#constant [#£sinks [F#inputs ‘

1 21 20 6 1 46 1
2 29 29 13 7 108 1
3 25 25 6 6 220 1
4 23 22 10 9 357 1
5 25 25 14 12 357 1

Table: Dependency Graphs. #constant: the sum of the length of the
constants

82 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Vulnerability Analysis Performance

Forward analysis seems quite efficient.

|| time(s) | mem(kb) [res. | #states / #bdds | #inputs |

1 0.08 2599 vul 23/219 1
2 0.53 13633 vul 48/495 1
3 0.12 1955 vul 125/1200 2
4 0.12 4022 vul 133/1222 1
5 0.12 3387 vul 125/1200 1

Table: #states /#bdds of the final DFA (after the intersection with the
attack pattern)

83/136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Signature Generation Performance

Backward analysis takes more time. Benchmark 2 involves a long
sequence of replace operations.

|| time(s) | mem(kb) | #states /#bdds |

1 0.46 2963 9/199

2 | 41.03 1859767 811/8389

3 2.35 5673 20/302, 20/302
4 2.33 32035 91/1127

5 5.02 14958 20/302

Table: #states /#bdds of the vulnerability signature

84 /136

Vulnerability Analysis

Sign Generation
itization Generation

Relational String Analysis

Symbolic String Vulnerability Analysis

| Sig. [1] 2 [3] 4 [5 |
input i i i, I i i
#edges 1 8 4,4 4 4
alpcut | {<} [{</,)"} | & = | {<),"} | {<),)"}

Table: Cuts. #edges: the number of edges in the min-cut.

e For 3 (two user inputs), the patch will block everything and
delete everything

X3
HENGOR

85 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Multiple Inputs?

Things can be more complicated while there are multiple inputs.
I 1:<?php
20 $www = $_GET["www" |;
| 3: $l_otherinfo = $_GET|["other"];
| 4: echo "<td>" . $l otherinfo . ": " . $www . "< /td>";

| 5:7>

e An attack string can be contributed from one input, another
input, or their combination

e Using single-track DFAs, the analysis over approximates the
relations among input variables (e.g. the concatenation of two
inputs contains an attack) SRR

e There may be no way to prevent it by restricting only one
input

86 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
e Relational String Analysis
e Composite String Analysis

o 1057 £ /¢
€S S
HENGOR

87 /136

Vulnerability Analysis
Sigr re Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Relational String Analysis

Instead of multiple single-track DFAs, we use one multi-track DFA,
where each track represents the values of one string variable.

Using multi-track DFAs we are able to:
e l|dentify the relations among string variables

o Generate relational vulnerability signatures for multiple user
inputs of a vulnerable application

e Prove properties that depend on relations among string
variables, e.g., $file = $usr.txt (while the user is Fang, the
open file is Fang.txt)

e Summarize procedures

e Improve the precision of the path-sensitive analysis

88 /136

Vulnerability Analysis

. . . . Sigr re Generation
Symbolic String Vulnerability Analysis Sanitization Generation

Relational String Analysis

Multi-track Automata

e Let X (the first track), Y (the second track), be two string
variables

e) is a padding symbol
e A multi-track automaton that encodes X = Y.txt

@Loﬂo MJ@
(a,a),(b,b),...

89 /136

Vulnerability Analysis
Sigr re Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Relational Vulnerability Signature

e Performs forward analysis using multi-track automata to
generate relational vulnerability signatures

e Each track represents one user input
e An auxiliary track represents the values of the current node

e Each constant node is a single track automaton (the auxiliary
track) accepting the constant string

e Each user input node is a two track automaton (an input
track + the auxiliary track) accepting strings that two tracks
have the same value 9

£ OF COjy»

90 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Relational Vulnerability Signature

Consider a simple example having multiple user inputs
| <?php
1 $www = $_GET["www" |;
|2 $url =$_GET["url"];
| 3: echo $url. $www;
[7>

Let the attack pattern be (X\ <)* < X* P S

o 1057 £ /¢
€S S
HENGOR

91/136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Signature Generation

Input nodes Concat node

(surl, aux) ! (surl, swww, aux)
'

RY (ha,a),
3 (\b.b)
@a) (o) ... | (ana) (bAb)... @—@

($www, aux) (surl, swww, aux) (a,\a), (ra,a),
! (b,A.b) (A.b,b)
(a,a), (b,b) ... (A,a,a), (A,b,b) ...

