Boolean Satistiability and Its
Applications to
Synthests & Veritication I

Jie-Hong Roland Jiang GIA%)

AL Lab
Department of Electrical Engineering,

Graduate Institute of Electronics (\

Engineering
National Taiwan University

2019/8/23 FLOLAC 2019 1

Outline

0 Logic synthesis & verification
[0Boolean function representation
[Propositional satisfiability & applications

O Quantified Boolean satisfiability &
applications

[0 Stochastic Boolean satisfiability &
applications

2019/8/23 FLOLAC 2019

IC Design Flow

N

v

RTL
<$_ synthesis

HDL spec.

circuit
netlist

layoutd
ask

2019/8/23 FLOLAC 2019 3

Logic Synthesis

Boolean Function
Expression

Optimized
: Logic Netlist
Logic

Synthesis

Boolean/Temporal Solution Circuit

Constraints

2019/8/23 FLOLAC 2019

Logic Synthesis

_>y

2019/8/23

Given: Functional description of finite-state
machine F(Q,X,Y,0,\) where:

Q: Set of internal states

X: Input alphabet

Y: Output alphabet

o0: XX Q — Q (next state function)
A XX Q—>Y (output function)

: 1

Target: Circuit C(G, W) where:
G: set of circuit components g € {gates, FFs, etc.}
W: set of wires connecting G

FLOLAC 2019 5

Backgrounds

] Historic evolution of data structures and tools in
logic synthesis and verification

Problem Size ABC

100000
SIS, VIS,
MVSIS
100
Espresso,
50 MIS, SIS
16
1950-1970 1980 1990 2000 Time

Courtesy of Alan Mishchenko
2019/8/23 FLOLAC 2019 6

Boolean Function Representation

[0 Logic synthesis translates Boolean
functions into circuits

[O0We need representations of Boolean
functions for two reasons:

B to represent and manipulate the actual circuit
that we are implementing

W to facilitate Boolean reasoning

2019/8/23 FLOLAC 2019

Boolean Space

0B =<{0,1}
0 B? = {0,1}x{0,1} = {00, 01, 10, 11}
Karnaugh Maps: Boolean Lattices:
BO
aT>>-
B1
B2 ?
D~
B3
B4

2019/8/23 FLOLAC 2019

Boolean Function

]
O A Boolean function f over input variables: xy, x5, ..., X, iS @
mapping f: B” - Y, where B = {0,1} and Y = {0,1,d}
m E.q.
B The output value of f(xy, X5, X3), say, partitions B™ into three sets:
0 on-set (f=1)
= E.g. {010, 011, 110, 111} (characteristic function fI = x,)
O off-set (f= 0)
= E.g. {100, 101} (characteristic function f0 = x; —x,)
O don’t-care set (f= d)
= E.g. {000, 001} (characteristic function f¢ = —x; —x,)
0 fis an if the don’t-care set is

nonempty. Otherwise, fis a

B Unless otherwise said, a Boolean function is meant to be completely
specified

2019/8/23 FLOLAC 2019 9

Boolean Function

0 A Boolean function f: B” — B over variables

X1,...,X, Maps each Boolean valuation (truth
assignment) in B"to O or 1

Example

fgxl,xz) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1,
f(1,1) = 0

X
=
~lo
ol || x
N
<
N
—

2019/8/23 FLOLAC 2019 10

Boolean Function

[0 Onset of f, denoted as f1, is fl={v € B" | f(v)=1}

m If fl = B”, fis a tautology
[0 Offset of f, denoted as f?, is f0={v € B" | f(v)=0}

m If fO = B”, f is unsatisfiable. Otherwise, f is satisfiable.
O

0 Boolean functions f and g are equivalent if vve B". f(v) =
g(v) where v is a truth assignment or Boolean valuation

0 A literal is a Boolean variable x or its negation x’' (or x, —X)
in @ Boolean formula

f(X1, X5, X3) = Xg f(Xq, X5, X3) = ;1

X3 X3

/%, /e

2019/8/23 FLOLAC 2019 11

Boolean Function

0 There are 2" vertices in B”
n . . .
0 There are 22 distinct Boolean functions

® Each subset fl < B" of vertices in B” forms a
distinct Boolean function f with onset f!

X XoXg
000 1
001
010 1
X4 011
100 =1
A'z 101
Xq 110 1
111

2019/8/23 FLOLAC 2019

Boolean Operations

Given two Boolean functions:

O h =

O h =

O h

2019/8/23

f: B> B
g:B"—>B

f A g from AND operation is defined as
hi=flngl; h=B"\h!

f v g from OR operation is defined as
hi=flugl; h=B"\h!

—f from COMPLEMENT operation is defined as
hl = f0; hO = fl

FLOLAC 2019

13

Cofactor and Quantification

Given a Boolean function:
f: B" — B, with the input variable (xy,X5,...,X;,...,X,)

O Positive cofactor
h = f,; is defined as h = f(x4,%5,...,1,...,X,)

O Negative cofactor
h =f , is defined as h = f(x4,x5,...,0,...,X,)

O Existential quantification
h = dx;. f is defined as h = f(xy,X5,...,0,...,X,) v f(X{,X5,...

O Universal quantification

h = Vx. f is defined as h = f(x{,X5,...,0,...,X,) Af(X{,X5,...

O Boolean difference
h = of/0x; is defined as h = f(xy,X,,...,0,...,X;,) ® f(Xy,X5,...

2019/8/23 FLOLAC 2019

I
IXn)
IXn)
Xn)
14

Boolean Function Representation

0 Some common representations:
m Truth table
B Boolean formula
0 SOP (sum-of-products, or called disjunctive normal form, DNF)
0 POS (product-of-sums, or called conjunctive normal form, CNF)
m BDD (binary decision diagram)
B Boolean network (consists of nodes and wires)

0 Generic Boolean network

= Network of nodes with generic functional representations or even
subcircuits

[0 Specialized Boolean network
= Network of nodes with SOPs (PLASs)
= And-Inv Graph (AIG)

0 Why different representations?

m Different representations have their own strengths and
weaknesses (no single data structure is best for all
applications)

2019/8/23 FLOLAC 2019 15

Boolean Function Representation

Truth Table

O Truth table (function table for multi-valued
functions):

The truth table of a function f : B” —» B is a
tabulation of its value at each of the 27
vertices of B".

In other words the truth table lists all mintems

Example: f = a’'b’'c’'d + a’b’cd + a’'bc’'d +
ab’'c’d + ab’cd + abc'd +
abcd’ + abcd

The truth table representation is

If two functions are the equal, then their
canonical representations are isomorphic.

2019/8/23 FLOLAC 2019

o O b W NP O

abcd £
0000
0001
0010
0011
0100
0101
0110
0111

oo OB O O

10
11
12
13
14
15

abcd £
1000
1001
1010
1011
1100
1101
1110
1111

H PP O ORF O

16

Boolean Function Representation
Boolean Formula

0 A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘(‘ formula ‘Y’
| Boolean constant (true or false)
| <Boolean variable>
| formula “+” formula (OR operator)
| formula “” formula (AND operator)
| — formula (complement)
Example

f=(X; " X,) + (X3) + =(=(Xy* (=Xy)))

(1L

typically “-” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is
clear, e.g., f = Xy X, + X5 + X, —X;

2019/8/23 FLOLAC 2019 17

Boolean Function Representation
Boolean Formula in SOP

0 Any function can be represented as a
, also called (a cube
is @ product term), or

Example
@ = ab + a’c + bc

2019/8/23 FLOLAC 2019 18

Boolean Function Representation
Boolean Formula in POS

0 Any function can be represented as a
, also called

B Dual of the SOP representation

Example
o= (a+b'+c) (a’'+b+c) (a+b'+c’) (a+b+0)

[0 Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

2019/8/23 FLOLAC 2019 19

Boolean Function Representation
Binary Decision Diagram

0 BDD - a graph f=ab+a'c+a’bd
representation of Boolean
functions root

node

B A |leaf node represents
constant O or 1

B A non-leaf node
represents a decision node
(multiplexer) controlled by
some variable

® Can make a BDD

representation canonical !

by imposing the variable

ordering and reduction ...
criteria (ROBDD) 0

2019/8/23 FLOLAC 2019 20

Boolean Function Representation
Binary Decision Diagram

0 Any Boolean function f can be written in term of
Shannon expansion
f=vf,+-vf,
® Positive cofactor: fo, = f(Xq,...,%=1,..., X,)
® Negative cofactor: f . = f(Xq,...,%=0,..., X,)

[0 BDD is a compressed Shannon cofactor tree:

B The two children of a node with function f controlled by
variable v represent two sub-functions f, and 1_,

2019/8/23 FLOLAC 2019 21

Boolean Function Representation
Binary Decision Diagram

[0 Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation

[cofactor variables are in the same order along all paths
Xi, < Xi, < Xig < ... <X

O any node with two identical children is removed
COtwo nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a
distinct logic function

S8, ordered not a f
. C‘ ¢ (a<c<b) ordered > b
; / (b reduce \
b b O\ £
\ \ 0 1 .
0 1 1

2019/8/23 FLOLAC 2019

22

Boolean Function Representation
Binary Decision Diagram

0 For a Boolean function,
m ROBDD is unique with respect to a given variable ordering
m Different orderings may result in different ROBDD structures

+— f=gbt+ta'ctbcd ——) S

2019/8/28 1 FLOLAC 2019 | O 1 23

Boolean Function Representation
Boolean Network

[0 A Boolean network is a directed graph C(G,N)
where G are the gates and N < (GxG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
IcG
OcG

INnO =g

Each gate g is assigned a Boolean function f
which computes the output of the gate in tefms
of its inputs.

