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Web Applications

Web applications are used extensively in many areas
e Commerce: online banking, online shopping, etc.

e Entertainment: online game, music and videos, etc.

e [nteraction: social networks
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Web Applications

We may rely on web applications more in the future
e Health Records: Google Health, Microsoft HealthVault

e Controlling and monitoring national infrastructures: Google
Powermeter
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Web Applications

Web software is also rapidly replacing desktop applications.
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One Major Road Block

Web applications are not trustworthy!

Web applications are notorious for security vulnerabilities

e Their global accessibility makes them a target for many
malicious users

Web applications are becoming increasingly dominant and their use
in safety critical areas is increasing

e Their trustworthiness is becoming a critical issue
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e The top two vulnerabilities of the Open Web Application
Security Project (OWASP)'s top ten list in 2007, 2010, 2013,
and 2017

@ Cross Site Scripting (XSS)
@ Injection Flaws (such as SQL Injection)
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Web Application Vulnerabilities

Percentage of the Cross-site Scripting (XSS) and SQL Injection
(SQLI) vulnerabilities among all the computer security

vulnerabilities reported in the CVE repository.
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Introduction

Extensive string manipulation:

e Web applications use extensive string manipulation

e To construct html pages, to construct database queries in
SQL, to construct system commands

e The user input comes in string form and must be validated
and sanitized before it can be used

e This requires the use of complex string manipulation functions
such as string-replace

e String manipulation is error prone
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Exploits of a Mom.

HL THIS 15

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

YOUR SON'S SCHOOL.

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

R
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DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TRBLE Shderts; —~ 7

~ OH. YES. LITIE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECCRDS.
T HOPE YPURE HAPPY.

AND T HOPE
~~ YOUVE LEARNED
L TOSANMZE YOUR
DATABASE INPUTS.

Source: XKCD.com

HENGO
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SQL Injection

Access students’ data by $name (from a user input).
| 1:<?php
| 2: $name =$_GET|["name”];

| 3: $user_data = $db->query('SELECT * FROM students
WHERE name = "$name” ');

| 4:7>

14 /136



Web Software
Security Issues
Vulnerabilities
Detection
Removal
Overview

Introduction

SQL Injection

I 1:<?php
| 2: $name = $_GET["name”];

| 3: $user.data = $db->query("SELECT * FROM students
WHERE name = "Robert '); DROP TABLE students; - -"");

| 4:7>
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Cross Site Scripting (XSS) Attack

A PHP Example:
I 1:<?php
I 2: $www = $_GET["www"[;
| 3: $l_otherinfo = "URL";
| 4: echo "<td>" . $lotherinfo . ": " . $Swww . "</td>";
I 5:7>

e The echo statement in line 4 can contain a Cross Site
Scripting (XSS) vulnerability
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XSS Attack

An attacker may provide an input that contains <script and
execute the malicious script.

I 1:<7php
I 2: $www = <script ... >;
| 3: $l_otherinfo = "URL";
| 4: echo " <td>" . $l_otherinfo . ": " .<script ... >.
"< /td>"
| 5:7> o

o 1057 £ /¢
€S S
HENGOR
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Is it Vulnerable?

A simple taint analysis, e.g., [Huang et al. WWW04], would report
this segment as vulnerable using taint propagation.

I 1:<?php

I 2: Swww = $_GET["www"];

| 3: $l_otherinfo = "URL";

| 4: echo " <td>" . $l_otherinfo .
| 5:7>

2 Swww. "< /td>";
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Is it Vulnerable?

Add a sanitization routine at line s.
I 1:<?php
20 Swww = $_GET["www"|;
| 3: $l_otherinfo = "URL";
|
| 4: echo " <td>" . $l_otherinfo .
| 5:7>

S Swww L < /td>"

19/136
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However,
sanitize the input properly.

does not

e Removes all characters that are not in { A-Za-z0-9 .-Q:/ }.

. denotes (including
"< and " >")

e " .-Q@" should be ".\-Q@"
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A buggy sanitization routine

I 1:<?php

| 2: $www = <script ... >;

| 3: $l_otherinfo = "URL";

[

| 4: echo " <td>" . $l_otherinfo . ": " . <script ... > .
"< /td>"

| 5:7>

e A buggy sanitization routine used in MyEasyMarket-4.1 that
causes a vulnerable point at line 218 in trans.php [Balzarotti
et al., S&P'08] e

e Our string analysis identifies that the segment is vulnerable iﬁ
with respect to the attack pattern: ¥* <scriptX*.
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Eliminate Vulnerabilities

Input <!sc+rip!t ...> does not match the attack pattern
> * <scriptX*, but still can cause an attack

[ 1:<?php

I 2: $Swww =<Isc+riplt ...>;

| 3: $l_otherinfo = "URL":

| s: $www = ereg_replace(” [*A-Za-z0-9 .-@://]","", <!sc+riplt
L)

| 4: echo "<td>" . $l otherinfo . ": "’
"< td>"

| 5:7>

1

. <script ...> .

