
FLOLAC 2019 1

Boolean Satisfiability and Its
Applications to

Synthesis & Verification

Jie-Hong Roland Jiang (江介宏)

ALCom Lab
Department of Electrical Engineering,

Graduate Institute of Electronics
Engineering

National Taiwan University

2019/8/23

FLOLAC 2019 2

Outline

Logic synthesis & verification

Boolean function representation

Propositional satisfiability & applications

Quantified Boolean satisfiability &
applications

Stochastic Boolean satisfiability &
applications

2019/8/23

FLOLAC 2019 3

IC Design Flow

HDL spec.

logic
synthesislogic netlist

circuit

netlist

layout /

mask

chip

RTL
synthesis

physical
design

fab.

2019/8/23

FLOLAC 2019 4

Logic Synthesis

Logic
Synthesis

Boolean Function
Expression

Optimized
Logic Netlist

Boolean/Temporal
Constraints

Solution Circuit

2019/8/23

FLOLAC 2019 5

Logic Synthesis

D

x y


Given: Functional description of finite-state

machine F(Q,X,Y,,) where:

Q: Set of internal states

X: Input alphabet

Y: Output alphabet

: X x Q  Q (next state function)

: X x Q  Y (output function)

Target: Circuit C(G, W) where:

G: set of circuit components g  {gates, FFs, etc.}

W: set of wires connecting G

2019/8/23

FLOLAC 2019 6

Backgrounds

 Historic evolution of data structures and tools in
logic synthesis and verification

Problem Size

Time1950-1970 1980 1990 2000

CNF
TT

SOP BDD

AIG
16

50

100

100000

Espresso,

MIS, SIS

SIS, VIS,

MVSIS

ABC

Courtesy of Alan Mishchenko

2019/8/23

FLOLAC 2019 7

Boolean Function Representation

Logic synthesis translates Boolean
functions into circuits

We need representations of Boolean
functions for two reasons:

 to represent and manipulate the actual circuit
that we are implementing

 to facilitate Boolean reasoning

2019/8/23

FLOLAC 2019 8

Boolean Space

 B = {0,1}
 B

2
= {0,1}{0,1} = {00, 01, 10, 11}

Karnaugh Maps: Boolean Lattices:

B0

B1

B2

B3

B4

2019/8/23

FLOLAC 2019 99

Boolean Function

 A Boolean function f over input variables: x1, x2, …, xm, is a
mapping f: Bm  Y, where B = {0,1} and Y = {0,1,d}
 E.g.

 The output value of f(x1, x2, x3), say, partitions Bm into three sets:

 on-set (f =1)
 E.g. {010, 011, 110, 111} (characteristic function f1 = x2)

 off-set (f = 0)
 E.g. {100, 101} (characteristic function f0 = x1 x2)

 don’t-care set (f = d)
 E.g. {000, 001} (characteristic function fd = x1 x2)

 f is an incompletely specified function if the don’t-care set is
nonempty. Otherwise, f is a completely specified function
 Unless otherwise said, a Boolean function is meant to be completely

specified

2019/8/23

FLOLAC 2019 10

Boolean Function

 A Boolean function f: Bn  B over variables
x1,…,xn maps each Boolean valuation (truth
assignment) in Bn to 0 or 1

Example
f(x1,x2) with f(0,0) = 0, f(0,1) = 1, f(1,0) = 1,
f(1,1) = 0

0

0

1
1

x2

x1

x1

x2

2019/8/23

FLOLAC 2019 11

Boolean Function

 Onset of f, denoted as f1, is f1= {v  Bn | f(v)=1}

 If f1 = Bn, f is a tautology

 Offset of f, denoted as f0, is f0= {v  Bn | f(v)=0}

 If f0 = Bn, f is unsatisfiable. Otherwise, f is satisfiable.

 f1 and f0 are sets, not functions!

 Boolean functions f and g are equivalent if v Bn. f(v) =
g(v) where v is a truth assignment or Boolean valuation

 A literal is a Boolean variable x or its negation x (or x, x)
in a Boolean formula

x3

x1

x2

x1

x2

x3

f(x1, x2, x3) = x1 f(x1, x2, x3) = x1

2019/8/23

FLOLAC 2019 12

Boolean Function

 There are 2n vertices in Bn

 There are 22
n

distinct Boolean functions

 Each subset f1  Bn of vertices in Bn forms a
distinct Boolean function f with onset f1

x1x2x3 f

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0  1

1 0 1 0

1 1 0 1

1 1 1 0
x1

x2

x3

2019/8/23

FLOLAC 2019 13

Boolean Operations

Given two Boolean functions:

f : Bn  B

g : Bn  B

 h = f  g from AND operation is defined as

h1 = f1  g1; h0 = Bn \ h1

 h = f  g from OR operation is defined as

h1 = f1  g1; h0 = Bn \ h1

 h = f from COMPLEMENT operation is defined as

h1 = f0; h0 = f1

2019/8/23

FLOLAC 2019 14

Cofactor and Quantification

Given a Boolean function:
f : Bn  B, with the input variable (x1,x2,…,xi,…,xn)

 Positive cofactor on variable xi

h = fxi is defined as h = f(x1,x2,…,1,…,xn)

 Negative cofactor on variable xi

h = fxi is defined as h = f(x1,x2,…,0,…,xn)

 Existential quantification over variable xi

h = $xi. f is defined as h = f(x1,x2,…,0,…,xn) f(x1,x2,…,1,…,xn)

 Universal quantification over variable xi

h = xi. f is defined as h = f(x1,x2,…,0,…,xn) f(x1,x2,…,1,…,xn)

 Boolean difference over variable xi

h = f/xi is defined as h = f(x1,x2,…,0,…,xn)  f(x1,x2,…,1,…,xn)

2019/8/23

FLOLAC 2019 15

Boolean Function Representation

 Some common representations:
 Truth table
 Boolean formula

 SOP (sum-of-products, or called disjunctive normal form, DNF)
 POS (product-of-sums, or called conjunctive normal form, CNF)

 BDD (binary decision diagram)
 Boolean network (consists of nodes and wires)

 Generic Boolean network
 Network of nodes with generic functional representations or even

subcircuits

 Specialized Boolean network
 Network of nodes with SOPs (PLAs)
 And-Inv Graph (AIG)

 Why different representations?
 Different representations have their own strengths and

weaknesses (no single data structure is best for all
applications)

2019/8/23

FLOLAC 2019 16

Boolean Function Representation
Truth Table

 Truth table (function table for multi-valued
functions):
The truth table of a function f : Bn  B is a
tabulation of its value at each of the 2n

vertices of Bn.