2019/8/23 FLOLAC 2019 24

Boolean Function Representation
Boolean Network

0 The fanin FI(g) of a gate g are the predecessor gates of g:
FI(g) = {9’ | (g’,9) € N} (N: the set of nets)

O The fanout FO(g) of a gate g are the successor gates of g:
FO(g9) = {9 | (9,9') € N}

0 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

0 The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) N1

2019/8/23 FLOLAC 2019 25

Boolean Function Representation
Boolean Network

Example

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) ={1,2,4,6}

SUPPORT(6) ={1,2}

Every node may have its own function

2019/8/23 FLOLAC 2019 26

Boolean Function Representation

And-Inverter Graph

0 AND-INVERTER graphs (AIGSs)
vertices: 2-input AND gates

edges: interconnects with (optional) dots representing INVs

[0 Hash table to identify and reuse structurally isomorphic
circuits

o ~D_* }f %_Q\ |
“}}j_} -4

° O O

2019/8/23 FLOLAC 2019 27

Boolean Function Representation

O Truth table

m Canonical

m Useful in representing small functions
0 SOP

m Useful in two-level logic optimization, and in representing local node
functions in a Boolean network

O POS
m Useful in SAT solving and Boolean reasoning

M Rarely used in circuit synthesis (due to the asymmetric characteristics
of NMOS and PMOQOS)

0 ROBDD
® Canonical
W Useful in Boolean reasoning

[0 Boolean network
W Useful in multi-level logic optimization

O AIG
m Useful in multi-level logic optimization and Boolean reasoning

2019/8/23 FLOLAC 2019 28

Circuit to CNF Conversion

0 Naive conversion of circuit to CNF:
m Multiply out expressions of circuit until two level structure
B Example: y=X®X, ®X, @ ... ® X,
[circuit size is linear in the number of variables

c D S

0 generated chess-board Karnaugh map
0 CNF (or DNF) formula has 2"l terms (exponential in #vars)

[0 Better approach:
B Introduce one variable per circuit vertex

B Formulate the circuit as a conjunction of constraints imposed
on the vertex values by the gates

® Uses more variables but size of formula is linear in the size of
the circuit

2019/8/23 FLOLAC 2019 29

Circuit to CNF Conversion

0 Example
W Single gate:

a AND
\

C — —b — b —
b/@—» —» (-a+ -b+c)(a+ —c)(b+ —c)

m Circuit of connected gates:

D—@ (=1 + 2 + 4)(1 + —4)(=2 + —4)

(2 (-2 + =3 + 5)(2 + =5)(3 + =5)

é‘ig@/ O B (24 -3+ 6)(=2 + 6)(3 + —6)

® (=4 + =5 + 7)(4 + =7)(5 + —7)

(5 + 6 + 8)(=5 + —8)(—6 + —8)

(7 + 8 + 9)(—7 + —9)(—8 + —9)
(9)

2019/8/23 FLOLAC 2019 30

Is output always 0 ?

Justify to "1”

Circuit to CNF Conversion

CICircuit to CNF conversion

M can be done in linear size (with respect to the
circuit size) if intermediate variables can be
introduced

B may grow exponentially in size if no
intermediate variables are allowed

2019/8/23 FLOLAC 2019 31

Propositional Satistiability

2019/8/23 FLOLAC 2019 32

Normal Forms

[0 A literal is a variable or its negation

0 A clause (cube) is a disjunction (conjunction) of
literals
0 A conjunctive normal form (CNF) is a

conjunction of clauses; a disjunctive normal
form (DNF) is a disjunction of cubes

mE.q.,
CNF: (a+—-b+c)(a+-c)(b+d)(—-a)

O (—a) is a unit clause, d is a pure literal
DNF: a-bc + a—c + bd + —a

2019/8/23 FLOLAC 2019 33

Satistiability

[0 The satisfiability (SAT) problem asks whether a
given CNF formula can be true under some
assignment to the variables

0 In theory, SAT is intractable
B The first shown NP-complete problem [Cook, 1971]

[0 In practice, modern SAT solvers work
‘mysteriously’ well on application CNFs with
~100,000 variables and ~1,000,000 clauses

B It enables various applications, and inspires QBF and
SMT (Satisfiability Modulo Theories) solver development

2019/8/23 FLOLAC 2019 34

SAT Competition

CPU Time (in seconds)

2019/8/23

1200

1000

800

600

400

200

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

T T | — T T T2 T T
Limmat 02 o _J v
Zchaff 02 - . 7 °*,
Berkmin 561 02 - .
Forklift 03 A v
Siege 03 ™~ a ;;P M .]
@
A VV &
A

O

Zchaftf 04 _ . . -
SatELite 05 #

Minisat 2.0 06 ¥ 5? [

Picosat 07 A

Rsat 07 o f v
Minisat 2.1 08 " Fl\j -

Precosat 09 0 o
Glucose 09 A

Clasp 09 ’ y. v
Cryptominisat 10 v ov g
Lingeling 10

m
Minisat 2.2 10 om w s f

| | 1

80 100 120 140 160

Number of problems solved

20 40 60

180

http://www.satcompetition.org/PoS11/

FLOLAC 2019

35

SAT Solving

[0 Ingredients of modern SAT solvers:
B DPLL-style search
O [Davis, Putnam, Logemann, Loveland, 1962]
® Conflict-driven clause learning (CDCL)
0 [Marques-Silva, Sakallah, 1996]

B Boolean constraint propagation (BCP) with two-literal
watch

[0 [Moskewicz, Modigan, Zhao, Zhang, Malik, 2001]
B Decision heuristics using variable activity

[0 [Moskewicz, Modigan, Zhao, Zhang, Malik, 2001]
B Restart
¥ Preprocessing

B Support for incremental solving
O [Een, Sorensson, 2003]

2019/8/23 FLOLAC 2019 36

Pre-Modern SAT Procedure

Algorithm DPLL (&)
{
while there 1s a unit clause {1} in @
® = BCP(®, 1);
while there i1s a pure literal 1 in &
® = assign(®, 1);
if all clauses of ® satisfied return true;
if ® has a conflicting clause return false;
1 := choose literal () ;
return DPLL (assign (®,—1)) v DPLL(assign(®,1));

2019/8/23 FLOLAC 2019

DPLL Procedure

[0 Chorological backtrack L~c
Na><~b @

OE.q. @ gﬁ)
DN ED

~a ~b b ~c cC

{—-a,e} H BB NN

{a,b,—~c} [[J] B W N

{¢c,~d} O EROOMN

{a,b,d} [J] A H N

{d,e} O 00 | O

{Cldl_'e} D D D D .

2019/8/23 FLOLAC 2019 38

Modern SAT Procedure

Algorithm CDCL (&)

{
while (1)

while there is a unit clause {1} 1in &

® = BCP(®, 1);

while there i1s a pure literal 1 in &
® = assign(®, 1);

if ® contains no conflicting clause
if all clauses of ® are satisfied

1 := choose literal (9);
assign(®,1);
else

if conflict at top decision level
analyze conflict();

undo assignments;

® := add conflict clause(9d);

}

2019/8/23 FLOLAC 2019

return true;

return false;

39

Conflict Analysis & Clause Learning

[0 There can be many learnt
clauses from a conflict

0 Clause learning admits non-
chorological backtrack

()
O E.qg.,
{-x10587, —x10588, &)
~x10592) @ &
{—x10374, —x10582, (&

—x10578, —x10373, —x10629}

{x10646, x9444, —x10373,
—x10635, —x10637}

Box: decision node
Oval: implication node
Inside: literal (decision level)

Courtesy of Niklas Een
2019/8/23 FLOLAC 2019 40

Clause Learning as Resolution

O Resolution of two clauses C,;vx and C,v—X:

C,vX C,v—X
C]_VCZ

where x is the pivot variable and C,vC, is the resolvant,
l.e., C;vC, = IX.(Cyvx)(Cov—X)

0 A learnt clause can be obtained from a sequence of
resolution steps

B EXxercise:
Find a resolution sequence leading to the learnt clause
{—-x10374, —x10582, —x10578, —x10373, —x10629}
in the previous slides

2019/8/23 FLOLAC 2019 41

Resolution

[0 Resolution is complete for SAT solving

B A CNF formula is unsatisfiable if and only if there exists
a resolution sequence leading to the empty clause

® Example (avb\vc)(ﬁalvc)(ﬁbvﬁd)(j\c)(C\{d)
(bvc) (d)
(c\/ﬁd)
<ﬂd)
0

2019/8/23 FLOLAC 2019 42

SAT Certification

COTrue CNF

B Satisfying assignment (model)
CVerifiable in linear time

O False CNF

W Resolution refutation
COPotentially of exponential size

2019/8/23 FLOLAC 2019

43

Craig Interpolation

0 [Craig Interpolation Thm, 1957]

If AAB is UNSAT for formulae A
and B, there exists an
interpolant I of A such that

1. A=I
2. IAB is UNSAT

3. I refers only to the common
variables of A and B

2019/8/23 FLOLAC 2019

I

o

44

Interpolant and Resolution Proot

[0 SAT solver may produce the resolution proof of an UNSAT
CNF o

O For o= garpg specified, the corresponding interpolant can
be obtained in time linear in the resolution proof

O Pp
A N

(avbve)(~ave)(Sbv—d)(~c)(cvd) (bve)(©)(1)(1)(1)

AN . / ’ \ ’
N d 7’ 4 \ 4
N ’ ’ ’ N 4
N ’ ’ ’ N 4
\\ ,/ 7 7 A4

’ ’ N/
v Vi / .
’ ’
7/
, ’
VC ., 4
P ’
N ’ 4 ’
\\ ’ 4 /
’ 4 ’
N
N ’ / ’
A
, ’

’
’
A
N ’ ’ I'
A4 ’
v 7 /
/ ’
P ’
\/ , ’ —
C —/ , , —_— \V4
/ ’
N ’ 4
AN ’ //
’
N 7 7/
’

N
N ’
N ’ 4
NS ’
/ ’
N ’
’
’
’
1 ’
< ’
’
R ,
~ ’
~
N
N

[McMillan, 2003]

2019/8/23 () FLOLAC 2019 45

Incremental SAT Solving

0To solve, in a row, multiple CNF formulae,
which are similar except for a few clauses,
can we reuse the learnt clauses?
B What if adding a clause to ¢?
B What if deleting a clause from ¢?