22 /136
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Eliminate Vulnerabilities

e We generate vulnerability signature that characterizes all
malicious inputs that may generate attacks (with respect to
the attack pattern)

e The vulnerability signature for $_GET["www"] is
YF < afsafcatrafiaf patty*, where
a & { A-Za-z0-9 -@:/ } and X is any ASCII character
e Any string accepted by this signature can cause an attack

e Any string that dose not match this signature will not cause
an attack. l.e., one can filter out all malicious inputs using o,
our signature )

o 1057 £ /¢
€S S
HENGOR
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Prove the Absence of Vulnerabilities

Introduction

Fix the buggy routine by inserting the escape character \.
I 1:<?php
20 Swww = $_GET["www"|;
| 3: $l_otherinfo = "URL";
| s $www = ereg_replace(” [*A-Za-z0-9 .\-@://]"."" ,$www);
| 4: echo "<td>" . $l_otherinfo . ": " . $www . " </td>";
[ 5:7>

Using our approach, this segment is proven not to be vulnerable
against the XSS attack pattern: ¥* <scriptX*.
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Multiple Inputs?

Things can be more complicated while there are multiple inputs.
| 1:<?php
I 2: Swww = $_ GET["www"[;
| 3: $l_otherinfo = $_GET["other"];
| 4: echo "<td>" . $l otherinfo . ": " . $www . "< /td>";
[ 5:7>

e An attack string can be contributed from one input, another
input, or their combination

e We can generate relational vulnerability signatures and
automatically synthesize effective patches.

o 1057 £ /¢
€S S
HENGOR
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String Analysis

e String analysis determines all possible values that a string
expression can take during any program execution

e Using string analysis we can identify all possible input values
of the sensitive functions. Then we can check if inputs of
sensitive functions can contain attack strings

o If string analysis determines that the intersection of the attack
pattern and possible inputs of the sensitive function is empty.
Then we can conclude that the program is secure

e If the intersection is not empty, then we can again use string
analysis to generate a vulnerability signature that %
characterizes all malicious inputs
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Automata-based String Analysis

e Finite State Automata can be used to characterize sets of
string values
e We use automata based string analysis

e Associate each string expression in the program with an
automaton

e The automaton accepts an over approximation of all possible
values that the string expression can take during program
execution

e Using this automata representation we symbolically execute
the program, only paying attention to string manipulation
operations

e Attack patterns are specified as regular expressions

X3
HENGOR
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String Analysis Stages

Scripts (Tainted) Dependency

A Graphs

E& Reachable Attack
Strings
Attack E )
Patterns Malicious
Inputs

E! e
Sanitization

Statements
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Language Replacement
Language Concatenation
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Automata Manipulations

A Language-based Replacement

M=REPLACE(M;, My, M3)
e My, My, and M3 are DFAs.

o M; accepts the set of original strings,
o M), accepts the set of match strings, and
e M; accepts the set of replacement strings

o Let s € L(M1), x € L(M2), and ¢ € L(M3):

e Replaces all parts of any s that match any x with any c.
e Qutputs a DFA that accepts the result to M.
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Automata Manipulations LEITHIEREE Replacenleqt
Language Concatenation
Widening Automata
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M=REPLACE(My, M,, Ms)

Some examples:

L(My) L(Ms) | L(M3) | L(M)
{ baaabaa} | {aa} {c}
{baaabaa} at €
{baaabaa} | a*b {c}
{baaabaa} at {c}

ba*th at {c}

30/136
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M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} | {bacbc, bcabc}
{baaabaa} at €

{baaabaa} | a*b {c}
{baaabaa} at {c}
ba*th at {c}
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M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} | {bacbc, bcabc}
{baaabaa} at € {bb}

{baaabaa} | a*b {c}
{baaabaa} at {c}
ba*th at {c}
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M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} {bacbc, bcabc}
{baaabaa} at € {bb}

{baaabaa} | a*b {c} | {baacaa, bacaa, bcaa}
{baaabaa} at {c}
ba*th at {c}
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M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} {bacbc, bcabc}
{baaabaa} at € {bb}
{baaabaa} | ath {c} {baacaa, bacaa, bcaa}

{baaabaa} at {c} {bcecbcec, becebe,
beebee, beebe, bebec, bebe}

ba*tb at {c}

34 /136
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M=REPLACE(My, M,, Ms)

Some examples:

L(My) | L(M2) | L(Ms) L(M)
{ baaabaa} | {aa} {c} {bacbc, bcabc}
{baaabaa} at € {bb}
{baaabaa} | ath {c} {baacaa, bacaa, bcaa}
{baaabaa} at {c} {bcecbcec, becebe,
beebee, beebe, bebec, bebe}
ba*tb at {c} bcthb
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M=REPLACE(My, M,, Ms)

e An over approximation with respect to the
leftmost/longest(first) constraints
e Many string functions in PHP can be converted to this form:

e htmlispecialchars, tolower, toupper, str_replace, trim, and
o preg_replace and ereg_replace that have regular expressions as
their arguments.
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Formal Definition

A DFA M is a replaced-DFA of a DFA tuple (My, Ma, M3), if and
only if LM) ={w | k>0, wixjwy ... wgxgwiy1 € L(My),

w = W1C1W2...WkaWk+1,V1 <i<kx € L(MQ),C,' € L(Mg,),V]. <
i<k+1,w&{wx'wh|x e€L(M),w,w)eX}}
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A Language-based Replacement

Implementation of REPLACE(M;, My, M3):
e Mark matching sub-strings
e Insert marks to M;
e Insert marks to M,
e Replace matching sub-strings
o |dentify marked paths
e Insert replacement automata
In the following, we use two marks: < and > (not in X), and a
duplicate set of alphabet: ¥’ = {o/|a € £}. We use an example to
illustrate our approach.