In other words the truth table lists all mintems

Example: f = abcd + abcd + abcd +
abcd + abcd + abcd +
abcd + abcd

The truth table representation is
- impractical for large n
- canonical
If two functions are the equal, then their
canonical representations are isomorphic.

abcd f

0 0000 0

1 0001 1

2 0010 0

3 0011 1

4 0100 0

5 0101 1

6 0110 0

7 0111 0

abcd f

8 1000 0

9 1001 1

10 1010 0

11 1011 1

12 1100 0

13 1101 1

14 1110 1

15 1111 1

2019/8/23

FLOLAC 2019 17

Boolean Function Representation
Boolean Formula

 A Boolean formula is defined inductively as an expression
with the following formation rules (syntax):

formula ::= ‘(‘ formula ‘)’

| Boolean constant (true or false)

| <Boolean variable>

| formula “+” formula (OR operator)

| formula “” formula (AND operator)

|  formula (complement)

Example

f = (x1  x2) + (x3) + ((x4  (x1)))

typically “” is omitted and ‘(‘, ‘)’ are omitted when the operator priority is

clear, e.g., f = x1 x2 + x3 + x4 x1

2019/8/23

FLOLAC 2019 18

Boolean Function Representation
Boolean Formula in SOP

 Any function can be represented as a sum-of-
products (SOP), also called sum-of-cubes (a cube
is a product term), or disjunctive normal form
(DNF)

Example

j = ab + a’c + bc

2019/8/23

FLOLAC 2019 19

Boolean Function Representation
Boolean Formula in POS

 Any function can be represented as a product-of-
sums (POS), also called conjunctive normal form
(CNF)
 Dual of the SOP representation

Example

 j= (a+b+c) (a+b+c) (a+b+c) (a+b+c)

 Exercise: Any Boolean function in POS can be
converted to SOP using De Morgan’s law and the
distributive law, and vice versa

2019/8/23

FLOLAC 2019 20

Boolean Function Representation
Binary Decision Diagram

 BDD – a graph
representation of Boolean
functions

 A leaf node represents
constant 0 or 1

 A non-leaf node
represents a decision node
(multiplexer) controlled by
some variable

 Can make a BDD
representation canonical
by imposing the variable
ordering and reduction
criteria (ROBDD)

f = ab+a’c+a’bd

1

0

c

a

b b

c c

d

0 1

c+bd b

root

node

c+d

d

2019/8/23

FLOLAC 2019 21

Boolean Function Representation
Binary Decision Diagram

 Any Boolean function f can be written in term of
Shannon expansion

f = v fv + v fv

 Positive cofactor: fxi = f(x1,…,xi=1,…, xn)
 Negative cofactor: fxi = f(x1,…,xi=0,…, xn)

 BDD is a compressed Shannon cofactor tree:
 The two children of a node with function f controlled by

variable v represent two sub-functions fv and fv

v

0 1

f

fv fv

2019/8/23

FLOLAC 2019 22

Boolean Function Representation
Binary Decision Diagram

 Reduced and ordered BDD (ROBDD) is a canonical
Boolean function representation

 Ordered:
cofactor variables are in the same order along all paths

xi1
< xi2

< xi3
< … < xin

 Reduced:
any node with two identical children is removed

two nodes with isomorphic BDD’s are merged

These two rules make any node in an ROBDD represent a
distinct logic function

a

c c

b

0 1

ordered

(a<c<b)

a

b c

c

0 1

not

ordered

b

a

b

0 1

f

b

0 1

f

reduce

2019/8/23

FLOLAC 2019 23

Boolean Function Representation
Binary Decision Diagram

 For a Boolean function,
 ROBDD is unique with respect to a given variable ordering

 Different orderings may result in different ROBDD structures

a

b b

c c

d

0 1

c+bd b

root node

c+d
c

d

f = ab+a’c+bc’d a

c

d

b

0 1

c+bd

db

b

10

leaf node
2019/8/23

FLOLAC 2019 24

Boolean Function Representation
Boolean Network

 A Boolean network is a directed graph C(G,N)
where G are the gates and N GG) are the
directed edges (nets) connecting the gates.

Some of the vertices are designated:
Inputs: I G
Outputs: O G
I O = 

Each gate g is assigned a Boolean function fg
which computes the output of the gate in terms
of its inputs.

2019/8/23

FLOLAC 2019 25

Boolean Function Representation
Boolean Network

 The fanin FI(g) of a gate g are the predecessor gates of g:

FI(g) = {g’ | (g’,g) N} (N: the set of nets)

 The fanout FO(g) of a gate g are the successor gates of g:

FO(g) = {g’ | (g,g’) N}

 The cone CONE(g) of a gate g is the transitive fanin (TFI) of
g and g itself

 The support SUPPORT(g) of a gate g are all inputs in its
cone:

SUPPORT(g) = CONE(g) I

2019/8/23

FLOLAC 2019 26

Boolean Function Representation
Boolean Network

Example

I

O

6

FI(6) = {2,4}

FO(6) = {7,9}

CONE(6) = {1,2,4,6}

SUPPORT(6) = {1,2}

Every node may have its own function

1

5

3

4

7
8

9

2

2019/8/23

FLOLAC 2019 27

Boolean Function Representation
And-Inverter Graph

 AND-INVERTER graphs (AIGs)

vertices: 2-input AND gates

edges: interconnects with (optional) dots representing INVs

 Hash table to identify and reuse structurally isomorphic
circuits

f

g g

f

2019/8/23

FLOLAC 2019 28

Boolean Function Representation

 Truth table
 Canonical
 Useful in representing small functions

 SOP
 Useful in two-level logic optimization, and in representing local node

functions in a Boolean network

 POS
 Useful in SAT solving and Boolean reasoning
 Rarely used in circuit synthesis (due to the asymmetric characteristics

of NMOS and PMOS)

 ROBDD
 Canonical
 Useful in Boolean reasoning

 Boolean network
 Useful in multi-level logic optimization

 AIG
 Useful in multi-level logic optimization and Boolean reasoning

2019/8/23

FLOLAC 2019 29

Circuit to CNF Conversion

 Naive conversion of circuit to CNF:
 Multiply out expressions of circuit until two level structure
 Example: y = x1x2 x2 ... xn (Parity function)

 circuit size is linear in the number of variables



 generated chess-board Karnaugh map
 CNF (or DNF) formula has 2n-1 terms (exponential in #vars)

 Better approach:
 Introduce one variable per circuit vertex
 Formulate the circuit as a conjunction of constraints imposed

on the vertex values by the gates
 Uses more variables but size of formula is linear in the size of

the circuit

2019/8/23

FLOLAC 2019 30

Circuit to CNF Conversion

 Example
 Single gate:

 Circuit of connected gates:

b

a

c (a + b + c)(a + c)(b + c)
AND

1

6

2 5
8

7

3

4

9 0

(1 + 2 + 4)(1 + 4)(2 + 4)

(2 + 3 + 5)(2 + 5)(3 + 5)

(2 + 3 + 6)(2 + 6)(3 + 6)

(4 + 5 + 7)(4 + 7)(5 + 7)

(5 + 6 + 8)(5 + 8)(6 + 8)

(7 + 8 + 9)(7 + 9)(8 + 9)

(9)

Justify to “1”

Is output always 0 ?