92 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Relational Vulnerability Signature

Upon termination, intersects the auxiliary track with the attack
pattern

e A multi-track automaton: ($url, $www , aux)

o Identifies the fact that the concatenation of two inputs
contains <

o 1057 £ /¢
€S S
HENGOR

93 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Relational Vulnerability Signature

e Projects away the auxiliary track

e Finds a min-cut

e This min-cut identifies the alphabet cuts:
o {<} for the first track ($url)
e {<} for the second track ($www)

(a, N

94 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Patch Vulnerable Applications with Multi Inputs

Patch: If the inputs match the signature, delete its alphabet cut
| <?php
| if (preg-match(’/[" <[*<.*/', $_GET["url"].$_GET["www"]))
{

| $_GET["url"] = preg_replace(" <","" ,$_GET[" url"]);

I $_GET["www"] = preg_replace(”"<","" ,$_GET["www"]);
B

I 10 $www = $_GET["www"];

| 2: $url = $_GET[url'];

|

|

3: echo $url. Swww;

7>

95 /136

Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Previous Benchmark: Single V.S. Relational Signatures

[ben. | type | time(s) [mem(kb) [#states /#bdds |
3 Single-track | 2.35 5673 20/302, 20/302
Multi-track 0.66 6428 113/1682
l 3 [Single-track [Multi-track ‘
F+edges 4 3
alp.-cut >, X {<}, {5}

96 /136

lity Analysis

Generation

on Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Other Technical Issues

To conduct relational string analysis, we need a meaningful
"intersection” of multi-track automata

e Intersection are closed under aligned multi-track automata
e Js are right justified in all tracks, e.g., abAX instead of aAbA

e However, there exist unaligned multi-track automata that are
not describable by aligned ones

e We propose an alignment algorithm that constructs aligned
automata which under/over approximate unaligned ones

97 /136

Vulnerability Analysis
Sigr re Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Other Technical Issues

Modeling Word Equations:

e Intractability of X = cZ: The number of states of the
corresponding aligned multi-track DFA is exponential to the
length of c.

e lrregularity of X = YZ: X = YZ is not describable by an
aligned multi-track automata

We have proven the above results and proposed a conservative
analysis.

98 /136

rability Analysis
re Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Experiments on Relational String Analysis

Basic benchmarks:
e Implicit equality properties
e Branch and loop structures

MFE benchmarks:
e Each benchmark represents a MFE vulnerability
e M1: PBLguestbook-1.32, pblguestbook.php(536)
e M2, M3: MyEasyMarket-4.1, prod.php (94, 189)
e M4, M5: php-fusion-6.01, db_backup.php (111),
forums_prune.php (28).
e We check whether the retrieved files and the external inputs’
are consistent with what the developers intend. 4

99 /136

Symbolic String Vulnerability Analysis

Vulnerability Analysis

Sign Generation
ation Generation

Relational String Analysis

Experimental Results

Use single-track automata.

Single-track
Result DFAs/ Composed DFA Time Mem
Ben state(bdd) user+sys(sec) | (kb)
Bl | false 15(107), 15(107) /33(477) 0.027 + 0.006 | 410
B2 | false 6(40), 6(40) / 9(120) 0.02240.008 | 484
M1 | false 2(8), 28(208) / 56(801) 0.027+0.003 | 621
M2 | false 2(20), 11(89) / 22(495) 0.013+0.004 | 555
M3 | false 2(20), 2(20) / 5(113) 0.008+0.002 | 417
M4 | false | 24(181), 2(8), 25(188) / 1201(25949) | 0.226+0.025 | 9495
M5 | false | 2(8), 14(101), 15(108) / 211(3195) | 0.049+0.008 | 1676
Table: false: The property can be violated (false alarms), DFAs:
DFAs

SHENGCYY

100 /136

Vulnerability Analysis

. . . . Signature Generation

bolic St Vulnerability Analysis el ;
Symbolic String Vulnerability Analysi Sanitization Generation

Relational String Analysis

Experimental Results

Use multi-track automata.