2019/8/23 FLOLAC 2019 46

Incremental SAT Solving

1 MiniSat API

W void addClause(Vec<Lit> clause)

B bool solve(Vec<Lit> assumps)

B bool readModel(Var x) — for SAT results

B bool assumpUsed(Lit p) — for UNSAT results

B The method solve() treats the literals in assumps as unit
clauses to be temporary assumed during the SAT-
solving.

B More clauses can be added after solve() returns, then
incrementally another SAT-solving executed.

Courtesy of Niklas Een
2019/8/23 FLOLAC 2019 47

SAT & Logic Synthesis
Equivalence Checking

2019/8/23

Combinational EC

[0 Given two combinational circuits C; and C,, are
their outputs equivalent under all possible input
assignments?

X C\ Y1
X Cz\ Y2
/

2019/8/23 FLOLAC 2019 49

Miter for Combinational EC

[0 Two combinational circuits C, and C, are
equivalent if and only if the output of their “miter”
structure always produces constant O

Al

2019/8/23 FLOLAC 2019 50

Approaches to Combinational EC

[0 Basic methods:

B random simulation

[Ogood at identifying inequivalent signals
B BDD-based methods
B structural SAT-based methods

!
’

2019/8/23 FLOLAC 2019

51

SAT & Logic Synthesis

Functional Dependency

2019/8/23

Functional Dependency

Of(x) functionally depends on g;(x),

g2(X), .. Gn(X) if £(x) = h(gi(x), g2(X), ..., Gn(X)),
denoted h(6(x))

®m Under what condition can function f be
expressed as some function h over a set
G={9,....9,} Of functions ?

® h exists < Aa,b such that f(a)=f(b) and 6(a)=6(b)

i.e., G is more distinguishing than f

2019/8/23 FLOLAC 2019 53

Motivation

0 Applications of functional dependency
B Resynthesis/rewiring
B Redundant register removal
B BDD minimization

® Verification reduction
...

Boolean Network
fo
O

h
O/ \\o O target function
5 ©

O base functions

2019/8/23 FLOLAC 2019 54

BDD-Based Computation

O0BDD-based computation of h
hon ={y € Bm: y=6(x) and f(x) =1, x < Br}
hoff = {y e B : y = 6(x) and f(x) = 0, x < B"}

f(x) =1 S

hon = 3x (y=6)Af

f(x)=0 hoff = 3x.(y=6)A—f

2019/8/23 FLOLAC 2019 55

BDD-Based Computation

I Pros
B Exact computation of hon and hoff
B Better support for don’t care minimization

dCons

B 2 image computations for every choice of 6

® Inefficient when |G| is large or when there are
many choices of 6

2019/8/23 FLOLAC 2019 56

SAT-Based Computation

Oh exists <
Aa,b such that f(a)=f(b) and 6(a)=6(b),
.e., (f(X)zF(X)A(6(x)=6(x")) is UNSAT

OHow to derive h? How to select G?

2019/8/23 FLOLAC 2019 57

SAT-Based Computation

O (f(x)z2f (X")DA(6(x)=6(x7)) is UNSAT

Assertjoh/ Equality_ .
Constkaints |] Constraints = ()) Constraint
J~ / \ . \ “ Part
T e 0 N e
D Yo YaYe .. Y Y1 Y2 ... ¥Ym Yo Cireutt
| | Part
|
| |
| |
i DFN,, DFN, ;
| |
| |
| |
| [|] | |
* * *)
\ Xl X5 Xn)(1 X2 Xn

. — e (=

2019/8/23 FLOLAC 2019 58

Detriving h with Craig Interpolation

Clause set A: Cyenon: Yo
Clause set B: Cprnors, — Yo « (YY) fori=1,..m

I is an overapproximation of Img(for) and is disjoint from

I only refers to yy,..., Y
Therefore, I corresponds to a feasible implementation of h

OO0 OO0

X X3

2019/8/23 FLOLAC 2019 59

Incremental SAT Solving

[0 Controlled equality constraints
(y=y) = (yivy: vodlyv =y va)
with auxiliary variables o,
o; = true = ith equality constraint is disabled

W Fast switch between target and base functions by unit
assumptions over control variables

B Fast enumeration of different base functions
B Share learned clauses

2019/8/23 FLOLAC 2019 60

SAT vs. BDD

O SAT 0 BDD
M Pros m Cons
0 Detect multiple choices of [0 Detect one choice of G at
G automatically a time
[0 Scalable to large |G| [Limited to small |G|
[0 Fast enumeration of 0 Slow enumeration of
different target functions different target functions
[0 Fast enumeration of 0 Slow enumeration of
different base functions 6 different base functions G
m Cons ¥ Pros
0 Single feasible 0 All possible
implementation of h implementations of h

2019/8/23 FLOLAC 2019 61

Practical Evaluation

|
SAT vs. BDD

Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)

Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem
s5378 2794 179 52 25 398 283 173 1.2 18 16 20 0.6 18 7 51

§9234.1 5597 211 46 X 459 301 201 4.1 19 X X 1.7 19 194.6 149
$13207.1 8022 638 190 136 1930 802 X 15.6 22 314 78 15.3 22 X X
$15850.1 9785 534 18 9 907 402 X 23.3 22 82.6 94 7.9 22 X X
$35932 16065 1728 0 -- 2026 1170 -- 176.7 27 1117 164 78.1 27 -- --
s38417 22397 1636 95 -- 5016 243 -- 270.3 30 -- -- 123.1 32 -- --

$38584 19407 1452 24 -- 4350 2569 -- 166.5 21 -- -- 99.4 30 1117 164
b12 946 121 4 2 170 66 33 0.15 17 12.8 38 0.13 17 25 42
b14 9847 245 2 -- 245 2 -- 3.3 22 -- -- 52 22 -- --
b15 8367 449 0 -- 1134 793 -- 5.8 22 -- -- 5.8 22 -- --
b17 30777 1415 0 -- 3967 2350 -- 119.1 28 -- -- 161.7 42 -- --
b18 111241 3320 5 -- 9254 5723 -- 1414 100 -- -- 2842.6 100 -- --
b19 224624 6642 0 -- 7164 337 -- 8184.8 217 -- -- 11040.6 234 -- --
b20 19682 490 4 -- 1604 1167 -- 25.7 28 -- -- 36 30 -- --
b21 20027 490 4 -- 1950 1434 -- 24.6 29 -- -- 36.3 31 -- --
b22 29162 735 6 -- 3013 2217 -- 73.4 36 -- -- 90.6 37 -- --

2019/8/23

FLOLAC 2019

Practical Evaluation

Incremental SAT

100 .
— b19 (200k nodes) —— b18 (100k nodes)
—— b17 (30k nodes) —— bl15 (10k nodes)
10 -
N % iy
B /
2
[<3]
£ - j\/\/\/
= 0l \E/\, AVA MNN/MV
0.01 - \«v__/s/\A\ —_ AM/\\PWW\/'W-A\A/-\/ N
0.001 . :
1 50 99
Iteration

2019/8/23 FLOLAC 2019 63

2019/8/23

Quantified Boolean
Satistiability

FLOLAC 2019

64

Quantified Boolean Formula

[0 A quantified Boolean formula (QBF) is often
written in prenex form (with quantifiers placed
on the left) as

Ql Xll Rl Qn Xn' ¢

for Q, € {Vv, 3} and ¢ a quantifier-free formula

W If ¢ is further in CNF, the corresponding QBF is in the
so-called prenex CNF (PCNF), the most popular QBF
representation

B Any QBF can be converted to PCNF

2019/8/23 FLOLAC 2019 65

Quantified Boolean Formula

0 Quantification order matters in a QBF
OA variable x; in (Qq Xy,..., Q Xi,..., Q, X,,. ©)
is of level k if there are k quantifier
alternations (i.e., changing from Vv to 3 or
from 3 to V) from Q, to Q..
B Example
va db Vc vd Je. ¢

level(a)=0, level(b)=1, level(c)=2, level(d)=2,
level(e)=3

2019/8/23 FLOLAC 2019 66

Quantified Boolean Formula

[0 Many decision problems can be
compactly encoded in QBFs

0 In theory, QBF solving (QSAT)
is PSPACE complete

B The more the quantifier
alternations, the higher the
complexity in the Polynomial
Hierarchy

0 In practice, solvable QBFs are
typically of size ~1,000
variables

2019/8/23 FLOLAC 2019 67

QBF Solver

0 QBF solver choices

B Data structures for formula representation
[0 Prenex vs. non-prenex
0 Normal form vs. non-normal form
= CNF, NNF, BDD, AIG, etc.
B Solving mechanisms
[0 Search, Q-resolution, Skolemization, quantifier elimination, etc.