2019/8/23

FLOLAC 2019 31

Circuit to CNF Conversion

Circuit to CNF conversion

 can be done in linear size (with respect to the
circuit size) if intermediate variables can be
introduced

may grow exponentially in size if no
intermediate variables are allowed

2019/8/23

FLOLAC 2019 32

Propositional Satisfiability

2019/8/23

FLOLAC 2019 33

Normal Forms

 A literal is a variable or its negation

 A clause (cube) is a disjunction (conjunction) of
literals

 A conjunctive normal form (CNF) is a
conjunction of clauses; a disjunctive normal
form (DNF) is a disjunction of cubes

 E.g.,

CNF: (a+b+c)(a+c)(b+d)(a)

(a) is a unit clause, d is a pure literal

DNF: abc + ac + bd + a

2019/8/23

FLOLAC 2019 34

Satisfiability

 The satisfiability (SAT) problem asks whether a
given CNF formula can be true under some
assignment to the variables

 In theory, SAT is intractable
 The first shown NP-complete problem [Cook, 1971]

 In practice, modern SAT solvers work
‘mysteriously’ well on application CNFs with
~100,000 variables and ~1,000,000 clauses
 It enables various applications, and inspires QBF and

SMT (Satisfiability Modulo Theories) solver development

2019/8/23

FLOLAC 2019 35

SAT Competition

http://www.satcompetition.org/PoS11/

2019/8/23

FLOLAC 2019 36

SAT Solving

 Ingredients of modern SAT solvers:
 DPLL-style search

[Davis, Putnam, Logemann, Loveland, 1962]

 Conflict-driven clause learning (CDCL)
[Marques-Silva, Sakallah, 1996 (GRASP)]

 Boolean constraint propagation (BCP) with two-literal
watch
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Decision heuristics using variable activity
[Moskewicz, Modigan, Zhao, Zhang, Malik, 2001 (Chaff)]

 Restart
 Preprocessing
 Support for incremental solving

[Een, Sorensson, 2003 (MiniSat)]

2019/8/23

FLOLAC 2019 37

Pre-Modern SAT Procedure

Algorithm DPLL(Φ)

{

while there is a unit clause {l} in Φ

Φ = BCP(Φ, l);

while there is a pure literal l in Φ

Φ = assign(Φ, l);

if all clauses of Φ satisfied return true;

if Φ has a conflicting clause return false;

l := choose_literal(Φ);

return DPLL(assign(Φ,l))  DPLL(assign(Φ,l));

}

2019/8/23

FLOLAC 2019 38

DPLL Procedure

Chorological backtrack

E.g.

a

b

c

0

0

0





1

1

T

~a ~b b ~c c d

{a,e}
{a,b,c}
{c,d}
{a,b,d}
{d,e}
{c,d,e}

~d

~e



~c

~c d



~a ~b

2019/8/23

FLOLAC 2019 39

Modern SAT Procedure

Algorithm CDCL(Φ)
{

while(1)

while there is a unit clause {l} in Φ

Φ = BCP(Φ, l);

while there is a pure literal l in Φ

Φ = assign(Φ, l);

if Φ contains no conflicting clause

if all clauses of Φ are satisfied return true;

l := choose_literal(Φ);

assign(Φ,l);

else

if conflict at top decision level return false;

analyze_conflict();

undo assignments;

Φ := add_conflict_clause(Φ);

}

2019/8/23

FLOLAC 2019 40

Conflict Analysis & Clause Learning

 There can be many learnt
clauses from a conflict

 Clause learning admits non-
chorological backtrack

 E.g.,

{x10587, x10588,
x10592}

…

{x10374, x10582,
x10578, x10373, x10629}

…

{x10646, x9444, x10373,
x10635, x10637}

Courtesy of Niklas Een

Box: decision node
Oval: implication node
Inside: literal (decision level)

2019/8/23

FLOLAC 2019 41

Clause Learning as Resolution

 Resolution of two clauses C1x and C2x:

C1x C2x

C1C2

where x is the pivot variable and C1C2 is the resolvant,
i.e., C1C2 = $x.(C1x)(C2x)

 A learnt clause can be obtained from a sequence of
resolution steps
 Exercise:

Find a resolution sequence leading to the learnt clause

{x10374, x10582, x10578, x10373, x10629}

in the previous slides

2019/8/23

FLOLAC 2019 42

Resolution

 Resolution is complete for SAT solving
 A CNF formula is unsatisfiable if and only if there exists

a resolution sequence leading to the empty clause

 Example (abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()
2019/8/23

FLOLAC 2019 43

SAT Certification

True CNF

Satisfying assignment (model)

Verifiable in linear time

False CNF

Resolution refutation

Potentially of exponential size

2019/8/23

FLOLAC 2019 44

Craig Interpolation

 [Craig Interpolation Thm, 1957]

If AB is UNSAT for formulae A
and B, there exists an
interpolant I of A such that

1. AI

2. IB is UNSAT

3. I refers only to the common
variables of A and B

BA

I

I is an abstraction of A

2019/8/23

FLOLAC 2019 45

Interpolant and Resolution Proof

 SAT solver may produce the resolution proof of an UNSAT
CNF j

 For j= jAjB specified, the corresponding interpolant can
be obtained in time linear in the resolution proof

jA jB

(abc)(ac)(bd)(c)(cd)

(bc)

(cd)

(d)

(d)

()

(bc)(c)(1)(1)(1)

= (bc)

[McMillan, 2003]

2019/8/23

FLOLAC 2019 46

Incremental SAT Solving

To solve, in a row, multiple CNF formulae,
which are similar except for a few clauses,
can we reuse the learnt clauses?

What if adding a clause to j?

What if deleting a clause from j?

2019/8/23

FLOLAC 2019 47

Incremental SAT Solving

MiniSat API

 void addClause(Vec<Lit> clause)

 bool solve(Vec<Lit> assumps)

 bool readModel(Var x) − for SAT results

 bool assumpUsed(Lit p) − for UNSAT results

 The method solve() treats the literals in assumps as unit
clauses to be temporary assumed during the SAT-
solving.