Multi-track
Result DFA Time Mem
Ben state(bdd) | user+sys(sec) (kb)
Bl true 14(193) 0.070 + 0.009 918
B2 true 5(60) 0.025+0.006 293

MI | true | 50(3551) | 0.050+0.002 | 1294
M2 | true | 21(604) | 0.040+0.004 | 996
M3 | true 3(276) 0.018+0.001 | 465
M4 | true | 181(9893) | 0.78410.07 | 19322
M5 | true | 62(2423) | 0.097+0.005 | 1756

Table: true: The property holds, DFA: the final DFA e

s

TENGCYS >

101 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
o Relational String Verification

e Composite String Analysis

s 1957 40 /&
“ s
rnaend

102 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Composite Verification

We aim to extend our string analysis techniques to analyze systems
that have unbounded string and integer variables.

We propose a composite static analysis approach that combines
string analysis and size analysis.

103 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

String Analysis

Static String Analysis: At each program point, statically compute
the possible values of each string variable.

The values of each string variable are over approximated as a
regular language accepted by a string automaton [Yu et al.
SPINO8|.

String analysis can be used to detect web vulnerabilities like SQL
Command Injection [Wassermann et al, PLDIO7] and Cross Site
Scripting (XSS) attacks [Wassermann et al., ICSE08]. k

104 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Size Analysis

Integer Analysis: At each program point, statically compute the
possible states of the values of all integer variables.

These infinite states are symbolically over-approximated as linear
arithmetic constraints that can be represented as an arithmetic
automaton

Integer analysis can be used to perform Size Analysis by
representing lengths of string variables as integer variables.

105 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

What is Missing?

Consider the following segment.

e 1:<?php

e 2: Swww = $_GET[" www"];

e 3: $l_otherinfo = "URL";

e 4: $www = ereg replace("["A-Za-z0-9 ./-@://]")"" ,$www);
o 5: if(strlen($www) < $limit)

e 6: echo”"<td>" . $lotherinfo . ": " . $www . "</td>";
o 77> ‘

106 / 136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

What is Missing?

If we perform size analysis solely, after line 4, we do not know the
length of $www.

e 1:<?php
o 2: Swww = $_GET["www"];

e 3: $l_otherinfo = "URL";

o 4: $www = ereg_replace(” [*A-Za-z0-9 ./-@://]","" ,$www);

o 5: if(strlen($www) < $limit)

e 6: echo”<td>" . $lotherinfo. ": " . $www . "< /td>";
o 7:7> PR

o 1057 £ /¢
€S S
HENGOR

107 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

What is Missing?

If we perform string analysis solely, at line 5, we cannot
check /enforce the branch condition.

e 1:<?php
o 2: Swww = $_GET["www"];

e 3: $l_otherinfo = "URL";

e 4: $www = ereg_replace("["A-Za-z0-9 ./-@://]")"" ,$www);

o 5: if(strlen($www) < $limit)

e 6: echo”<td>" . $lotherinfo. ": " . $www . "< /td>";
o 7:7> PR

o 1057 £ /¢
€S S
HENGOR

108 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

What is Missing?

We need a composite analysis that combines string analysis with
size analysis.

Challenge: How to transfer information between string automata
and arithmetic automata?

109 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Some Facts about String Automata

e A string automaton is a single-track DFA that accepts a
regular language, whose length forms a semi-linear set, .e.g.,
{4,6} U{2+3k | k >0}

e The unary encoding of a semi-linear set is uniquely identified
by a unary automaton

e The unary automaton can be constructed by replacing the
alphabet of a string automaton with a unary alphabet

110 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Some Facts about Arithmetic Automata

e An arithmetic automaton is a multi-track DFA, where each
track represents the value of one variable over a binary
alphabet

e |f the language of an arithmetic automaton satisfies a
Presburger formula, the value of each variable forms a
semi-linear set

e The semi-linear set is accepted by the binary automaton that

111/136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

An Overview

To connect the dots, we propose a novel algorithm to convert
unary automata to binary automata and vice versa.

b
b cO—0O
00060
String
Automata (Z) Unary Length Automata
i) Arithmetic

Binary Length Automata (~) Automata
1

1
% 1 1

0
0 0%y !

112 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

An Example of Length Automata

Consider a string automaton that accepts (great)*.
The length set is {5 + 5k|k > 0}.
e 5: in unary 11111, in binary 101, from Isb 101.
e 1000: in binary 1111101000, from Isb 0001011111.

113 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Another Example of Length Automata

Consider a string automaton that accepts (great)™cs.
The length set is {7 + 5k|k > 0}.
e 7: in unary 1111111, in binary 1100, from Isb 0011.
e 107: in binary 1101011, from Isb 1101011.
e 1077: in binary 10000110101, from Isb 10101100001.