OF Coy,
. OF Cony,
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An Example

Construct M = REPLACE(M;y, My, M3).
e [(M;) = {baab}
o (M) =a" ={a, aa,aaa,...}
o L(M3) = {c}
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Construct M from M;:

e Duplicate My using ¥’

e Connect the original and duplicated states with < and >
For instance, M] accepts b < a’'a’ > b, b < & > ab.
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Construct M} from My:
e Construct M5 that accepts strings that do not contain any
substring in L(M). (a)
e Duplicate M, using ¥'. (b)
e Connect (a) and (b) with marks. (c)
For instance, M} accepts b < d’a’ > b, b< a > bc < a' >.

\ < ’
P {a} © a .’

\©:j\{a} o 2 =
>

(a) (b) (c)
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Intersect My and Mj,.
e The matched substrings are marked in X'
e Identify (s,s’), so that s =< ... =~ ¢,

In the example, we idenitfy three pairs:(i,j), (i,k), (j.k).

42/136
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Construct M:

e Insert M3 for each identified pair. (d)

e Determinize and minimize the result. (e)
L(M) = {bcb, becb}.
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Compute M=REPLACE(M;, M, M3), where L(M;) = {baabc},
L(Mp)= ath, L(M3) = {c}.
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Concatenation

We introduce concatenation transducers to specify the relation
X=YZ
e A concatenation transducer is a 3-track DFA M over the
alphabet ¥ x (XU {A}) x (X U{A}), where A & ¥ is a special
symbol for padding.
o Vw e L(M), w[l] = w'[2].w/[3]
e w[i] (1 < i< 3) to denote the i*" track of w € 3
e w'[2] € L* is the A\-free prefix of w[2] and
e w'[3] € * is the A-free suffix of w[3]
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Suffix

Consider X = (ab)™.Z
Assume L(Mx) = {ab, abc}. What are the values of Z7

o We first build the transducer M for X = (ab)*Z
e We intersect M with Mx on the first track
e The result is the third track of the intersection, i.e., {¢, c}.

a
a

a
a A

OG-0

Q >Q
Q >Q

>oToT
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Prefix

Consider X = Y.(ab)™.
Assume L(Mx) = {ab, cab}. What are the values of Y?
o We first build the transducer M for X = Y.(ab)™
e We intersect M with Mx on the first track
e The result is the second track of the intersection, i.e., {e, c}.

a
a A
A a
: O
b
a )\ Cc a
a b c A
)\ A a {/(r),,,“‘cym\v
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What is the concatenation transducer for the general case X=YZ,
ie, X\ Y, ZeXx*?
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Consider X = Y.(abc)*.
Assume L(Mx) = (cab)Tc. What are the values of Y?
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Widening Automata: MV M’

Compute an automaton so that L(MVM’) D L(M) U L(M"). We

can use widening to accelerate the fixpoint computation.
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Widening Automata: MV M’

Here we introduce one widening operator originally proposed by
Bartzis and Bultan [CAVO04]. Intuitively,

e |dentify equivalence classes, and

e Merge states in an equivalence class
o L(MVM') D L(M)UL(M)

51/136
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State Equivalence

g, q are equivalent if one of the following condition holds:
o Yw € L*, w is accepted by M from g then w is accepted by
M’ from ¢’, and vice versa.
e dw € X*, M reaches state g and M’ reaches state q’ after
consuming w from its initial state respectively.
e 3¢, g and q" are equivalent, and g’ and " are equivalent.
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An Example for MV M’

o L(M)={e,ab} and L(M') = {e, ab, abab}.
e The set of equivalence classes: C = {q(, g7}, where
9 = {90, 90, 92, 9. g4} and qf = {q1, g1, G5}

(a) M (b) M’ (c) MVM’

Figure: Widening automata
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Compute MV M’, where L(M) = {a, ab, ac} and
L(M') = {a, ab, ac, abc, acc}.
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A Fixed Point Computation

Recall that we want to compute the least fixpoint that corresponds
to the reachable values of string expressions.

e The fixpoint computation will compute a sequence My, My,
. M, ..., where My = | and M; = M;_1 U post(M;_1)
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A Fixed Point Computation

Consider a simple example:

e Start from an empty string and concatenate ab at each
iteration

e The exact computation sequence My, My, ..., M;, ... will
never converge, where L(Mp) = {€} and
L(M;) = {(ab)k |1 <k <i}U{e}.
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Accelerate The Fixed Point Computation

Use the widening operator V.
o Compute an over-approximate sequence instead: M|, My, ...,
e My = My, and for i >0, M/ = M!_;V(M!_; U post(M:_,)).

An over-approximate sequence for the simple example:

a) My (b) M} M, (d) M3

( (c)

57 /136



Language Replacement
Language Concatenation
Widening Automata
Symbolic Encoding

Automata Manipulations

Automata Representation

A DFA Accepting [A-Za-z0-9]* (ASC II).

0|1]2
0110000, 0110000 bit 1
0110001, : .
62" 0110001, bit 2 LX«
1111010 . bit 3
1111010
O bit 4 ¥\“

bit 5 | 7 L\
bit 6 \
0000000
: 0000000,
66 0000001,

0000001, bit 7 .
1111111 1111111 1] Mw S

(a) Explicit Representation

CH wcn\“
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Automata M.