 More clauses can be added after solve() returns, then
incrementally another SAT-solving executed.

Courtesy of Niklas Een

2019/8/23

FLOLAC 2019 48

SAT & Logic Synthesis
Equivalence Checking

2019/8/23

FLOLAC 2019 4949

Combinational EC

 Given two combinational circuits C1 and C2, are
their outputs equivalent under all possible input
assignments?

x C1

C2x


?

y1

y2

2019/8/23

FLOLAC 2019 5050

Miter for Combinational EC

 Two combinational circuits C1 and C2 are
equivalent if and only if the output of their “miter”

structure always produces constant 0

x 0?

C1

C2

2019/8/23

FLOLAC 2019 5151

Approaches to Combinational EC

Basic methods:

 random simulation

good at identifying inequivalent signals

 BDD-based methods

 structural SAT-based methods

x 0?

C1

C2

2019/8/23

FLOLAC 2019 52

SAT & Logic Synthesis
Functional Dependency

2019/8/23

FLOLAC 2019 53

Functional Dependency

f(x) functionally depends on g1(x),
g2(x), …, gm(x) if f(x) = h(g1(x), g2(x), …, gm(x)),
denoted h(G(x))
Under what condition can function f be

expressed as some function h over a set
G={g1,…,gm} of functions ?

 h exists  $a,b such that f(a)f(b) and G(a)=G(b)

i.e., G is more distinguishing than f

2019/8/23

FLOLAC 2019 54

Motivation

Applications of functional dependency
Resynthesis/rewiring

Redundant register removal

BDD minimization

Verification reduction

…

f

g4
g3

g2

g1
target function
base functions

h

Boolean Network

2019/8/23

FLOLAC 2019 55

BDD-Based Computation

BDD-based computation of h
hon = {y  Bm : y = G(x) and f(x) = 1, x  Bn}

hoff = {y  Bm : y = G(x) and f(x) = 0, x  Bn}

Bn Bm

Gf(x) = 1

f(x) = 0

hon = $x.(yG)f

hoff = $x.(yG)f

2019/8/23

FLOLAC 2019 56

BDD-Based Computation

Pros

 Exact computation of hon and hoff

Better support for don’t care minimization

Cons

 2 image computations for every choice of G

 Inefficient when |G| is large or when there are
many choices of G

2019/8/23

FLOLAC 2019 57

SAT-Based Computation

h exists 

$a,b such that f(a)f(b) and G(a)=G(b),

i.e., (f(x)f(x*))(G(x)G(x*)) is UNSAT

How to derive h? How to select G?

2019/8/23

FLOLAC 2019 58

SAT-Based Computation

 (f(x)f(x*))(G(x)G(x*)) is UNSAT

Circuit

Part

== =

…

…

……

1 0

DFNoffDFNon

0y *y0

*y2

*

my……1y 2y my

1x
2x nx

1

*x *

nx*x2

Constraint

Part

*y1

Assertion

Constraints

Equality

Constraints

2019/8/23

FLOLAC 2019 59

Deriving h with Craig Interpolation

 Clause set A: CDFNon, y0

 Clause set B: CDFNoff, y0
*, (yiyi

*) for i =1,…,m
 I is an overapproximation of Img(fon) and is disjoint from

Img(foff)
 I only refers to y1,…, ym

 Therefore, I corresponds to a feasible implementation of h

== =

…

…

……

1 0

DFNoffDFNon

0y *y0

*y2

*

my……1y 2y my

1x
2x nx

1

*x *

nx*x2

*y1

A B

Img(fon) Img(foff)

2019/8/23

FLOLAC 2019 60

Incremental SAT Solving

 Controlled equality constraints

(yiyi
*)  (yi  yi

*  ai)(yi  yi
*  ai)

with auxiliary variables ai

 Fast switch between target and base functions by unit
assumptions over control variables

 Fast enumeration of different base functions

 Share learned clauses

ai = true  ith equality constraint is disabled

2019/8/23

FLOLAC 2019 61

SAT vs. BDD

 SAT

 Pros
 Detect multiple choices of

G automatically
 Scalable to large |G|
 Fast enumeration of

different target functions
f

 Fast enumeration of
different base functions G

 Cons
 Single feasible

implementation of h

 BDD

 Cons
 Detect one choice of G at

a time
 Limited to small |G|
 Slow enumeration of

different target functions
f

 Slow enumeration of
different base functions G

 Pros
 All possible

implementations of h

2019/8/23

FLOLAC 2019 62

Practical Evaluation

Original Retimed SAT (original) BDD (original) SAT (retimed) BDD (retimed)

Circuit #Nodes #FF. #Dep-S #Dep-B #FF. #Dep-S #Dep-B Time Mem Time Mem Time Mem Time Mem

s5378 2794 179 52 25 398 283 173 1.2 18 1.6 20 0.6 18 7 51

s9234.1 5597 211 46 x 459 301 201 4.1 19 x x 1.7 19 194.6 149

s13207.1 8022 638 190 136 1930 802 x 15.6 22 31.4 78 15.3 22 x x

s15850.1 9785 534 18 9 907 402 x 23.3 22 82.6 94 7.9 22 x x

s35932 16065 1728 0 -- 2026 1170 -- 176.7 27 1117 164 78.1 27 -- --

s38417 22397 1636 95 -- 5016 243 -- 270.3 30 -- -- 123.1 32 -- --

s38584 19407 1452 24 -- 4350 2569 -- 166.5 21 -- -- 99.4 30 1117 164

b12 946 121 4 2 170 66 33 0.15 17 12.8 38 0.13 17 2.5 42

b14 9847 245 2 -- 245 2 -- 3.3 22 -- -- 5.2 22 -- --

b15 8367 449 0 -- 1134 793 -- 5.8 22 -- -- 5.8 22 -- --

b17 30777 1415 0 -- 3967 2350 -- 119.1 28 -- -- 161.7 42 -- --

b18 111241 3320 5 -- 9254 5723 -- 1414 100 -- -- 2842.6 100 -- --

b19 224624 6642 0 -- 7164 337 -- 8184.8 217 -- -- 11040.6 234 -- --

b20 19682 490 4 -- 1604 1167 -- 25.7 28 -- -- 36 30 -- --

b21 20027 490 4 -- 1950 1434 -- 24.6 29 -- -- 36.3 31 -- --

b22 29162 735 6 -- 3013 2217 -- 73.4 36 -- -- 90.6 37 -- --

SAT vs. BDD

2019/8/23

FLOLAC 2019 63

Practical Evaluation

0.001

0.01

0.1

1

10

100

1 50 99

Iteration

T
im

e
 (

lo
g

)

b19 (200k nodes) b18 (100k nodes)

b17 (30k nodes) b15 (10k nodes)

Incremental SAT

2019/8/23

FLOLAC 2019 64

Quantified Boolean
Satisfiability

2019/8/23

FLOLAC 2019 65

Quantified Boolean Formula

 A quantified Boolean formula (QBF) is often
written in prenex form (with quantifiers placed
on the left) as

Q1 x1, …, Qn xn. j

for Qi  {, $} and j a quantifier-free formula
 If j is further in CNF, the corresponding QBF is in the

so-called prenex CNF (PCNF), the most popular QBF
representation

 Any QBF can be converted to PCNF

prefix matrix

2019/8/23

FLOLAC 2019 66

Quantified Boolean Formula

Quantification order matters in a QBF

A variable xi in (Q1 x1,…, Qi xi,…, Qn xn. j)

is of level k if there are k quantifier
alternations (i.e., changing from  to $ or
from $ to ) from Q1 to Qi.