B Preprocessing techniques

[0 Standard approach

M Search-based PCNF formula solving (similar to SAT)

0 Both clause learning (from a conflicting assignment) and cube
learning (from a satisfying assignment) are performed
= Example
va 3b 3c vd Je. (a+c)(—a+—-c)(b+—-c+e)(-b)(c+d+—-e)(—~c+e)(—-d+e)
from 00101, we learn cube —a—bc—d (can be further simplified to —a)

2019/8/23 FLOLAC 2019 68

QBF Solving

0 Example
Javx3abVydc (a+b+y+c)@+x+b+y+c)(x+b)(y+c)(c+a+x+b)(x+b)@+b+y)
1
B —) 7 {—
<a,L> <a,R>
(b+y+c)(X+b+y+c)(x+b)(y+c)(x+b)b+Y) (x+5)(§/+c¥:+>_<+b)(>_<+5)
_) V(e <y,P>
<xL> <6R> (x+b)(C)(C+ X +b)(x+Db)
(b+y+c)b+y+c)b)(y+c)b+y) (b+y+c)(y+c)b)(b+y)
f f <c,U >
<b,U > <b,U > (X +b)(X+b)(x+h)
(y+O(y+Q(y+) <G
f E— _ q V_
e {truey| (axhc) <xL> <XR>
<y,L> <y,R> (b) (b)(b)
©)(c) ©) 1+ —
1 T r— {truey| (AXDC) | [{false}
{ false} {true}’ (axbyc) *

2019/8/23 FLOLAC 2019 69

(Q-Resolution

O (%—resolution on PCNF is similar to resolution on CNF, except that
the pivots are restricted to existentially quantified variables and
the additional rule of V-reduction

C,vX C,v—X

V'RED(Cl\/Cz)

where operator V-RED removes from C;vC, the universally (V)
quantified variables whose quantification levels are greater than
any of the existentially (3) quantified variables in C,vC,

= E.g.,
prefix: va b vc vd 3e
V-RED(a+b+c+d) = (a+b)

[0 Q-resolution is complete for QBF solving

m A PCNF formula is unsatisfiable if and only if there exists a Q-
resolution sequence leading to the empty clause

2019/8/23 FLOLAC 2019 70

(Q-Resolution

[0 Example (cont’d)

Javx3abVydc (a+b+y+c)@+x+b+y+c)(x+b)(y+c)c+a+x+b)(x+b)@a+b+y)
(L)

- E——— =
<al> |@) <aR> @&
A A
<)_(,L> (@) <y,P> (5.)
_ A A
(x+b)| <bU> (i) 1ol <cu> @
A
<y,L> |(a+b+x) <XR>[cra+x
<c,L> /<CR‘>\ = <b,L>r=—— —/<b R>\——
b .)
fralsey] L2V HO s [@rbexiyrO] gy [E+ar X +b)| [rrgs| (<)

2019/8/23 FLOLAC 2019 71

Skolemization

0 Skolemization and Skolem normal form

m Existentially quantified variables are
replaced with function symbols

B QBF prefix contains only two
quantification levels

0 3 function symbols, V variables

0 Example
va db Vvc 3d.
(—a+-b)(-b+-c+-d)(-b+c+d)(a+b+c)
Skolem functions
0011011011110000

HFb(a) JF4(a,c) va vc.
(—a+-F,)(—=Fy,+—Cc+-F4)(=F,+c+F,)(a+F,+cC)

2019/8/23 FLOLAC 2019 72

QBF Certification

0 QBF certification

B Ensure correctness and, more importantly, provide useful
information

m Certificates

0 True QBF: term-resolution proof / Skolem-function (SF) model
= SF model is more useful in practical applications

[0 False QBF: clause-resolution proof / Herbrand-function (HF)
countermodel
= HF countermodel is more useful in practical applications

[0 Solvers and certificates

B Skolemization-based solvers (e.qg., sKizzo, squolem, Ebddres)
can provide SFs

B Search-based solvers (e.g., DepQBF) can be instrumented to
provide resolution proofs

2019/8/23 FLOLAC 2019 73

QBF Certification

[0Solvers and certificates (prior to 2011)
Solver Algorithm Certificate
True QBF False QBF
Ebddres Skolemization | Skolem function Clause resolution
sKizzo Skolemization | Skolem function -
squolem | Skolemization | Skolem function Clause resolution

2019/8/23 FLOLAC 2019 74

QBF Certification

O Incomplete picture of QBF certification
(prior to 2011)

True QBF Cube-resolution proof | Skolem-function model

False QBF | Clause-resolution proof ?

[O0Missing piece found
B Herbrand-function countermodel

O[Balabanov,], 2011]
B Syntactic to semantic certificate conversion
CLinear time [Balabanov, J, 2011]

2019/8/23 FLOLAC 2019 75

QBF Certification

O Unified QBF certification

formula
negation
True QBF g : False QBF
Cube resolution proof Clause resolution proof
Skolem function Herbrand function
(model) (countermodel)

2019/8/23 FLOLAC 2019 76

ResQu

0 A Skolem-function model (Herbrand-function
countermodel) for a true (false) QBF can be
derived from its cube (clause) resolution proof

0 A Right-First-And-Or (RFAO) formula
is recursively defined as follows.

¢ := clause | cube | clause A ¢ | cube v ¢
mE.q.,
(@a’+b) Anacv (b’+C’) A bc
= ((@’+b) A (ac v ((b’+C’) A bc)))

2019/8/23 FLOLAC 2019 77

ResQu

Countermodel construct
input: a false QBF @ and its clause-resolution DAG Gz (Vir, Enr)
output: a countermodel in RFAO formulas
begin
01 foreach universal variable x of @
02 RFAO_node_array[x] := (;
03 foreach vertex v of GGir in topological order

04 if v.clause resulted from V-reduction on u.clause, i.e., (u,v) € En
05 v.cube := —(v.clause);

06 foreach universal variable x reduced from u.clause to get v.clause
07 if x appears as positive literal in u.clause

08 push v.clause to RFAO_node_array[z];

09 else if x appears as negative literal in u.clause

10 push v.cube to RFAO_node_array [z];

11 if v.clause is the empty clause

12 foreach universal variable x of @

13 simplify RFAO_node_array[x];

14 return RFAO_node_array’s;

end

2019/8/23 FLOLAC 2019

78

ResQu

O Example
B 3Javx3ibvy3dc
(a+b+y+c),(a+x+b+ y+5)2(x+5)3(§+c)4(§1+>_<+b+6)5(>_<+5)6(a+5l+§/)7
\ / \ / (1)
(a+x+b+y), (a+x+b+Y), (a+b),.
@] L@
(a+x—|_\b)8+ (5+;+b)1o+ 0. x: H R H
(a + X) - _ L[] y: [cube(ab) |
(3) \L 9 (a+ X)ll c [cube(ab),
(a) i/ (5) S [} v: | clause(a + x + b)]
< (a)11+

[cube(ab),
| clause(a + x + D)

/ 3. w: [(fﬂu-usc(a)} R

(emptY) 4. x: [L'I(Lu.se(a.” E

[cube(ab),
clause(a + x +b),
| cube(axb)

. | cdlause(a),
v cube(a)

2019/8/23 FLOLAC 2019

[cube(ab),

. | clause(a + v +b),

| cube(azb)

79

QBF Certification

O Applications of Skolem/Herbrand functions
B Program synthesis

B Winning strategy synthesis in two player
games

M Plan derivation in Al
M Logic synthesis
u...

2019/8/23 FLOLAC 2019 80

QSAT & Logic Synthests
Boolean Matching

2019/8/23

Introduction

[0 Combinational
equivalence checking
(CEC)

® Known input
correspondence

B coNP-complete

® Well solved in practical
applications

YiY2 Yn

2019/8/23 FLOLAC 2019 82

Introduction

0 Boolean matching

B P-equivalence

0 Unknown input
permutation

0 O(n!) CEC iterations
® NP-equivalence

0 Unknown input negation
and permutation

0 O(2"n!) CEC iterations
® NPN-equivalence

YiY2 Yn

0 Unknown input negation,

input permutation, and ¢ P N
output negation t ¢
0 O(2"+In!) CEC iterations T \%

2019/8/23 FLOLAC 2019 83

Introduction

C0Example

X1 Xy X3

2019/8/23 FLOLAC 2019

X X5 X3

84

Introduction

0 Motivations

m Theoretically
O Complexity in between
coNP and
2
in the Polynomial Hierarchy (PH)
= Special candidate to test PH collapse

OO0 Known as Boolean congruence/isomorphism
dating back to the 19t century

W Practically

O Broad applications

= Library binding
FPGA technology mapping
Detection of generalized symmetry
Logic verification
Design debugging/rectification
Functional engineering change order

O Intensively studied over the last two decades

2019/8/23 FLOLAC 2019

PSPACE

)

/

AN

\

= =

Introduction

] Prior methods
Complete | Function | Equivalence | Solution | Scalability
? type type type
Spectral yes CS mostly P one - -
methods
Signature no mostly CS P/NP N/A -~ 4+
based methods
Canonical-form yes CS mostly P one +
based methods
SAT based yes CS mostly P one/all +
methods
BooM yes CS /IS NPN one/all ++
(QBF/SAT-like)
CS: completely specified
IS: incompletely specified
2019/8/23 FLOLAC 2019 86

BooM: A Fast Boolean Matcher

[0 Features of BooM
B General computation framework

B Effective search space reduction techniques
CODynamic learning and abstraction

B Theoretical SAT-iteration upper-bound:

0(22n)

2019/8/23 FLOLAC 2019

87

Formulation

[0 Reduce NPN-equiv to 2 NP-equiv checks
B Matching f and g; matching f and —g

0 2"d order formula of NP-equivalence
v e, VX ((f(X) A ge(v e (X)) = (f(X) = g(v ° n(x))))

® f. and g, are the care conditions of f and g, respectively

[0 Need 1storder formula instead for SAT solving

2019/8/23 FLOLAC 2019 88

Formulation

[00-1 matrix representation of v - =«

XI1 X1 xI92 e) R In —Ln
Y1 (041 bi1| a2 b2 -+ ain bin \ > =1
y2 | |la21 b21 | a22 ba2 -+ a2y ban
Yn \anl bnl an?2 bn2 e Ann bnn)

2019/8/23 FLOLAC 2019 89

Formulation

0 Quantified Boolean formula (QBF) for NP-equivalence
3a,3b,vX, VY (¢c A oa A((fe A go) = (F=9))

B o.: cardinality constraint
oot /\ij (a5 = (Yi=X%;)) (by = (Yi=—X%))

0 Look for an assignment to a- and b-variables that satisfies
¢oc and makes the miter constraint

Y =opan (fF29) Afonge
unsatisfiable

O Refine ¢ iteratively in a sequence ®©@, oD, ..., ©®, for @i+
= O through conflict-based learning

2019/8/23 FLOLAC 2019 90

BooM Flow

Preprocess
How to compute (sig., abs.)
all matches? ‘

° Solve & A ¥

1=1+1

Solve miter ¥

®" characterizes

Add learned

clause to ©
A

yes

all matches

2019/8/23 FLOLAC 2019

91

NP-Equivalence
Contlict-based Learning

[0 Observation

O How to avoid
these 6 mappings
at once?