Example

Another Automata

S

g

£ZOF Con:
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Vulnerability Analysis
Signature Generation
Sanitization Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
o Relational String Analysis
e Composite String Analysis

o 1057 £ /¢
€S S
HENGOR
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Symbolic String Vulnerability Analysis

Symbolic String Vulnerability Analysis

Given a program, types of sensitive functions, and an attack
pattern, we say

e A program is vulnerable if a sensitive function at some
program point can take a string that matches the attack
pattern as its input

e A program is not vulnerable (with respect to the attack
pattern) if no such functions exist in the program
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String Analysis Stages

(Tainted) Dependency
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E& Reachable Attack
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Symbolic String Vulnerability Analysis

Front End

Consider the following segment.
| <?php
1 Swww = $_GET["www"];
[ 2: $url = "URL:";
| 3: $www = preg_replace(”’ [*A-Z.-Q]","" $www);

4: echo $url. Swww;

[ 7>
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Symbolic String Vulnerability Analysis

Front End

A dependency graph specifies how the values of input nodes flow
to a sink node (i.e., a sensitive function)

[ore | raz-@ |[ = ][ swww |

NEXT: Compute all possible values of a sink node
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Detecting Vulnerabilities

e Associates each node with an automaton that accepts an over
approximation of its possible values

e Uses automata-based forward symbolic analysis to identify the
possible values of each node
e Uses post-image computations of string operations:

e postConcat(M;, M) returns M, where M=M,;.M,
e postReplace(M;, M, Mjs) returns M, where
M=REPLACE(My, M, M3)

4, front forward »|backward
end analysis analysis
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Forward Analysis

o Allows arbitrary values, i.e., X*, from user inputs
e Propagates post-images to next nodes iteratively until a fixed
point is reached

’CURL:Q A \4© \‘@Dz
[ “UFI{L:” Il [AA-zl.-@]_H " 1w ] B
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Forward Analysis

e At the first iteration, for the replace node, we call
postReplace():* s Y \ {A _7Z - @}’ n ||)

\ URL: S\(A-Z.-@} \@ \4 sz

| “UTL:" I [AA-zl.-(Lll " e | R

1: URL:3
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Forward Analysis

e At the second iteration, we call postConcat ("URL:",
{(A—Z. —@e})

\ URL: S\(A-Z.-@} \@ \4 sz

| “UTL:" I [AA-zl.-(Lll " e | R
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Forward Analysis

e The third iteration is a simple assignment
e After the third iteration, we reach a fixed point

’: URL'@ PNA-Z-@} \4© \Q)Z

[ “UTL:" I[ [AA-zl.-@]_ll | Y |1

NEXT: Is it vulnerable?
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Detecting Vulnerabilities

e We know all possible values of the sink node (echo)
e Given an attack pattern, e.g., (X\ <)* < X*, if the

intersection is not an empty set, the program is vulnerable.

Otherwise, it is not vulnerable with respect to the attack

pattern
‘ ‘ b n \C)URL {A-Z.-@}
{AZ -@}
" U

{A-2-=-@}

NEXT: What are the malicious inputs?
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Generating Vulnerability Signatures

e A vulnerability signature is a characterization that includes all
malicious inputs that can be used to generate attack strings

e Uses backward analysis starting from the sink node

e Uses pre-image computations on string operations:
e preConcatPrefix(M, M) returns M; and
preConcatSuffix (M, M) returns My, where M = My.M,.
e preReplace(M, My, Ms) retunrs My, where
M=REPLACE(My, My, M3).

F » front
end

forwar(_j - backwqrd
analysis analysis

HENGOR
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Backward Analysis

e Computes pre-images along with the path from the sink node
to the input node
e Uses forward analysis results while computing pre-images

SA-Z-@}
URL;
W U

I “URL” || [A-Z-@] || * || Swww I

URL: {A-Z-@}
/‘ )
(A—Z.—.——@}
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Backward Analysis

e The first iteration is a simple assignment.

\ URL: S(A-Z-@) \@

Ry J[Crazeer | [ [ sww |
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Backward Analysis

e At the second iteration, we call

preConcatSuffix(URL: {A—-Z.—;= -0} < {A-Z. —Q}",
"URL:").
e M = Ml.M2
\ ) S(A-Z-@) \
URL ©
[wre JTraze@ [ 1 swww |
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Backward Analysis

e We call preReplace({A—Z.—;=-@}* < {A-Z. - @}",
Y\ {A-Z —@}, "") at the third iteration.

e M= replace(Ml, M2, M3)

e After the third iteration, we reach a fixed point.

b{»@%
1: URL'@ 2AZ-@) \© 2T )

Rt |[Traze@l | [ [ swww |

75/136



Vulnerability Analysis
Signature Generation

a ation Generation
Relational String Analysis

Symbolic String Vulnerability Analysis

Vulnerability Signatures

e The vulnerability signature is the result of the input node,
which includes all possible malicious inputs

e An input that does not match this signature cannot exploit
the vulnerability

NEXT: How to detect and prevent malicious inputs
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Patch Vulnerable Applications

e Match-and-block: A patch that checks if the input string
matches the vulnerability signature and halts the execution if
it does

e Match-and-sanitize: A patch that checks if the input string
matches the vulnerability signature and modifies the input if it
does
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Sanitize