 Example

a $b c d $e. j

level(a)=0, level(b)=1, level(c)=2, level(d)=2,
level(e)=3

2019/8/23

FLOLAC 2019 67

Quantified Boolean Formula

Many decision problems can be
compactly encoded in QBFs

 In theory, QBF solving (QSAT)
is PSPACE complete
 The more the quantifier

alternations, the higher the
complexity in the Polynomial
Hierarchy

 In practice, solvable QBFs are
typically of size ~1,000
variables

P

PSPACE

coNP NP

2 2

2019/8/23

FLOLAC 2019 68

QBF Solver

 QBF solver choices
 Data structures for formula representation

 Prenex vs. non-prenex

Normal form vs. non-normal form
 CNF, NNF, BDD, AIG, etc.

 Solving mechanisms
 Search, Q-resolution, Skolemization, quantifier elimination, etc.

 Preprocessing techniques

 Standard approach
 Search-based PCNF formula solving (similar to SAT)

 Both clause learning (from a conflicting assignment) and cube
learning (from a satisfying assignment) are performed
 Example

a $b $c d $e. (a+c)(a+c)(b+c+e)(b)(c+d+e)(c+e)(d+e)

from 00101, we learn cube abcd (can be further simplified to a)

2019/8/23

FLOLAC 2019 69

QBF Solving

 Example
))()()()()()((ybabxbxaccybxcybxacyba 

 La,  Ra,

))()()()()((ybbxcybxcybxcyb ))()()((bxbxccybx 

 Lx,  Rx,

))()()()((ybcybcybcyb ))()()((ybbcycyb 

 Ub,  Ub,

))()((cycycy 
 Pc,

 Ly,  Ry,
))((cc)(c

}{true}{ false

 Py,

))()()((bxbxccbx 

 Uc,

))()((bxbxbx 

 Lx,  Rx,

)(b))((bb

}{true

}{true }{ false







$

cybxa $$$

)(ycbxa

)(cbxa

)(cbxa

2019/8/23

FLOLAC 2019 70

Q-Resolution

 Q-resolution on PCNF is similar to resolution on CNF, except that
the pivots are restricted to existentially quantified variables and
the additional rule of -reduction

C1x C2x

-RED(C1C2)

where operator -RED removes from C1C2 the universally ()
quantified variables whose quantification levels are greater than
any of the existentially ($) quantified variables in C1C2

 E.g.,
prefix: a $b c d $e
-RED(a+b+c+d) = (a+b)

 Q-resolution is complete for QBF solving
 A PCNF formula is unsatisfiable if and only if there exists a Q-

resolution sequence leading to the empty clause

2019/8/23

FLOLAC 2019 71

Q-Resolution

 Example (cont’d)

 La,  Ra,

 Lx,

 Ub,

 Ly,

}{ false

 Py,

 Uc,

 Rx,

 Lc,  Rc,

}{ false

)(xba 

)(bx 

}{ false

 Lb,  Rb,

}{ false

)(cy )(a

)(xac 

)(a

)(a

)(a

)(bx )(bxac )(cyxba )(cyba 

)(a

)(a

)(

cybxa $$$))()()()()()((ybabxbxaccybxcybxacyba 

2019/8/23

FLOLAC 2019 72

Skolemization

 Skolemization and Skolem normal form
 Existentially quantified variables are

replaced with function symbols

 QBF prefix contains only two
quantification levels
 $ function symbols,  variables

 Example

a $b c $d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions

2019/8/23

FLOLAC 2019 73

QBF Certification

 QBF certification
 Ensure correctness and, more importantly, provide useful

information

 Certificates
 True QBF: term-resolution proof / Skolem-function (SF) model

 SF model is more useful in practical applications

 False QBF: clause-resolution proof / Herbrand-function (HF)
countermodel
 HF countermodel is more useful in practical applications

 Solvers and certificates
 Skolemization-based solvers (e.g., sKizzo, squolem, Ebddres)

can provide SFs

 Search-based solvers (e.g., DepQBF) can be instrumented to
provide resolution proofs

2019/8/23

FLOLAC 2019 74

QBF Certification

Solvers and certificates (prior to 2011)

Solver Algorithm Certificate

True QBF False QBF

QuBE-cert search Cube resolution Clause resolution

yQuaffle search Cube resolution Clause resolution

Ebddres Skolemization Skolem function Clause resolution

sKizzo Skolemization Skolem function -

squolem Skolemization Skolem function Clause resolution

2019/8/23

FLOLAC 2019 75

QBF Certification

Incomplete picture of QBF certification
(prior to 2011)

Missing piece found
Herbrand-function countermodel

[Balabanov, J, 2011 (ResQu)]

Syntactic to semantic certificate conversion
Linear time [Balabanov, J, 2011 (ResQu)]

Syntactic Certificate Semantic Certificate

True QBF Cube-resolution proof Skolem-function model

False QBF Clause-resolution proof ?

2019/8/23

FLOLAC 2019 76

QBF Certification

Unified QBF certification

Cube resolution proof Clause resolution proof

Skolem function
(model)

Herbrand function
(countermodel)

True QBF False QBF

ResQu ResQu

formula
negation

2019/8/23

FLOLAC 2019 77

ResQu

 A Skolem-function model (Herbrand-function
countermodel) for a true (false) QBF can be
derived from its cube (clause) resolution proof

 A Right-First-And-Or (RFAO) formula

is recursively defined as follows.

j := clause | cube | clause  j | cube  j

 E.g.,

(a’+b)  ac  (b’+c’)  bc

= ((a’+b)  (ac  ((b’+c’)  bc)))

2019/8/23

FLOLAC 2019 78

ResQu

2019/8/23

FLOLAC 2019 79

ResQu

 Example
 $ax$by$c

7654321)()()()()()()(ybabxcbxacybxcybxacyba 

8)(ybxa 

 8)(bxa
 10)(bxa

9)(a

10)(ybxa 

9)(xa 
11)(xa 

11)(a

)(empty

 7)(ba

)2(

)3(

)1(

)4(

)5(

2019/8/23

FLOLAC 2019 80

QBF Certification

Applications of Skolem/Herbrand functions

 Program synthesis

Winning strategy synthesis in two player
games

 Plan derivation in AI

 Logic synthesis

 ...