5O OO OO

(e) Unary

114 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

From Unary to Binary

Given a unary automaton, construct the binary automaton that
accepts the same set of values in binary encodings (starting from
the least significant bit)
e |dentify the semi-linear sets
e Add binary states incrementally
e Construct the binary automaton according to those binary
states

115 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Identify the semi-linear set

pSSNEY

e A unary automaton M is in the form of a lasso

e Let C be the length of the tail, R be the length of the cycle

o {C+r+ Rk| k>0} C L(M) if there exists an accepting
state in the cycle and r is its length in the cycle

e For the above example

e C=1R=2r=1
o {1+1+42k|k>0}

116 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Binary states

A binary state is a pair (v, b):
e v is the integer value of all the bits that have been read so far

e b is the integer value of the last bit that has been read

e Initially, v is 0 and b is undefined.

117 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

The Binary Automaton Construction

We construct the binary automaton by adding binary states
accordingly
e Once v+ 2b> C, v and b are the remainder of the values
divided by R
e (v, b) is an accepting state if v is a remainder and
dr.v=(C+r)%R
e The number of binary states is O(C? + R?)

118 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

The Binary Automaton Construction

Consider the previous example, where C =1, R=2, r=1.

e (0, 0) is an accepting state, since
drr=1(C+v)%R=(1+0)%2=1

119/136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

The Binary Automaton Construction

After the construction, we apply minimization and get the final

result.

Figure: A binary automaton that accepts {2+2k}

T
5 OF Con,

120 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Consider a string automaton that accepts auto(good)*.
e Compute the semi-linear set.
e Construct the binary automata that accepts the semi-linear set

121 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

From Binary to Unary

Given a binary automaton, construct the unary automaton that
accepts the same set of values in unary encodings

e There exists a binary automaton, e.g., {2" | k > 0}, that
cannot be converted to a unary automaton precisely.
e We adopt an over- approximation:
e Compute the minimal and maximal accepted values of the
binary automaton
o Construct the unary automaton that accepts the values in
between

122 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Compute the Minimal /Maximal Values

e The minimal value forms the shortest accepted path

e The maximal value forms the longest loop-free accepted path
(If there exists any accepted path containing a cycle, the
maximal value is inf)

e Perform BFS from the accepting states (depth is bounded by
the number of states)

e Initially, both values of the accepting states are set to 0
e Update the minimal/maximal values for each state accordingly

123 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

The Unary Automaton Construction

Consider our previous example,
e min = 2, max = inf
e An over approximation: {2+ 2k | k >0} C {2+ k | k > 0}

1 @1/0
0o 1 Y0

124 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Experiments

In [TACASQ9], we manually generate several benchmarks from:
e C string library
o Buffer overflow benchmarks (buggy/fixed) [Ku et al., ASE'07]

e Web vulnerable applications (vulnerable/sanitized) [Balzarotti
et al., S&P'08]

These benchmarks are small (<100 statements and < 10 variables)
but demonstrate typical relations among string and integer
variables.

125 /136

String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Experimental Results

The results show some promise in terms of both precision and
performance

[Test case (bad/ok) [Result [Time (s) [Memory (kb) |
int strlen(char *s) T 0.037 522
char *strrchr(char *s, int c) T 0.011 360
gxine (CVE-2007-0406) F/T | 0.014/0.018 | 216/252
samba (CVE-2007-0453) F/T | 0.015/0.021 218/252
MyEasyMarket-4.1 (trans.php:218) F/T 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210) F/T 0.021/0.022 496/662
BlogglT 1.0 (admin.php:27) F/T 0.719/0.721 5857,/7067
Table: T: The property holds (buffer overflow free or not vulnerable with, %
respect to the attack pattern) i

SHENGCYY

126 /136

STRANGER Tool
Summary

Implementation and Summary

STRANGER Tool

We have developed STRANGER (STRing AutomatoN
GEneratoR)

e A public automata-based string analysis tool for PHP

e Takes a PHP application (and attack patterns) as input, and
automatically analyzes all its scripts and outputs the possible
XSS, SQL Injection, or MFE vulnerabilities in the application

127 /136

STRANGER Tool
Summary

Implementation and Summary

STRANGER Tool

e Uses Pixy [Jovanovic et al., 2006] as a front end
e Uses MONA [Klarlund and Mgiller, 2001] automata package
for automata manipulation

PHP Applications (Attack Patterns)