The idea is to modify the input by deleting certain characters (as
little as possible) so that it does not match the vulnerability
signature

e Given a DFA, an alphabet cut is a set of characters that after
"removing" the edges that are associated with the characters
in the set, the modified DFA does not accept any non-empty

string
5iq, 2 n
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Find An Alphabet Cut

e Finding a minimum alphabet cut of a DFA is an NP-hard
problem (one can reduce the vertex cover problem to this
problem)

e We apply a min-cut algorithm to find a cut that separates the
initial state and the final states of the DFA

e We give higher weight to edges that are associated with
alpha-numeric characters

e The set of characters that are associated with the edges of the
min cut is an alphabet cut

k
D<Al AZ

\ /o \ /
o \J

{<} is an alphabet cut
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Patch Vulnerable Applications

A match-and-sanitize patch: If the input matches the vulnerability
signature, delete all characters in the alphabet cut

| <?php

| if (preg-match(’/[" <[*<.*/"$_GET["www"]))

| $_ GET["www"] = preg_replace(<,"" ,$_GET["www"]);

1 $www = $_GET["www"|;

| 2: $url = "URL:";

| 3: $www = preg_replace(” [*A-Z.-Q]","" ,$www);

| 4: echo $url. $www;

[ 7>
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Experiments

We evaluated our approach on five vulnerabilities from three open
source web applications:

e (1) MyEasyMarket-4.1 (a shopping cart program),

e (2) BloggIT-1.0 (a blog engine), and

e (3) proManager-0.72 (a project management system).
We used the following XSS attack pattern ¥* < SCRIPTYL*.

HENGOR
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Dependency Graphs

e The dependency graphs of these benchmarks are built for
sensitive sinks
e Unrelated parts have been removed using slicing

| [ F#nodes [ #edges [ F#concat [ Freplace [ F#constant [ #£sinks [ F#inputs ‘

1 21 20 6 1 46 1
2 29 29 13 7 108 1
3 25 25 6 6 220 1
4 23 22 10 9 357 1
5 25 25 14 12 357 1

Table: Dependency Graphs. #constant: the sum of the length of the
constants
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Vulnerability Analysis Performance

Forward analysis seems quite efficient.

|| time(s) | mem(kb) [ res. | #states / #bdds | #inputs |

1 0.08 2599 vul 23/219 1
2 0.53 13633 vul 48/495 1
3 0.12 1955 vul 125/1200 2
4 0.12 4022 vul 133/1222 1
5 0.12 3387 vul 125/1200 1

Table: #states /#bdds of the final DFA (after the intersection with the
attack pattern)
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Signature Generation Performance

Backward analysis takes more time. Benchmark 2 involves a long
sequence of replace operations.

|| time(s) | mem(kb) | #states /#bdds |

1 0.46 2963 9/199

2 | 41.03 1859767 811/8389

3 2.35 5673 20/302, 20/302
4 2.33 32035 91/1127

5 5.02 14958 20/302

Table: #states /#bdds of the vulnerability signature
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| Sig. [ 1 ] 2 [ 3 ] 4 [ 5 |
input i i i, I i i
#edges 1 8 4,4 4 4
alpcut | {<} [ {</,)"} | & = | {<),"} | {<),)"}

Table: Cuts. #edges: the number of edges in the min-cut.

e For 3 (two user inputs), the patch will block everything and
delete everything

X3
HENGOR
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Multiple Inputs?

Things can be more complicated while there are multiple inputs.
I 1:<?php
20 $www = $_GET["www" |;
| 3: $l_otherinfo = $_GET|["other"];
| 4: echo "<td>" . $l otherinfo . ": " . $www . "< /td>";

| 5:7>

e An attack string can be contributed from one input, another
input, or their combination

e Using single-track DFAs, the analysis over approximates the
relations among input variables (e.g. the concatenation of two
inputs contains an attack) SRR

e There may be no way to prevent it by restricting only one
input
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Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
e Relational String Analysis
e Composite String Analysis

o 1057 £ /¢
€S S
HENGOR
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Relational String Analysis

Instead of multiple single-track DFAs, we use one multi-track DFA,
where each track represents the values of one string variable.

Using multi-track DFAs we are able to:
e l|dentify the relations among string variables

o Generate relational vulnerability signatures for multiple user
inputs of a vulnerable application

e Prove properties that depend on relations among string
variables, e.g., $file = $usr.txt (while the user is Fang, the
open file is Fang.txt)

e Summarize procedures

e Improve the precision of the path-sensitive analysis
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Multi-track Automata

e Let X (the first track), Y (the second track), be two string
variables

e ) is a padding symbol
e A multi-track automaton that encodes X = Y.txt

@Loﬂo MJ@
(a,a),(b,b),...
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Relational Vulnerability Signature

e Performs forward analysis using multi-track automata to
generate relational vulnerability signatures

e Each track represents one user input
e An auxiliary track represents the values of the current node

e Each constant node is a single track automaton (the auxiliary
track) accepting the constant string

e Each user input node is a two track automaton (an input
track + the auxiliary track) accepting strings that two tracks
have the same value 9

£ OF COjy»
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Relational Vulnerability Signature

Consider a simple example having multiple user inputs
| <?php
1 $www = $_GET["www" |;
|2 $url =$_GET["url"];
| 3: echo $url. $www;
[ 7>

Let the attack pattern be (X\ <)* < X* P S

o 1057 £ /¢
€S S
HENGOR
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Signature Generation

Input nodes Concat node

(surl, aux) ! (surl, swww, aux)
'