From SAD

2019/8/23 FLOLAC 2019 92

NP-Equivalence
Contlict-based Learning

[Learnt clause generation

[(a;; Vb, va;zvby Vay, Vbys vbs vas, vbss)

2019/8/23

NP-Equivalence
Contlict-based Learning

0 Proposition:
If f(u) = g(v) with v = v - z(u) for some v - = satisfying o,
then the learned clause \/; I; for literals
excludes from ®® the mappings {v' - «' | v > n'(u) = v - n(u)}

0 Proposition:
The learned clause prunes n! infeasible mappings

0 Proposition:
The refinement process ©@, o1, ..., &K is bounded by 22n

iterations

2019/8/23 FLOLAC 2019 94

NP-Equivalence
Abstraction

0 Abstract Boolean matching

W Abstract
F(X1, - X Xg1r---1Xp) O
f(Xy,.--/Xs2,.-,2) =
(X1, X, 2)
®m Match g(yy,...,Y,) against
f*(xll"'lxklz) g
m Infeasible matching £
solutions of f* and g are
also infeasible for f and g

151 XX 14 Yi Y«Yk+1Yn

_U
[1 1]
=

2019/8/23 FLOLAC 2019 95

NP-Equivalence

Abstraction

C0Abstract Boolean matching
B Similar matrix representation of

negation/permutation

Y1
Y2

Yn

Ti

2. =1

Ty X z -z
a1 b1 atr bk |@ik+1) bi(k+1)
a1 b2 azk bog A2(k41) b2(k:—|—1)
an1 bni nk bnk An(k+1) bn(k—l—l)

OSimilar cardinality constraints, except for allowing
multiple y-variables mapped to z

2019/8/23

FLOLAC 2019

96

NP-Equivalence
Abstraction

[OUsed for preprocessing

O Information learned for abstract model is
valid for concrete model

O Simplified matching in reduced Boolean
space

2019/8/23 FLOLAC 2019

97

P-Equivalence
Contlict-based Learning

]l Proposition:
If f(u) = g(v) with v = n(u) for some = satisfying
®®, then the learned clause \/;; |;; for literals
iy = (vi=0and u;=1) ?a;: O
excludes from @ the mappings {x' | #'(u) = n(u)}

2019/8/23 FLOLAC 2019 98

P-Equivalence
Abstraction

O Abstraction enforces search in biased truth
assignments and makes learning strong

B For f* having k support variables, a learned
clause converted back to the concrete model
consists of at most (k-1)(n-k+1) literals

2019/8/23 FLOLAC 2019 99

Practical Evaluation

C0BooM implemented in ABC using MiniSAT

A function is matched against its
synthesized, and input-permuted/negated
version

B Match individual output functions of MCNC,
ISCAS, ITC benchmark circuits

0717 functions with 10~39 support variables and
15~2160 AIG nodes

B Time-limit 600 seconds

B Baseline preprocessing exploits symmetry,
unateness, and simulation for initial matching

2019/8/23 FLOLAC 2019 100

Practical Evaluation

|
Learning Abstraction
600 JWE<—< ZaS 600 &< <

S
£ 500 S 500
c o
5 g .
£ 400 o 400
3 3 X
= % s
3 300 7 2 300
| |
O -
2 200 g 200
w '

Q
£ 3 E__wX
£ 100 S 100

X X
0 ‘ 0 . . —X X
0 100 200 300 400 500 600 0 100 200 300 400 500 600

Runtime (sec.) — with learning Runtime (sec.) — with abstraction

(P-equivalence; find all matches)

2019/8/23 FLOLAC 2019 101

Practical Evaluation

E—
P-equivalence NP-equivalence
6000 12000
-4-one sol ~5-one sol
5000 - -=-one sol, learn r 10000 - “-one sol, learn x
——one sol, learn, abs | ——one sol, learn, abs
—=<all sol
4000 - —=<all sol I 8000 -
- —all sol, learn I S —all sol, learn
b \ 7]
a -@-all sol, learn, abs R -e-all sol, learn, abs
ry o 6000 -
£ E
= =
4000 -
2000 -
; 0F
300 350 . 450 500 550 1 51 101 151
#Functions #Functions

2019/8/23 FLOLAC 2019 102

Practical Evaluation

]
BooM vs. DepQBF
g

3.
o
o 400
©
I
§ 300
o
£
€
=
oc

X (runtime after same preprocessing;

P-equivalence; find one match)

0 100 200 300 400 500 600
Runtime (sec.) — BooM

2019/8/23 FLOLAC 2019 103

QSAT & Logic Synthests

Relation Determinization [

2019/8/23 FLOLAC 2019 104

Relation vs. Function

[0 Relation R(X, Y) 0 Function F(X)
® Allow one-to-many ¥ Disallow one-to-many
mappings mappings
[O0Can describe non- O0Can only describe
deterministic deterministic
behavior behavior
B More generic than W A special case of
functions relation
X1X) YiYo X1X) YiYo
00 00 00 00
0L <01 01%01 h=xk
10 10 10 10 2 Tt
11 11 11 11

2019/8/23 FLOLAC 2019 105

Relation

] Total relation

W Every input element is
mapped to at least one
output element

)
01 0
10

11 L

2019/8/23

1 Partial relation

B Some input element is
not mapped to any
output element

)
01 0
10

11 1

FLOLAC 2019 106

Relation

CJA partial relation can be totalized

B Assume that the input element not mapped to
any output element is a don’t care

Partial relation Total relation
X1X5 y Xééz y
00
0
01 0 Totalize > 01
10 10
11 1 11 1

T(X,y) =R(X,y) v Vy. = R(X,y)

2019/8/23 FLOLAC 2019 107

Motivation

[0 Applications of Boolean relation

® In high-level design, Boolean relations can be used to
describe (nondeterministic) specifications

B In gate-level design, Boolean relations can be used to
characterize the flexibility of sub-circuits

[0 Boolean relations are more powerful than traditional don’t-
care representations

X1X5 .

00 00
S N 01 01
Yo BRERE 10 10

11 11

2019/8/23 FLOLAC 2019 108

Motivation

O Relation determinization

B For hardware implement of a system, we need
functions rather than relations
COPhysical realization are deterministic by nature
0One input stimulus results in one output response

B To simplify implementation, we can explore
the flexibilities described by a relation for
optimization

2019/8/23 FLOLAC 2019 109

Motivation

C0Example

I D S e D
_EEZZ:::};;D>*—:::>_ZZ X{_£>°—i£>&_:::>22

fi =X X,
fo==X—=X%, f, ==X
X1X2 Y12 212,
00 00 00
01 01 01
10 10 10
11 11 11

2019/8/23 FLOLAC 2019 110

Relation Determinization

0 Given a nondeterministic Boolean relation
R(X,Y), how to determinize and extract
functions from it?

COFor a deterministic total relation, we can
uniquely extract the corresponding
functions

2019/8/23 FLOLAC 2019 111

Relation Determinization

C0Approaches to relation determinization

M [terative method (determinize one output at a
time)
COBDD- or SOP-based representation

= Not scalable
= Better optimization

CAIG representation
= Focus on scalability with reasonable optimization

quality
B Non-iterative method (determinize all ouputs
at once)
COQBF solving

2019/8/23 FLOLAC 2019 112

Iterative Relation Determinization

] Single-output relation

B For a single-output total relation R(X, y), we derive a
function f for variable y using interpolation

XXy y —R(X,00A—=R(X,1) UNSAT
0137
N g
g : = R(X,1)
@, . —R(X,0) Minimal care offset of f

Minimal care onset of f

2019/8/23 FLOLAC 2019 113

Iterative Relation Determinization

[0 Multi-output relation

B Two-phase computation:

1. Backward reduction
B Reduce to single-output case

RX, Yy oo,) — 3Y,, ., 3y, ROX Yy o,)
2. Forward substitution
®m Extract functions

2019/8/23 FLOLAC 2019 114

Iterative Relation Determinization

C0Example
RG) . .
Phasel: (expansion reduction)
3Y3.R(X, Y1, Y2 1 Y3) — RO(X, vy, Y))
3Y,.RE(X, yy,¥,)) — RO(X, y,)
| |
X 1 No Y3

Phase?2:

RO(X, yy) —y; =f,(X)
1 f REX, y1,¥2) — RO(X, f1(X), y,) — Y, =1, (X)
R(X, Y1, Yo 5 ¥3) = R(X, £1(X), £,(X), ¥,) — y3 = 3 (X)

2019/8/23 FLOLAC 2019 115

Non-Iterative Relation Determinization

C0Solve QBF
VX4, .o, VX0, Yy, oo, AYn R(Xy, Xy Voo ees V1)

B The Skolem functions of variablesy,, ..., y, correspond to
the functions we want

2019/8/23 FLOLAC 2019 116

Stochastic Boolean
Satistiability

2019/8/23 FLOLAC 2019 117

Deciston under Uncertainty
(Example 1)

[0 Probabilistic planning: Robot charge [Huang 06]
W States: {Sg, ..., Sy}
OInitial state: S,; goal state: S,:
®m Actions: {T, |, «, >}
0 Succeed with prob. 0,8
[0 Proceed to its right w.r.t. the intended direction with prob. 0,2

2019/8/23 FLOLAC 2019 118

Decision under Uncertainty
(Example 2)

0 Probabilistic planning: Sand-Castle-67 [Majercik, Littman
98]
B States: (moat, castle) = {(0,0), (0,1), (1,0), (1,1)}
I Initial state: (0,0); goal states: (0,1), (1,1)

B Actions: {dig-moat, erect-castle}
erect-castle

T F

2019/8/23 FLOLAC 2019 119

Decision under Uncertainty
(Example 3)

[0 Evaluation of probabilistic circuits [Lee, J 14]

B Each gate produces correct value under a certain
probability

B Query about the average output error rate, the
maximum error rate under some input assignment, etc.