2019/8/23

FLOLAC 2019 81

QSAT & Logic Synthesis
Boolean Matching

2019/8/23

FLOLAC 2019 82

Introduction

 Combinational
equivalence checking
(CEC)

 Known input
correspondence

 coNP-complete

 Well solved in practical
applications

… …

x1 x2 xn

f g

y1 y2 yn

2019/8/23

FLOLAC 2019 83

Introduction

 Boolean matching

 P-equivalence

 Unknown input
permutation

O(n!) CEC iterations

 NP-equivalence

 Unknown input negation
and permutation

 O(2nn!) CEC iterations

 NPN-equivalence

 Unknown input negation,
input permutation, and
output negation

O(2n+1n!) CEC iterations

… …

x1 x2 xn

f g

y1 y2 yn

P N



N

2019/8/23

FLOLAC 2019 84

Introduction

Example

y1 y2 y3

g

x1 x2 x3

f

x1 x2 x3

=

2019/8/23

FLOLAC 2019 85

Introduction

 Motivations
 Theoretically

 Complexity in between
coNP (for all …) and
2 (there exists … for all …)
in the Polynomial Hierarchy (PH)

 Special candidate to test PH collapse

 Known as Boolean congruence/isomorphism
dating back to the 19th century

 Practically
 Broad applications

 Library binding
 FPGA technology mapping
 Detection of generalized symmetry
 Logic verification
 Design debugging/rectification
 Functional engineering change order

 Intensively studied over the last two decades

P

PSPACE

coNP NP

2 2

2019/8/23

FLOLAC 2019 86

Introduction

 Prior methods

Complete
?

Function
type

Equivalence
type

Solution
type

Scalability

Spectral
methods

yes CS mostly P one – –

Signature
based methods

no mostly CS P/NP N/A – ~ ++

Canonical-form
based methods

yes CS mostly P one +

SAT based
methods

yes CS mostly P one/all +

BooM

(QBF/SAT-like)

yes CS / IS NPN one/all ++

CS: completely specified
IS: incompletely specified

2019/8/23

FLOLAC 2019 87

BooM: A Fast Boolean Matcher

Features of BooM

General computation framework

 Effective search space reduction techniques

Dynamic learning and abstraction

 Theoretical SAT-iteration upper-bound:

O(2nn!) O(22n)

2019/8/23

FLOLAC 2019 88

Formulation

 Reduce NPN-equiv to 2 NP-equiv checks

 Matching f and g; matching f and g

 2nd order formula of NP-equivalence

 fc and gc are the care conditions of f and g, respectively

 Need 1st order formula instead for SAT solving

$。,x ((fc(x)  gc(。(x)))  (f(x)  g(。(x))))

2019/8/23

FLOLAC 2019 89

Formulation

0-1 matrix representation of 。

 =1

bij  (xj  yi)aij  (xj  yi)

 =1

2019/8/23

FLOLAC 2019 90

Formulation

 Quantified Boolean formula (QBF) for NP-equivalence

 jC: cardinality constraint

 jA: /\i,j (aij  (yi  xj)) (bij  (yi  xj))

 Look for an assignment to a- and b-variables that satisfies
jC and makes the miter constraint

 = jA  (f  g)  fc  gc

unsatisfiable

 Refine jC iteratively in a sequence 0, 1, …, k, for i+1

 i through conflict-based learning

$a,$b,x,y (jC  jA ((fc  gc)  (f  g))

2019/8/23

FLOLAC 2019 91

BooM Flow

f (and fc) g (and gc)

Preprocess
(sig., abs.)

Solve mapping i

SAT?

Solve miter 

SAT?

No match

Match
found

Add learned
clause to i



i characterizes
all matches

How to compute
all matches?

Solve i  

i=0

yes

no

i=i+1

no

yes

2019/8/23

FLOLAC 2019 92

NP-Equivalence
Conflict-based Learning

Observation

0 1 1

。

f g

1 0 1

1 0

1 0 1

From SAT 1

≠ How to avoid
these 6 mappings

at once?

2019/8/23

FLOLAC 2019 93

a11 b12 a13 b21 a22 b23 b31 a32 b33

Learnt clause generation

(a11 ∨ b12 ∨ a13 ∨ b21 ∨ a22 ∨ b23 ∨ b31 ∨ a32 ∨ b33)

NP-Equivalence
Conflict-based Learning

f g

1 0

。

1 0 1 0 1 1

1 0 1

2019/8/23

FLOLAC 2019 94

NP-Equivalence
Conflict-based Learning

 Proposition:

If f(u)  g(v) with v = 。(u) for some 。 satisfying i,
then the learned clause \/ij lij for literals

lij = (vi  uj) ? aij : bij

excludes from i the mappings {。 | 。(u) = 。(u)}

 Proposition:

The learned clause prunes n! infeasible mappings

 Proposition:

The refinement process 0, 1, …, k is bounded by 22n

iterations

2019/8/23

FLOLAC 2019 95

NP-Equivalence
Abstraction

 Abstract Boolean matching
 Abstract

f(x1,…,xk,xk+1,…,xn) to
f(x1,…,xk,z,…,z) =
f*(x1,…,xk,z)

 Match g(y1,…,yn) against
f*(x1,…,xk,z)

 Infeasible matching
solutions of f* and g are
also infeasible for f and g

y1 yk yn

g

yk+1

……

x1 xk

f*

z

…

x1 xk z

f

z

……

x1 xk xn

f

xk+1

……

P N

2019/8/23

FLOLAC 2019 96

NP-Equivalence
Abstraction

Abstract Boolean matching
Similar matrix representation of

negation/permutation

Similar cardinality constraints, except for allowing
multiple y-variables mapped to z

 =1

 =1

2019/8/23

FLOLAC 2019 97

NP-Equivalence
Abstraction

Used for preprocessing

Information learned for abstract model is
valid for concrete model

Simplified matching in reduced Boolean
space

2019/8/23

FLOLAC 2019 98

P-Equivalence
Conflict-based Learning

 Proposition:

If f(u)  g(v) with v = (u) for some  satisfying
i, then the learned clause \/ij lij for literals

lij = (vi=0 and uj=1) ? aij : 

excludes from i the mappings { | (u) = (u)}

2019/8/23

FLOLAC 2019 99

P-Equivalence
Abstraction

Abstraction enforces search in biased truth
assignments and makes learning strong

 For f* having k support variables, a learned
clause converted back to the concrete model
consists of at most (k–1)(n–k+1) literals

2019/8/23

FLOLAC 2019 100

Practical Evaluation

BooM implemented in ABC using MiniSAT

A function is matched against its
synthesized, and input-permuted/negated
version
Match individual output functions of MCNC,

ISCAS, ITC benchmark circuits
717 functions with 10~39 support variables and

15~2160 AIG nodes

 Time-limit 600 seconds

Baseline preprocessing exploits symmetry,
unateness, and simulation for initial matching

2019/8/23

FLOLAC 2019 101

Practical Evaluation

(P-equivalence; find all matches)

Learning Abstraction

2019/8/23

FLOLAC 2019 102

Practical Evaluation

P-equivalence NP-equivalence

2019/8/23

FLOLAC 2019 103

Practical Evaluation

(runtime after same preprocessing;
P-equivalence; find one match)

BooM vs. DepQBF

2019/8/23

FLOLAC 2019 104

QSAT & Logic Synthesis
Relation Determinization

2019/8/23

FLOLAC 2019 105

Relation vs. Function

 Relation R(X, Y)
 Allow one-to-many

mappings

Can describe non-
deterministic
behavior

 More generic than
functions

 Function F(X)
 Disallow one-to-many

mappings

Can only describe
deterministic
behavior

 A special case of
relation

11

10

01

00

11

10

01

00

x1x2 y1y2

11

10

01

00

11

10

01

00

x1x2 y1y2

f1 =x1 x2

f2 = x1 x2

2019/8/23

FLOLAC 2019 106

Relation

 Total relation

 Every input element is
mapped to at least one
output element

 Partial relation

 Some input element is
not mapped to any
output element

11

10

01

00

1

0

x1x2 y

11

10

01

00

1

0

x1x2 y

2019/8/23

FLOLAC 2019 107

Relation

A partial relation can be totalized

Assume that the input element not mapped to
any output element is a don’t care

11

10

01

00

1

0

x1x2 y

11

10

01

00

1

0

x1x2 y
Partial relation

Totalize

Total relation

T(X, y) = R(X, y)  y.  R(X, y)

2019/8/23

FLOLAC 2019 108

Motivation

 Applications of Boolean relation

 In high-level design, Boolean relations can be used to
describe (nondeterministic) specifications

 In gate-level design, Boolean relations can be used to
characterize the flexibility of sub-circuits

Boolean relations are more powerful than traditional don’t-

care representations

11

10

01

00

11

10

01

00

x1x2 y1y2

System
Spec.

x1

x2

y1

y2

2019/8/23

FLOLAC 2019 109

Motivation

Relation determinization

 For hardware implement of a system, we need
functions rather than relations

Physical realization are deterministic by nature

One input stimulus results in one output response

 To simplify implementation, we can explore
the flexibilities described by a relation for
optimization

2019/8/23

FLOLAC 2019 110

Motivation

Example

f1 =x1 x2

f2 = x1 x2

f1 =x2

f2 = x1

11

10

01

00

11

10

01

00

x1x2 y1y2

11

10

01

00

z1z2

z1

z2

z1

z2

y1

y2

y1

y2

x1
x2

x1

x2

2019/8/23

FLOLAC 2019 111

Relation Determinization

Given a nondeterministic Boolean relation
R(X, Y), how to determinize and extract

functions from it?

For a deterministic total relation, we can
uniquely extract the corresponding
functions

2019/8/23

FLOLAC 2019 112

Relation Determinization

Approaches to relation determinization

 Iterative method (determinize one output at a
time)

BDD- or SOP-based representation

 Not scalable

 Better optimization

AIG representation

 Focus on scalability with reasonable optimization
quality

Non-iterative method (determinize all ouputs
at once)

QBF solving

2019/8/23

FLOLAC 2019 113

Iterative Relation Determinization

 Single-output relation
 For a single-output total relation R(X, y), we derive a

function f for variable y using interpolation

11

10

01

00

1

0

x1x2 y
I

φB
φA

φA : R(X,0)

Minimal care onset of f

φB : R(X,1)

Minimal care offset of f

00

11

 R(X,0) R(X,1) UNSAT

10

2019/8/23

FLOLAC 2019 114

Iterative Relation Determinization

 Multi-output relation

 Two-phase computation:

1. Backward reduction

 Reduce to single-output case

R(X, y1, …, yn) → ∃y2, …, ∃yn. R(X, y1, …, yn)

2. Forward substitution

 Extract functions

2019/8/23

FLOLAC 2019 115

Iterative Relation Determinization

Example

Phase1: (expansion reduction)
$y3.R(X, y1, y2 , y3) → R(3)(X, y1, y2)

$y2.R
(3)(X, y1, y2) → R(2)(X, y1)

y1 y2X y3

f3

X

RR(3)R(2)

Phase2:
R(2)(X, y1) → y1 = f1 (X)

R(3)(X, y1, y2) → R(3)(X, f1(X), y2) → y2 = f2 (X)

R(X, y1, y2 , y3) → R(X, f1(X), f2(X), y2) → y3 = f3 (X)
f1

X

f2

X

2019/8/23

FLOLAC 2019 116

Non-Iterative Relation Determinization

Solve QBF

x1,…,xm,∃y1,…,∃yn. R(x1,…,xm, y1, …, yn)

 The Skolem functions of variables y1, …, yn correspond to

the functions we want

2019/8/23

FLOLAC 2019 117

Stochastic Boolean
Satisfiability

2019/8/23

Decision under Uncertainty
(Example 1)

 Probabilistic planning: Robot charge [Huang 06]

 States: {S0, …, S15}

Initial state: S0; goal state: S15

 Actions: {, , , }
 Succeed with prob. 0,8

 Proceed to its right w.r.t. the intended direction with prob. 0,2

2019/8/23 FLOLAC 2019 118

S1 S2 S3

S5 S6 S7

S12 S13 S14

S4

S9 S10 S11S8

Decision under Uncertainty
(Example 2)

 Probabilistic planning: Sand-Castle-67 [Majercik, Littman
98]

 States: (moat, castle) = {(0,0), (0,1), (1,0), (1,1)}

 Initial state: (0,0); goal states: (0,1), (1,1)

 Actions: {dig-moat, erect-castle}

2019/8/23 FLOLAC 2019 119

dig-moat

erect-castle

moat castle

1.0 0.5 1.0 0.0

FT FT

moat castle

0.0 1.0

FT FT

castle

0.75

FT
castle

’

1.0 0.5

FT

moat

0.67 0.25

FT

Decision under Uncertainty
(Example 3)

 Evaluation of probabilistic circuits [Lee, J 14]

 Each gate produces correct value under a certain
probability

 Query about the average output error rate, the
maximum error rate under some input assignment, etc.