RY (ha,a),
3 (\b.b)
@a) (o) ... | (ana) (bAb)... @—@

($www, aux) (surl, swww, aux) (a,\a), (ra,a),
! (b,A.b) (A.b,b)
(a,a), (b,b) ... (A,a,a), (A,b,b) ...
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Relational Vulnerability Signature

Upon termination, intersects the auxiliary track with the attack
pattern

e A multi-track automaton: ($url, $www , aux)

o Identifies the fact that the concatenation of two inputs
contains <

o 1057 £ /¢
€S S
HENGOR
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Relational Vulnerability Signature

e Projects away the auxiliary track

e Finds a min-cut

e This min-cut identifies the alphabet cuts:
o {<} for the first track ($url)
e {<} for the second track ($www)

(a, N
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Patch Vulnerable Applications with Multi Inputs

Patch: If the inputs match the signature, delete its alphabet cut
| <?php
| if (preg-match(’/[" <[*<.*/', $_GET["url"].$_GET["www"]))
{

| $_GET["url"] = preg_replace(" <","" ,$_GET[" url"]);

I $_GET["www"] = preg_replace(”"<","" ,$_GET["www"]);
B

I 10 $www = $_GET["www"];

| 2: $url = $_GET[ url'];

|

|

3: echo $url. Swww;

7>
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Previous Benchmark: Single V.S. Relational Signatures

[ ben. | type | time(s) [ mem(kb) [ #states /#bdds |
3 Single-track | 2.35 5673 20/302, 20/302
Multi-track 0.66 6428 113/1682
l 3 [ Single-track [ Multi-track ‘
F+edges 4 3
alp.-cut >, X {<}, {5}
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Other Technical Issues

To conduct relational string analysis, we need a meaningful
"intersection” of multi-track automata

e Intersection are closed under aligned multi-track automata
e Js are right justified in all tracks, e.g., abAX instead of aAbA

e However, there exist unaligned multi-track automata that are
not describable by aligned ones

e We propose an alignment algorithm that constructs aligned
automata which under/over approximate unaligned ones
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Other Technical Issues

Modeling Word Equations:

e Intractability of X = cZ: The number of states of the
corresponding aligned multi-track DFA is exponential to the
length of c.

e lrregularity of X = YZ: X = YZ is not describable by an
aligned multi-track automata

We have proven the above results and proposed a conservative
analysis.
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Experiments on Relational String Analysis

Basic benchmarks:
e Implicit equality properties
e Branch and loop structures

MFE benchmarks:
e Each benchmark represents a MFE vulnerability
e M1: PBLguestbook-1.32, pblguestbook.php(536)
e M2, M3: MyEasyMarket-4.1, prod.php (94, 189)
e M4, M5: php-fusion-6.01, db_backup.php (111),
forums_prune.php (28).
e We check whether the retrieved files and the external inputs’
are consistent with what the developers intend. 4
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Experimental Results

Use single-track automata.

Single-track
Result DFAs/ Composed DFA Time Mem
Ben state(bdd) user+sys(sec) | (kb)
Bl | false 15(107), 15(107) /33(477) 0.027 + 0.006 | 410
B2 | false 6(40), 6(40) / 9(120) 0.02240.008 | 484
M1 | false 2(8), 28(208) / 56(801) 0.027+0.003 | 621
M2 | false 2(20), 11(89) / 22(495) 0.013+0.004 | 555
M3 | false 2(20), 2(20) / 5(113) 0.008+0.002 | 417
M4 | false | 24(181), 2(8), 25(188) / 1201(25949) | 0.226+0.025 | 9495
M5 | false | 2(8), 14(101), 15(108) / 211(3195) | 0.049+0.008 | 1676
Table: false: The property can be violated (false alarms), DFAs:
DFAs

SHENGCYY
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Experimental Results

Use multi-track automata.

Multi-track
Result DFA Time Mem
Ben state(bdd) | user+sys(sec) (kb)
Bl true 14(193) 0.070 + 0.009 918
B2 true 5(60) 0.025+0.006 293

MI | true | 50(3551) | 0.050+0.002 | 1294
M2 | true | 21(604) | 0.040+0.004 | 996
M3 | true 3(276) 0.018+0.001 | 465
M4 | true | 181(9893) | 0.78410.07 | 19322
M5 | true | 62(2423) | 0.097+0.005 | 1756

Table: true: The property holds, DFA: the final DFA e

s

TENGCYS >
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Automatic Verification of String Manipulating Programs

e Symbolic String Vulnerability Analysis
o Relational String Verification

e Composite String Analysis

s 1957 40 /&
“ s
rnaend
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Composite Verification

We aim to extend our string analysis techniques to analyze systems
that have unbounded string and integer variables.

We propose a composite static analysis approach that combines
string analysis and size analysis.
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String Analysis

Static String Analysis: At each program point, statically compute
the possible values of each string variable.

The values of each string variable are over approximated as a
regular language accepted by a string automaton [Yu et al.
SPINO8|.

String analysis can be used to detect web vulnerabilities like SQL
Command Injection [Wassermann et al, PLDIO7] and Cross Site
Scripting (XSS) attacks [Wassermann et al., ICSE08]. k
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Size Analysis

Integer Analysis: At each program point, statically compute the
possible states of the values of all integer variables.

These infinite states are symbolically over-approximated as linear
arithmetic constraints that can be represented as an arithmetic
automaton

Integer analysis can be used to perform Size Analysis by
representing lengths of string variables as integer variables.
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What is Missing?