Ba

X

2019/8/23 FLOLAC 2019 120

Deciston under Uncertainty

(Example 4)

1 Belief network inference [Dechter 96, Peot 98]

®m BN queries, e.qg., belief assessment, most probable

explanation, maximum a posteriori hypothesis,
maximum expected utility

P(C=T) P(C=F)
0,5 0,5

"

—

[¢ |P(R=T) P(R=F) |
T| o8 0,2
F| o2 0,8
S - r
L=
el /'/
'/,_/’ —_—
c |p(s=T) P(S=F)
T | o1 0,9
F
\ R | P(W=T) P(W=F)
T| o099 0,01
F 0,9 01
T 0,9 01
F 0,0 1,0

| = E @

2019/8/23 FLOLAC 2019 121

mm- ~-S®

Introduction

The Satisfiability Family

[0 Boolean satisfiability (SAT)
CSharp-SAT (#SAT)

[0 Quantified Boolean satisfiability (QSAT)

[0 Stochastic Boolean satisfiability (SSAT)

2019/8/23 FLOLAC 2019 122

Introduction

The Satistiability Family — SAT

[0 The Boolean satisfiability (SAT)
problem asks whether a given
Conjunctive Normal Form (CNF)
formula can be satisfied under
some assignment to the variables

mE.q.,
B (a+—-b+c)(a+-c)(b+d)(—a) is
satisfiable under (a,b,c,d)=(0,0,0,1)

B (a+-b+c)(a+-c)(b)(—-a) is
unsatisfiable

0 The first known NP-complete
problem [Cook 71]

PSPACE

2019/8/23 FLOLAC 2019 123

Introduction

The Satisfiability Family — #SAT

COThe #SAT problem asks the number of
satisfying solutions to a given CNF formula
mE.g., (a+—-b+c)(a+-c)(b+d)(—a+b) has five

solutions, which are (a,b,c,d) = (0,0,0,1),
(1111_1_)
B A #P-complete problem

H A.k.a. model counting
COExact vs. approximate model counting

OWeighted model counting: variables are weighted
under a function w:var(¢)—[0,1]

= Compute the sum of weights of satisfying assignments
of ¢

2019/8/23 FLOLAC 2019 124

Introduction

The Satisfiability Family — QBF

0 A quantified Boolean formula (QBF)
is often written in prenex form as

Ql Xll Rl Qn Xn' ¢

PSPACE

for Q, e {V, 3} and ¢ a
quantifier-free CNF formula

W E.g., Va 3b vc 3d.
(—a+-b)(-b+-c+-d)(—b+c+d)(a+b+c)

B QBF satisfiability is PSPACE-complete

2019/8/23 FLOLAC 2019 125

Introduction

The Satisfiability Family — QBF

[0 A game interpretation of QBF

B Two-player game played by 3-
pIayer (to satisfy the formula? and
V-player (to falsity the formula)

va db vc 3d.
(—a+-b)(-b+-c+-d)(-b+c+d)(a+b+c)

Skolem functions)\)\)\ ’\
! ! ! ’ ! ! ! !
00110110111 10000

HFb(a) 3F4(a,c) va vc.
(—a+-F,)(—=Fy,+—Cc+—F4)(—=F,+c+F,)(a+F,+cC)

2019/8/23 FLOLAC 2019 126

Introduction

The Satistiability Family — SSAT

[0 Syntax of SSAT formula
D = Qqvy...Q0,0,. d(Vy, ..., V)
W Prefix: Qv, ...Q,,v, With Q;€ {3, RPi}
O Randomized quantification RPiv;: v; valuates to TRUE with
probability p;

W Matrix:¢(v4, ..., v,) being a quantifier-free
propositional formula often in CNF

2019/8/23 FLOLAC 2019 127

Introduction

The Satistiability Family — SSAT

[O0Semantics of SSAT formula

d = Qqvq ...0,v,. p(Vq, ..., 1)
B Optimization version: Find the maximum SP
B Decision version: Determine whether SP > 6
m Satisfying probability (SP): Expectation of ¢
satisfaction w.r.t. the prefix
COPr[T] =1;Pr[1l] =0

OPr[®] = max{Pr[®]|_,], Pr[®],]}, for outermost quantification
dv

OPr[®] = (1 —p) Pr[®|_,] + pPr[®|,], for outermost
quantification RPv

2019/8/23 FLOLAC 2019 128

Introduction
Stochastic Boolean Satisfiability

[0 A game interpretation of SSAT

B Two-player game played by 3-
player (to maximize the
expectation of satisfaction) and
R -player (to make random

moves)
0.5
R%6a 3b R%Sc 3d. 0.5/
(-a+—-b)(-b+—-c+—-d)(-b+c+d)(a+b+c) @
Skolem functions %
0011011011110000

HFb(a) 3F4(a,c) R%%a R%>c.
(—ma+-F,)(=Fy,+—Cc+—F4)(—=F,+c+F,)(a+F,+c)
129

2019/8/23 FLOLAC 2019

Introduction

The Satisfiability Family — SSAT

OEx: @ = 3xR*y. (x Vy)(=x V —y)

0.9 Satisfying probability of ®

2019/8/23 FLOLAC 2019 130

Introduction

The Satisfiability Family — SSAT

[0 SSAT is a formalism of games against
nature for decision problems under
uncertainty [Papadimidriou 85]

[0 SSAT is PSPACE-complete

[0 Applications
B Probabilistic planning
B Verification of probabilistic circuits
B Belief network inference
B Trust management

PSPACE

2019/8/23 FLOLAC 2019 131

Introduction

Prior SSAT Methods

CIPrior computation methods

B General SSAT

ClExact SSAT
= DC-SSAT: divide and conquer, DPLL-style search
= ZANDER: threshold pruning heuristics

CDApproximate SSAT

= APPSSAT: derive upper/lower bounds of satisfying
probability

m E-MAJSAT

COMAXPLAN: pure literal, unit propagation, subproblem
memorization
CcomPlan: compilation into d-DNNF

OMaxCount: restricted to R°>

2019/8/23 FLOLAC 2019 132

Introduction

Specialized SSAT of Our Focus

[O0Random-exist quantified SSAT (RE-SSAT)
formula ® = RX3Y.¢(X,Y)

W Counterpart of 2QBF & = vX3Y.¢(X,Y)

O Exist-random quantified SSAT (ER-SAT,
a.k.a. E-MAJSAT) formula ® = 3XRY.¢(X,Y)

B Counterpart of 2QBF & = 3XVY.¢(X,Y)

2019/8/23 FLOLAC 2019 133

Stochastic Boolean

Satistiability
Random-Exist SSAT

2019/8/23 FLOLAC 2019

RE-SSAT
Main Results

0 Exploit weighted model counting to handle
randomized quantification

[0 Use a SAT solver as a plug-in engine for SSAT
solving

B Stand-alone usage of SAT solver and model counter
without solver modification

B Directly benefit from the advancements of SAT solvers
and model counters

[0 Applicable to both exact and approximate RE-
SSAT solving

2019/8/23 FLOLAC 2019 135

RE-SSAT

Terms and Notations

OConsider ¢(x1,x2,¥1,¥2) = %1 A (X2 Vy; V y,)

with weights w(x;) = 0.3 and w(x,) = 0.7

B, =xx, IS a SAT minterm, since ¢|,, can be
satisfied by u = y,y, 2 w(r;) = 0.21

Bt =x, is a SAT cube 2> w(z{) =0.3

B 7, = ax.x; iIs an UNSAT minterm since ¢|,, is
unsatisfiable 2> w(z,) = 0.49

M) =-x; is an UNSAT cube 2 w(z;) =0.7

B The process of expanding 7 to =+ is called
minterm generalization

2019/8/23 FLOLAC 2019 136

RE-SSAT
Basic Ideas

O Given & = RX3Y.¢p(X,Y), Pr[d] equals
®m sum of weights of all SAT minterms, or
m 1 - sum of weights of all UNSAT minterms

[Collect all SAT and/or UNSAT minterms with
minterm generation into cubes
B SAT: minimal hitting set
B UNSAT: minimal UNSAT core

0 Compute sum of weights of collected cubes
B Complement the collected cubes into a CNF formula

B Apply weighted model counting once (needed to cope
with the potential non-disjointness between cubes)

2019/8/23 FLOLAC 2019 137

RE-SSAT
Procedure for Solving RE-2SSAT

|
SolveRESSAT
input: ® = 4X3IY.4(X,Y) and a runtime limit TO
Output Up.perfn lower bounds (FPrr, Pr) of satisfying prob.
bega-n'
om0l (X)) =T dmmmmmmmm————————— Selection solver
- 02 Cv:=0;
Matrix solver (03 ¢, =0, = o ccmmmm———- If ¢ is satisfiable
04 while SAT(v)) = T /\ runtime < TO
05 T :=1).model; . .
06 if SAT(¢],;) = T €========"77 T is @ SAT minterm
07 = MinimalSatisfying(@, 7); <= SAT . .
eneralization
08 Cr=Cr U {rtY; g
09 else //SAT(¢|) = | €==mm=m==— 7 IS @ UNSAT minterm
10 = MinimalConflicting(@, T); <= NSAT neralization
e CLmCy U LY UNSAT generalizatio
12 U) — U) /A —|T+, = —— BIOCk T+ frOm l/)
13 return (1—ComputeWeight(C'y), ComputeWeight(C));
end Aol N
~=~< Compute weight
2019/8/23 FLOLAC 2019 138

RE-SSAT
Example

Od = R%a,b,c,dIx,y,z. ¢

O¢p=(avbvcvx)(avbVvcV-x)(maV-bV
—|dVy)(—|aV—ubV—udV—uy)(—uaVbV—ldV
Z)(—laVbV—ldV—lZ)

2019/8/23 FLOLAC 2019 139

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:
UNSAT cubes:

2019/8/23 FLOLAC 2019 140

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:
UNSAT cubes:

2019/8/23 FLOLAC 2019 141

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:
UNSAT cubes: —a—b-c

2019/8/23 FLOLAC 2019 142

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:
UNSAT cubes: —a—b-c

2019/8/23 FLOLAC 2019 143

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:—ab
UNSAT cubes: —a—b-c

2019/8/23 FLOLAC 2019 144

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:—ab
UNSAT cubes: —a—b-c

2019/8/23 FLOLAC 2019 145

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:—ab Vv a—d
UNSAT cubes: —a—-b-c