String/Automata
Operations Automata Based DFAs (MBDDs)
Dependency

") . i
Stranger Library MONA Automata
CFGs Graphs " Automata Package
Taint
Analyzer String Analysis Report
P (Patch / Vulnerability Signatures)

Pixy: Stranger: MONA: 5
Front End Symbolic String Analysis DFA Manipulation

String

Tainted Analyzer

”’tmccv\\‘

The tool, detailed documents, and several benchmarks are
available: http://www.cs.ucsb.edu/~vlab/stranger. 128 /136

STRANGER Tool
Summary

Implementation and Summary

STRANGER Tool

A case study on Schoolmate 1.5.4

63 php files containing 8000+ lines of code

Intel Core 2 Due 2.5 GHz with 4GB of memory running Linux
Ubuntu 8.04

STRANGER took 22 minutes / 281MB to reveal 153 XSS
from 898 sinks

After manual inspection, we found 105 actual vulnerabilities
(false positive rate: 31.3%)

We inserted patches for all actual vulnerabilities

Stranger proved that our patches are correct with respect t
the attack pattern we are using

129 /136

STRANGER Tool
Summary

Implementation and Summary

STRANGER Tool

Another case study on SimpGB-1.49.0, a PHP guestbook web
application
e 153 php files containing 44000+ lines of code
o Intel Core 2 Due 2.5 GHz with 4GB of memory running Linux
Ubuntu 8.04

e For all executable entries, STRANGER took

e 231 minutes to reveal 304 XSS from 15115 sinks,
e 175 minutes to reveal 172 SQLI from 1082 sinks, and
e 151 minutes to reveal 26 MFE from 236 sinks

130 /136

STRANGER Tool
Summary

Implementation and Summary

Related Work on String Analysis

e String analysis based on context free grammars: [Christensen et
al., SAS'03] [Minamide, WWW'05]

e String analysis based on symbolic execution: [Bjorner et al.,
TACAS'09]

e Bounded string analysis: [Kiezun et al., ISSTA'09]

e Automata based string analysis: [Xiang et al., COMPSAC'07]
[Shannon et al., MUTATION'07] [Barlzarotti et al. S&P’08][Veneas et al.,
POPL'15][Wang et al. CAV'16]

e String constraint solving: [CVC4] [Z3, Z3-Str, Z3-5tr2,2016] [SSS,
S3P] [Norn] [Slog, Slender (Wang, Jiang and Yu. Coming soon)]

e Application of string analysis to web applications: [Wasserman
and Su, PLDI'07, ICSE'08] [Halfond and Orso, ASE'05, ICSE’06]

<

TENGCYS >

131/136

STRANGER Tool
Summary

Implementation and Summary

Related Work on Size Analysis and Composite Analysis

e Size analysis : [Dor et al., SIGPLAN Notice'03] [Hughes et al., POPL'06]
[Chin et al., ICSE'05] [Yu et al., FSE'07] [Yang et al., CAV'08]
e Composite analysis:

e Composite Framework: [Bultan et al., TOSEM'00]

e Symbolic Execution: [Xu et al., ISSTA'08] [Saxena et al., UCB-TR'10]

o Abstract Interpretation: [Gulwani et al., POPL’08] [Halbwachs et al.,
PLDI'08]

X3
HENGOR

132 /136

STRANGER Tool
Summary

Implementation and Summary

Related Work on Vulnerability Signature Generation

o Test input/Attack generation: [Wassermann et al., ISSTA'08] [Kiezun
et al., ICSE'09)]

e Vulnerability signature generation: [Brumley et al., S&P'06]
[Brumley et al., CSF'07] [Costa et al., SOSP’'07][Yu et al. ISSTA'16]

133 /136

STRANGER Tool
Summary

Implementation and Summary

Thank you for your attention.

Questions?

134 /136

	Introduction
	Web Software
	Security Issues
	Vulnerabilities
	Detection
	Removal
	Overview

	Automata Manipulations
	Language Replacement
	Language Concatenation
	Widening Automata
	Symbolic Encoding

	Symbolic String Vulnerability Analysis
	Vulnerability Analysis
	Signature Generation
	Sanitization Generation
	Relational String Analysis

	Composite String Analysis
	String Analysis + Size Analysis
	What is Missing?
	What is Its Length?
	Technical Details
	Experiments

	Implementation and Summary
	STRANGER Tool
	Summary