Consider the following segment.

e 1:<?php

e 2: Swww = $_GET[" www"];

e 3: $l_otherinfo = "URL";

e 4: $www = ereg replace("["A-Za-z0-9 ./-@://]")"" ,$www);
o 5: if(strlen($www) < $limit)

e 6: echo”"<td>" . $lotherinfo . ": " . $www . "</td>";
o 77> ‘
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What is Missing?

If we perform size analysis solely, after line 4, we do not know the
length of $www.

e 1:<?php
o 2: Swww = $_GET["www"];

e 3: $l_otherinfo = "URL";

o 4: $www = ereg_replace(” [*A-Za-z0-9 ./-@://]","" ,$www);

o 5: if(strlen($www) < $limit)

e 6: echo”<td>" . $lotherinfo. ": " . $www . "< /td>";
o 7:7> PR

o 1057 £ /¢
€S S
HENGOR
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What is Missing?

If we perform string analysis solely, at line 5, we cannot
check /enforce the branch condition.

e 1:<?php
o 2: Swww = $_GET["www"];

e 3: $l_otherinfo = "URL";

e 4: $www = ereg_replace("["A-Za-z0-9 ./-@://]")"" ,$www);

o 5: if(strlen($www) < $limit)

e 6: echo”<td>" . $lotherinfo. ": " . $www . "< /td>";
o 7:7> PR

o 1057 £ /¢
€S S
HENGOR
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What is Missing?

We need a composite analysis that combines string analysis with
size analysis.

Challenge: How to transfer information between string automata
and arithmetic automata?
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Some Facts about String Automata

e A string automaton is a single-track DFA that accepts a
regular language, whose length forms a semi-linear set, .e.g.,
{4,6} U{2+3k | k >0}

e The unary encoding of a semi-linear set is uniquely identified
by a unary automaton

e The unary automaton can be constructed by replacing the
alphabet of a string automaton with a unary alphabet
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Some Facts about Arithmetic Automata

e An arithmetic automaton is a multi-track DFA, where each
track represents the value of one variable over a binary
alphabet

e |f the language of an arithmetic automaton satisfies a
Presburger formula, the value of each variable forms a
semi-linear set

e The semi-linear set is accepted by the binary automaton that
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An Overview

To connect the dots, we propose a novel algorithm to convert
unary automata to binary automata and vice versa.

b
b cO—0O
00060
String
Automata (Z) Unary Length Automata
i) Arithmetic

Binary Length Automata (~) Automata
1

1
% 1 1

0
0 0%y !
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An Example of Length Automata

Consider a string automaton that accepts (great)*.
The length set is {5 + 5k|k > 0}.
e 5: in unary 11111, in binary 101, from Isb 101.
e 1000: in binary 1111101000, from Isb 0001011111.
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Another Example of Length Automata

Consider a string automaton that accepts (great)™cs.
The length set is {7 + 5k|k > 0}.
e 7: in unary 1111111, in binary 1100, from Isb 0011.
e 107: in binary 1101011, from Isb 1101011.
e 1077: in binary 10000110101, from Isb 10101100001.

5O OO OO

(e) Unary
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From Unary to Binary

Given a unary automaton, construct the binary automaton that
accepts the same set of values in binary encodings (starting from
the least significant bit)
e |dentify the semi-linear sets
e Add binary states incrementally
e Construct the binary automaton according to those binary
states
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Identify the semi-linear set

pSSNEY

e A unary automaton M is in the form of a lasso

e Let C be the length of the tail, R be the length of the cycle

o {C+r+ Rk| k>0} C L(M) if there exists an accepting
state in the cycle and r is its length in the cycle

e For the above example

e C=1R=2r=1
o {1+1+42k|k>0}
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Binary states

A binary state is a pair (v, b):
e v is the integer value of all the bits that have been read so far

e b is the integer value of the last bit that has been read

e Initially, v is 0 and b is undefined.
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The Binary Automaton Construction

We construct the binary automaton by adding binary states
accordingly
e Once v+ 2b> C, v and b are the remainder of the values
divided by R
e (v, b) is an accepting state if v is a remainder and
dr.v=(C+r)%R
e The number of binary states is O(C? + R?)
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The Binary Automaton Construction

Consider the previous example, where C =1, R=2, r=1.

e (0, 0) is an accepting state, since
drr=1(C+v)%R=(1+0)%2=1
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The Binary Automaton Construction

After the construction, we apply minimization and get the final

result.

Figure: A binary automaton that accepts {2+2k}

T
5 OF Con,
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Consider a string automaton that accepts auto(good)*.
e Compute the semi-linear set.
e Construct the binary automata that accepts the semi-linear set
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From Binary to Unary

Given a binary automaton, construct the unary automaton that
accepts the same set of values in unary encodings

e There exists a binary automaton, e.g., {2" | k > 0}, that
cannot be converted to a unary automaton precisely.
e We adopt an over- approximation:
e Compute the minimal and maximal accepted values of the
binary automaton
o Construct the unary automaton that accepts the values in
between

122 /136



String Analysis + Size Analysis

What is Missing?