2019/8/23 FLOLAC 2019 146

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:—ab Vv a—d
UNSAT cubes: —a—-b-c

2019/8/23 FLOLAC 2019 147

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:—ab Vv a—d
UNSAT cubes: —a—b—-cV ad

2019/8/23 FLOLAC 2019 148

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:—ab Vv a—d
UNSAT cubes: —a—b—-cV ad

2019/8/23 FLOLAC 2019 149

RE-SSAT
Example (cont’d)

00 01 11 10

00

01

11

10

dx,y,z.¢(a,b,c,d) Y(a,b,c,d)

SAT cubes:—ab Vv a-d V —ac
UNSAT cubes: —a—b—-cV ad

2019/8/23 FLOLAC 2019 150

RE-SSAT
Example (cont’d)

0 Complement the collected SAT cubes
{-ab, a—d, —ac} into a CNF formula ¢ =
(aV-ab)(navd)(aV —c)

COApply weighted model counting on ¢ with
weights w(a) = w(b) = w(c) = w(d) = 0.5
(recall ® = R%>q,b,c,d3x,y,z.¢)

0Obtain satisfying probability of & = 0.375

2019/8/23 FLOLAC 2019 151

RE-SSAT
Experimental Settings

[0 SAT solver MiniSAT and weight model counter
Cachet were used

[0 Computation platform: Xeon 2.1 GHz CPU and
126 GB RAM

® Timeout limit: 1000 seconds

] Prior methods under comparison
B reSSAT: the proposed algorithm

B reSSAT-b: the proposed alg. w/o minterm-
generalization techniques

B DC-SSAT: state-of-the-art SSAT solver [3]

[3] S. Majercik and B. Boots. DCSSAT: A divide-and-conquer approach to solving
stochastic satisfiability problems efficiently, 2005

2019/8/23 FLOLAC 2019 152

RE-SSAT

Planning Benchmark Experiments

[0 Converted from 2QBF planning instances of
strategic company problem [CEG97]

B Universal quantifiers in original 2QBFs were changed to
randomized ones with probability 0.5

B The converted RE-2SSAT formulas characterize the
winning probabilities of the exist-player of the original
QBF games

[0 60 formulas from QBFLIB were evaluated
B reSSAT-b solved 12 formulas
M DC-SSAT solved 30 formulas
B reSSAT solve all 60 formulas

[CEG97] M. Cadoli, T. Eiter, and G. Gottlob. Default logic as a query language, 1997.

2019/8/23 FLOLAC 2019 153

RE-SSAT

Planning Benchmark Experiments

|
2500
Max memory (MB) —-reSSAT
reSSAT :45 Dc
2000 Dc : 13569 -=-reSSAT-b
— reSSAT-b : 849
@
£
= 1500
c
—
°
3
o
S 1000
= 1
s
S 7
500 /
0-'*""-‘“
) 's sl . . - o 048 000000000000 00000ssssanness” ==Y 900 |

2019/8/23

30
of solved instances

FLOLAC 2019

154

RE-SSAT
Probabilistic Circuit Experiments

[0 Obtained in VLSI domain for equivalence
checking of probabilistic circuits [L]14]

B The formula evaluates the expected difference
between a deterministic specification against
its probabilistic implementation

B Encoded as RE-2SSAT formulas

[LJ14] N.-Z. Lee and J.-H. Jiang. Towards formal evaluation and verification of probabilistic design,
2014

2019/8/23 FLOLAC 2019 155

RE-SSAT
Probabilistic Circuit Experiments

circuit Answer UB LB UB LB runtime Prob.
c432 1.03E-02 1.07E-02 4.30E-05 1.05E-02 8.50E-05 TO TO

c499 1.56E-13 1.56E-13 1.56E-13 1.56E-13 1.56E-13 0.00 1.56E-13
c880 4.18E-02 9.78E-02 3.00E-06 8.18E-02 3.00E-06 TO TO
c1355 6.41E-02 3.20E-01 0 3.08E-01 0 TO TO
c1908 7.38E-04 8.83E-04 4.00E-05 7.38E-04 7.90E-05 210.86 7.38E-04
c3540 1.71E-03 1.17E-02 5.03E-04 1.17E-02 1.61E-03 217.42 1.71E-03
c5315 4.64E-01 6.28E-01 0 6.28E-01 0 TO TO
c/552 2.34E-01 2.35E-01 7.23E-03 2.35E-01 7.23E-03 TO TO

2019/8/23 FLOLAC 2019 156

RE-SSAT
Random k-CNF Experiments

COUsed k-CNF with n variables and m clauses
mkequals3,4,5,6,7,8 and 9
mn equals 10, 20, 30, 40, and 50
I% equals k—1, k, k+1, and k + 2

[0 Selected 300 formulas whose satisfying

probabilities evenly distributed in [0, 1]
for fair evaluation

2019/8/23 FLOLAC 2019 157

RE-SSAT
Random k-CNF Experiments

14,000

12,000

10,000

8,000

6,000

4,000

accumulated runtime (s)

2,000

2019/8/23

Max memory (MB)
reSSAT :324

Dc : 30359
reSSAT-b : 512

50

——reSSAT

I Dc
-=—reSSAT-b

100 150 200 250 300
of solved instances

FLOLAC 2019 158

RE-SSAT

Summary

C0Proposed a new algorithm to solve
random-exist SSAT

B Plug-in SAT solver and model counter without
modification

B Outperform prior methods in runtime and
memory efficiency

[0 Extended to approximate SSAT with
upper/lower bound derivation

2019/8/23 FLOLAC 2019 159

Stochastic Boolean

Satistiability
Exist-Random SSAT

2019/8/23 FLOLAC 2019

160

ER-SSAT
Main Results

CJAdopt QBF clause selection technique to
ER-SSAT solving for effective search space
pruning

C0Propose three enhancement techniques

C0Applicable to both exact as well as
approximate ER-SSAT

2019/8/23 FLOLAC 2019 161

ER-SSAT

Naive Solution

O Given & = 3XRY.¢p(X,Y)
B Search among assignments 7 to X

B Compute RY.¢(t,Y) by weighted model
counting

B Find t* maximizing RY.¢(t",Y)

COHow to effectively prune search space?

2019/8/23 FLOLAC 2019 162

ER-SSAT
Clause Selection for QBF Solving

OX = {ey,e5e3} Y ={ay,a;,a3}, ¢(X,Y) = /\i?’=1 Ci
H(=(e1VayVay)
W(C,=(1Ve,VayVas)
W(C; =(ne,Vae3Va,V-asz)
WS = {51,523}
OyYX,S) =((;=—-e)A(s, =—e; AN—ey) A(s3=e, Aeg)

Os; = T iff C; is selected, i.e., not satisfied by the
assignment on X variables [JM15]

DEg, (81=J—r e, =1,e;3 =J_) - (51= 1,5, = T)

[0 Prune search space by preventing selection of a
superset of the current clause set

[JM15] M. Janota and J. Marques-Silva. Solving QBF by clause selection, 2015.
2019/8/23 FLOLAC 2019 163

ER-SSAT
Clause Containment Learning (1/2)

Od = IXRY. H(X,Y)

O(p(t2, V) E ¢(z1,Y)) - (Pr[®|,,] < Pr[d],,])

COPrune assignments that select a superset
of selected clauses

O Learning with selection variables
O ‘/J(X»S) « ‘/J(X;S) A CL
] CL = V_ISC

2019/8/23 FLOLAC 2019 164

ER-SSAT
Basic Algorithm

SolveEMAJSAT-basic
input: & = IXIY.¢(X,Y)
output: Pr[®]
begin
01 w(X! S) = (/\C€¢(SC = _'CX)) A (/\pureizvar(l)EX l)’
02 prob:=0;
03 while SAT(v)) = T
04 7 := the found model of 1) for variables in X;
05 if SAT(¢|-) =T

06 prob = max{prob, WeightModelCount(dY.¢|,)};
07 Cr = \/C@MT —Ssc;

08 else / /SAT(¢|,) = L

09 C'r, :=MinimalConflicting(¢, 7);

10 Y=y ACL;
I1 return prob;
end

2019/8/23 FLOLAC 2019 165

ER-SSAT
Example

da,b,c,d, R%°x, R%7y, R*z.
Ci: ((aAbAc) - (xvyvz)) °°

Cy: (mc = (xV=y)) 01
C3: (b AC) > (xV2))

Cy: ((Han=d) > (yV2)) 11

10

Current assignment:
Current max value: lp(a, b, C, d) = T

Blocking clause:

2019/8/23 FLOLAC 2019 166

ER-SSAT
Example (cont’d)

da,b,c,d, R%°x, R%7y, R*z.
C,: ((aAbAc)—> (xVyVz)
Cy: (mc—> (x Vv —y)) 01
C3: (b AC) > (xV2))

Cy: ((Han—=d) - (yVvz)) 11

)OO

10

Current assignment: —a-b—-c—d
Current max value: 0.62 w(a, b, C, d) =T
Blocking clause: (cvaVvd)

2019/8/23 FLOLAC 2019 167

ER-SSAT
Example (cont’d)

da,b,c,d, R%°x, R%7y, R*z.
Ci: ((aAbAc) - (xvyvz)) °°

Cy: (mc—> (x Vv —y)) 01
C3: (b AC) > (xV2))
Cy: ((Han=d) > (yV2)) 11

10

Current assignment: ab—c—d
Current max value: 0.65 Y =(cVavd)
Blocking clause: (¢)

2019/8/23 FLOLAC 2019 168

ER-SSAT
Example (cont’d)

00 O1 11 10

3a,b,c,d, R%°x, R%7y, R%z.
Cy: ((a/\b/\c) - (xVyVz)
Cy: (—e > (xV=y)) 01
C3: ((=b A c€) > (xV2))

Cy: ((_Ia/_ld) — (yVZ)) 11| 1

)OO

10

Current assignment: —a-bcd
Current max value: 0.95 Y=(cVaVvd)(c)