What is Its Length?
Composite String Analysis Technical Details

Experiments

Compute the Minimal /Maximal Values

e The minimal value forms the shortest accepted path

e The maximal value forms the longest loop-free accepted path
(If there exists any accepted path containing a cycle, the
maximal value is inf)

e Perform BFS from the accepting states (depth is bounded by
the number of states)

e Initially, both values of the accepting states are set to 0
e Update the minimal/maximal values for each state accordingly
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The Unary Automaton Construction

Consider our previous example,
e min = 2, max = inf
e An over approximation: {2+ 2k | k >0} C {2+ k | k > 0}

1 @1/0
0o 1 Y0
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Experiments

In [TACASQ9], we manually generate several benchmarks from:
e C string library
o Buffer overflow benchmarks (buggy/fixed) [Ku et al., ASE'07]

e Web vulnerable applications (vulnerable/sanitized) [Balzarotti
et al., S&P'08]

These benchmarks are small (<100 statements and < 10 variables)
but demonstrate typical relations among string and integer
variables.
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Experimental Results

The results show some promise in terms of both precision and
performance

[ Test case (bad/ok) [ Result [ Time (s) [ Memory (kb) |
int strlen(char *s) T 0.037 522
char *strrchr(char *s, int c) T 0.011 360
gxine (CVE-2007-0406) F/T | 0.014/0.018 | 216/252
samba (CVE-2007-0453) F/T | 0.015/0.021 218/252
MyEasyMarket-4.1 (trans.php:218) F/T 0.032/0.041 704/712
PBLguestbook-1.32 (pblguestbook.php:1210) F/T 0.021/0.022 496/662
BlogglT 1.0 (admin.php:27) F/T 0.719/0.721 5857,/7067
Table: T: The property holds (buffer overflow free or not vulnerable with, %
respect to the attack pattern) i

SHENGCYY
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STRANGER Tool

We have developed STRANGER (STRing AutomatoN
GEneratoR)

e A public automata-based string analysis tool for PHP

e Takes a PHP application (and attack patterns) as input, and
automatically analyzes all its scripts and outputs the possible
XSS, SQL Injection, or MFE vulnerabilities in the application
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STRANGER Tool

e Uses Pixy [Jovanovic et al., 2006] as a front end
e Uses MONA [Klarlund and Mgiller, 2001] automata package
for automata manipulation

PHP Applications (Attack Patterns)

String/Automata
Operations Automata Based DFAs (MBDDs)
Dependency

" ) . i
Stranger Library MONA Automata
CFGs Graphs " Automata Package
Taint
Analyzer String Analysis Report
P (Patch / Vulnerability Signatures)

Pixy: Stranger: MONA: 5
Front End Symbolic String Analysis DFA Manipulation

String

Tainted Analyzer

”’tmccv\\‘

The tool, detailed documents, and several benchmarks are
available: http://www.cs.ucsb.edu/~vlab/stranger. 128 /136
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STRANGER Tool

A case study on Schoolmate 1.5.4

63 php files containing 8000+ lines of code

Intel Core 2 Due 2.5 GHz with 4GB of memory running Linux
Ubuntu 8.04

STRANGER took 22 minutes / 281MB to reveal 153 XSS
from 898 sinks

After manual inspection, we found 105 actual vulnerabilities
(false positive rate: 31.3%)

We inserted patches for all actual vulnerabilities

Stranger proved that our patches are correct with respect t
the attack pattern we are using
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STRANGER Tool

Another case study on SimpGB-1.49.0, a PHP guestbook web
application
e 153 php files containing 44000+ lines of code
o Intel Core 2 Due 2.5 GHz with 4GB of memory running Linux
Ubuntu 8.04

e For all executable entries, STRANGER took

e 231 minutes to reveal 304 XSS from 15115 sinks,
e 175 minutes to reveal 172 SQLI from 1082 sinks, and
e 151 minutes to reveal 26 MFE from 236 sinks
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Related Work on String Analysis

e String analysis based on context free grammars: [Christensen et
al., SAS'03] [Minamide, WWW'05]

e String analysis based on symbolic execution: [Bjorner et al.,
TACAS'09]

e Bounded string analysis: [Kiezun et al., ISSTA'09]

e Automata based string analysis: [Xiang et al., COMPSAC'07]
[Shannon et al., MUTATION'07] [Barlzarotti et al. S&P’08][Veneas et al.,
POPL'15][Wang et al. CAV'16]

e String constraint solving: [CVC4] [Z3, Z3-Str, Z3-5tr2,2016] [SSS,
S3P] [Norn] [Slog, Slender (Wang, Jiang and Yu. Coming soon)]

e Application of string analysis to web applications: [Wasserman
and Su, PLDI'07, ICSE'08] [Halfond and Orso, ASE'05, ICSE’06]

<
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Related Work on Size Analysis and Composite Analysis

e Size analysis : [Dor et al., SIGPLAN Notice'03] [Hughes et al., POPL'06]
[Chin et al., ICSE'05] [Yu et al., FSE'07] [Yang et al., CAV'08]
e Composite analysis:

e Composite Framework: [Bultan et al., TOSEM'00]

e Symbolic Execution: [Xu et al., ISSTA'08] [Saxena et al., UCB-TR'10]

o Abstract Interpretation: [Gulwani et al., POPL’08] [Halbwachs et al.,
PLDI'08]

X3
HENGOR
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Related Work on Vulnerability Signature Generation

o Test input/Attack generation: [Wassermann et al., ISSTA'08] [Kiezun
et al., ICSE'09)]

e Vulnerability signature generation: [Brumley et al., S&P'06]
[Brumley et al., CSF'07] [Costa et al., SOSP’'07][Yu et al. ISSTA'16]
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Thank you for your attention.

Questions?
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