Blocking clause: (b V —c)

2019/8/23 FLOLAC 2019 169

ER-SSAT
Example (cont’d)

00 o1 11 10
3a,b,c,d, R%°x, R%7y, R%z.
Cy: ((a/\b/\c) — (xVsz)) 00
Cy: (—e > (xV=y)) 01
Cs: ((_Ib Ac) = (x Vz))
Cy: ((_Ia A—=d) - (y VZ)) 11 1
10
Current assignment: —abcd
Current max value: 1 l,b — (C vaVv d) (C)

Blocking clause: () (b V —m)

2019/8/23 FLOLAC 2019 170

ER-SSAT
Example (cont’d)

00 01 11 10

3a,b,c,d, R%°x, R%7y, R%z.
Cy: ((a/\b/\c) — (xVsz)) 00
Cy: (—e > (xV=y)) 01
Cs: ((_Ib Ac) = (x Vz))
Cy: ((—la A—d) - (y VZ)) 11

10
Current assignment:
Current max value: 1 l/J = (C vavVv d) (C)

Blocking clause: () (b V _IC) ()

2019/8/23 FLOLAC 2019 171

ER-SSAT

Enhancement Techniques

COMinimal clause selection

B Select a minimal set of clauses by iterative
SAT refinement

[Clause subsumption

B Precompute subsumption relation and remove
selected clauses that are subsumed by other
selected clauses

O Partial assignment pruning

B Discard literals from a learnt clause to obtain
an upper bound of satisfying probability

2019/8/23 FLOLAC 2019 172

ER-SSAT
Refined Algorithm

SolveEMA JSAT
input: & = IXHY.¢(X,Y)
output: Pr[P]
begin

01

02
03
04
05
06
07
08
09
10
11
12
13
14
15

end

.ﬁ)(){r, S) = (/\CEQS(SG = _‘ICX)) A (/\pure livar(l)€ X l)
prob :=0:;

s—table := BuildSubsumeTable(0);

while SAT(¢) = |
7 := the found model of v for variables in X;
if SAT(0|,) =T

7' := SelectMinimalClauses(¢, V):

¢ := RemoveSubsumedClauses(¢|,/, s—table);

CS = vC‘Ew 'S¢
C'r, :=DiscardLiterals(¢,Cs,prob):;
else //SAT(o],) = L i
Cr, :=MinimalConflicting(¢, 7):
V=1 ANCL;
return prob;

2019/8/23

FLOLAC 2019

prob := max{prob, WeightModelCount(dY.p)};

173

ER-SSAT
Approximate ER-SSAT

[0 Can terminate at any time and return the
current best solution

B A lower bound of the satisfying probability

[0 Keep deriving tighter lower bounds and
converge to the exact solution

2019/8/23 FLOLAC 2019 174

ER-SSAT
Experimental Setup

COSAT solver MiniSAT

COWeight model counter
W Cachet

W CUDD

[O0Xeon 2.1 GHz CPU and 126 GB RAM

[0 Competing solvers
M crsSsSAT: the proposed algorithm
M DC-SSAT: state-of-the-art SSAT solver
M ComPlan: E-MAJSAT solver (based on c2d)
B MAXCOUNT: maximum model counter

2019/8/23 FLOLAC 2019

175

ER-SSAT
Application Formulas

0 QBF-converted formulas
[0 Conformant probabilistic planning
B Sand-castle [ML98]
COMaxSat [FRS17]
0 Quantitative information flow [FRS17]
CO0Program synthesis [FRS17]
COOMaximum probabilistic eq. checking [L]J14]

S. Majercik and M. Littman. MAXPLAN: A new approach to probabilistic planning, 1998.
D. Fremont, M. Rabe, and S. Seshia. Maximum model counting, 2017.

N.-Z. Lee and J.-H. Jiang. Towards formal evaluation and verification of probabilistic
design, 2014.

2019/8/23 FLOLAC 2019 176

ER-SSAT
Experimental Results (1/2)

benchmark statistics erSSAT Dc ax c2d
family formula #V #C #E; | #R #Es LB Ty To Pr T LB CL T T
10013 106 10604 33 10 63 1.95¢-3 0 27 1.95¢-3 13 1.95-3 | 1.00 36 3
10-01.5 170 10902 55 10 105 3.91e-3 19 | 577 3.91e-3 | 208 391e-3 | LOO 67 5
10201.7 234 11200 77 10 147 7.81e-3 | 179 - - - 7.81e-3 | LOO | 294 19

Toilet-A 10.05.2 170 11315 110 10 50 313e-2 | 565 - - - - -
102053 250 12000 165 10 75 1.56e-2 0 - - - - 244
10-05.4 330 12685 220 10 100 1.56e-2 | 888 - - - - -
10_10.2 290 12840 220 10 60 1.00 3 3 - - - 181
blocks_enc 2 b4 | 3043 [57130 | 1248 7 1788 4.38-1 | 341 - - - -
cube_c7_ser—23 1479 15164 138 9 1332 3.38e-1 | 620 - - - - -
cube_c7 ser—opt-24 | 1542 15510 144 9 1389 344e-1 | 679 - - - - -

Conformant cube_c9_par—10 847 | 24106 60 10 T 2.90e-1 185 - - 2.92e-1 L.00 | 802
cube _c9_par—opt-11 928 | 24548 66 10 852 2.89%-1 192 - - - -
emptyroom_e3_ser—20 932 6286 80 6 806 1.88e-1 860 - - - - - -
ring_r4_ser—opt-11 373 5333 44 9 320 4.96e-1 | 506 - - - 4.53-1 L.00 | 102 29
SC-11 101 201 22 55 24 0.77e-1 32 50 9.77e-1 0 - - - 0
SC-12 110 219 24 60 26 9.84e-1 133 187 9.84e-1 0 - - 0
SC-13 119 237 26 65 28 0.8%-1 | 441 619 9.89%-1 1] - - 0
Sand-Castle SC-14 128 255 28 70 30 9.92-1 | 632 - 9.92e-1 1 - - 0
SC-15 137 273 30 75 32 9.93-1 | 979 - 9.94¢-1 1 - - 1
SC-16 146 201 32 80 34 9.94e-1 | 785 - 9.96e-1 3 - - 0
SC-17 155 309 34 &5 36 9.94e-1 | 654 - 9.97e-1 6 - - - 1
MaxSat kellerd.clq 120 1212 43 15 62 9.76e-1 0 [1] - - 9.13-1 0.82 5 1
backdoor-2x16-8 200 272 32 32 136 5.96e-8 0 - - 5.96e-8 | 1.00 9 1
backdoor-32-24 147 76 32 32 83 1L.00 0 0 195-3 | 0.82 | 601 0
bin-search-16 | [448 5825 16 16 1416 1.95-3 106 - - 9.85e-1 0.91 230 -
QIF CVe-2007-2875 784 1740 32 32 720 1.00 2 2 - 0.83-1 0.82 13 342
pwd-backdoor 400 609 64 64 272 0.00 - - - 9.85e-1 0.99 93 1
reverse2 333 203 32 32 269 2.98¢-7 | 271 - - - - 2
reverse 229 203 32 32 165 5.96e-7 | 839 - - - - 2
ConcreteActService | 4836 17866 71 37 | 4728 - - 9.60e-1 0.82 52 -
IssueServicelmpl | 3625 13028 77 20 | 3519 - - 9.06e-1 0.82 34 -
IterationService | 4167 15264 70 34 | 4063 - - 9.70e-1 0.82 47 -
PS LoginService | 5220 | 21566 92 27 | 5110 - - 9.45e-1 0.82 56 -
PhaseService | 4167 15264 70 34 | 4063 - - 9.70e-1 0.82 47 -
ProcessBean | 9880 | 41451 166 39 | 9675 - - 9.27e-1 0.82 | 126 -
UserServicelmpl | 4019 14657 87 31 | 3901 - - - - 9.22e-1 0.82 43 -
c499(2.34e-1) 217 522 41 2 174 0 [1] 2.3e-1 [i] 2.34e-1 1.00 0 2
cB80(2.34e-1) 451 1167 60 2 380 0 - - - 1.25e-1 1.00 14 72
¢1355(3.30e-1) 771 2181 41 3 727 0 - - 3.30e-1 L.o0 41 10
MPEC c1908(2.34e-1) 270 705 33 2 235 23 - 2.3e-1 91 1.2%-1 1.00 1 3
€3540(1.25¢-1) 321 807 50 2 269 0 - 1.23e-1 92 1.25e-1 100 2 3
€5315(7.37e-1) 918 2190 178 10 730 154 - - 6.27e-1 0.82 63 217
c7552(4.87e-1) 648 1308 207 5 436 0 - - 2.18-1 0.82 66 5
Maximum memory usage (GB) 22 386 0.2 42

2019/8/23

FLOLAC 2019

177

ER-SSAT
Experimental Results (2/2)

C0Compared to DCSSAT

W Exactly solve or derive the tightest lower
bounds when DCSSAT solves a formula

B Derive lower bounds when DCcssAT fails
O Compared to MaxCount

M Scale better on QBF-converted and planning
W Derive tighter lower bounds on circuits
B Perform worse on QIF and PS

[0 Derive more tightest lower bounds than
DCSSAT and MaxCount for all formulas

2019/8/23 FLOLAC 2019 178

ER-SSAT

Summary

CPro
mC
mA

nose an algorithm to solve ER-SSAT
ause containment learning

oproximate ER-SSAT

M Exactly solve or derive the tightest bounds
when state-of-the-art solvers solve a formula

® Derive lower bounds when other solvers fail

2019/8/23

FLOLAC 2019 179

Summary

0 We learned

B Representations of Boolean functions
B Boolean satisfiability

B Quantified Boolean satisfiability

B Stochastic Boolean satisfiability

[0 To explore logic synthesis and verification,

Berkeley ABC tool
B https://people.eecs.berkeley.edu/~alanmi/abc/

2019/8/23 FLOLAC 2019 180