2019/8/23 FLOLAC 2019 120

Decision under Uncertainty
(Example 4)

 Belief network inference [Dechter 96, Peot 98]

 BN queries, e.g., belief assessment, most probable
explanation, maximum a posteriori hypothesis,
maximum expected utility

2019/8/23 FLOLAC 2019 121

Introduction
The Satisfiability Family

Boolean satisfiability (SAT)

Sharp-SAT (#SAT)

Quantified Boolean satisfiability (QSAT)

Stochastic Boolean satisfiability (SSAT)

2019/8/23 FLOLAC 2019 122

Introduction
The Satisfiability Family – SAT

 The Boolean satisfiability (SAT)
problem asks whether a given
Conjunctive Normal Form (CNF)
formula can be satisfied under
some assignment to the variables

 E.g.,

 (a+b+c)(a+c)(b+d)(a) is
satisfiable under (a,b,c,d)=(0,0,0,1)

 (a+b+c)(a+c)(b)(a) is
unsatisfiable

 The first known NP-complete
problem [Cook 71]

2019/8/23 FLOLAC 2019 123

P

PSPACE

coNP NP

2 2

Introduction
The Satisfiability Family – #SAT

The #SAT problem asks the number of
satisfying solutions to a given CNF formula
 E.g., (a+b+c)(a+c)(b+d)(a+b) has five

solutions, which are (a,b,c,d) = (0,0,0,1),
(1,1,-,-)

A #P-complete problem

A.k.a. model counting
Exact vs. approximate model counting

Weighted model counting: variables are weighted
under a function 𝑤:𝑣𝑎𝑟(𝜙)→[0,1]

 Compute the sum of weights of satisfying assignments
of 𝜙

2019/8/23 FLOLAC 2019 124

Introduction
The Satisfiability Family – QBF

 A quantified Boolean formula (QBF)
is often written in prenex form as
Q1 x1, …, Qn xn. j

for Qi  {, $} and j a
quantifier-free CNF formula

 E.g., a $b c $d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

 QBF satisfiability is PSPACE-complete

2019/8/23 FLOLAC 2019 125

prefix matrix

P

PSPACE

coNP NP

2 2

Introduction
The Satisfiability Family – QBF

 A game interpretation of QBF
 Two-player game played by $-

player (to satisfy the formula) and
-player (to falsity the formula)

2019/8/23 FLOLAC 2019 126

a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions

a $b c $d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) a c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

Introduction
The Satisfiability Family – SSAT

 Syntax of SSAT formula
Φ = 𝑄1𝑣1…𝑄𝑛𝑣𝑛. 𝜙 𝑣1, … , 𝑣𝑛
 Prefix: 𝑄1𝑣1…𝑄𝑛𝑣𝑛 with 𝑄𝑖∈ {∃,ℛ𝑝𝑖}

Randomized quantification ℛ𝑝𝑖𝑣𝑖: 𝑣𝑖 valuates to TRUE with

probability 𝑝𝑖

 Matrix:𝜙 𝑣1, … , 𝑣𝑛 being a quantifier-free
propositional formula often in CNF

2019/8/23 FLOLAC 2019 127

Introduction
The Satisfiability Family – SSAT

Semantics of SSAT formula
Φ = 𝑄1𝑣1…𝑄𝑛𝑣𝑛. 𝜙 𝑣1, … , 𝑣𝑛
 Optimization version: Find the maximum SP

 Decision version: Determine whether SP  𝜃

 Satisfying probability (SP): Expectation of 𝜙
satisfaction w.r.t. the prefix
Pr ⊤ = 1; Pr ⊥ = 0

Pr Φ = max Pr Φ|¬𝑣 , Pr Φ|𝑣 , for outermost quantification
∃𝑣

Pr Φ = 1 − 𝑝 Pr Φ|¬𝑣 + 𝑝Pr Φ|𝑣 , for outermost
quantification ℛ𝑝𝑣

2019/8/23 FLOLAC 2019 128

Introduction
Stochastic Boolean Satisfiability

 A game interpretation of SSAT

 Two-player game played by $-
player (to maximize the
expectation of satisfaction) and
ℛ -player (to make random
moves)

2019/8/23 FLOLAC 2019 129

a

b

c

d

0 1 1 00 0 1 1 1 1 1 1 0 00 0

Skolem functions

ℛ0.6a $b ℛ0.5c $d.
(a+b)(b+c+d)(b+c+d)(a+b+c)

$Fb(a) $Fd(a,c) ℛ0.6a ℛ0.5c.
(a+Fb)(Fb+c+Fd)(Fb+c+Fd)(a+Fb+c)

0.4 0.6

0.5 0.5 0.5 0.5 0.5

10 1 1 1 1 0 0

0110.5

1 1

1

Introduction
The Satisfiability Family – SSAT

Ex: Φ = ∃𝑥ℛ0.9𝑦. (𝑥 ∨ 𝑦)(¬𝑥 ∨ ¬𝑦)

2019/8/23 130

𝑥¬𝑥

𝑦𝑦 ¬𝑦¬𝑦

0.9

0.9 0.1

⊥ ⊥⊤ ⊤

FLOLAC 2019

Satisfying probability of Φ

Φ

Φ ቚ
¬𝑥

Φቚ
𝑥

Introduction
The Satisfiability Family – SSAT

 SSAT is a formalism of games against
nature for decision problems under
uncertainty [Papadimidriou 85]

 SSAT is PSPACE-complete

 Applications

 Probabilistic planning

 Verification of probabilistic circuits

 Belief network inference

 Trust management

2019/8/23 131FLOLAC 2019

P

PSPACE

coNP NP

2 2

Introduction
Prior SSAT Methods

Prior computation methods

General SSAT

Exact SSAT

 DC-SSAT: divide and conquer, DPLL-style search

 ZANDER: threshold pruning heuristics

Approximate SSAT

 APPSSAT: derive upper/lower bounds of satisfying

probability

 E-MAJSAT
MAXPLAN: pure literal, unit propagation, subproblem

memorization

ComPlan: compilation into d-DNNF

MaxCount: restricted to ℛ0.5

2019/8/23 132FLOLAC 2019

Introduction
Specialized SSAT of Our Focus

Random-exist quantified SSAT (RE-SSAT)
formula Φ = ℛ𝑋∃𝑌. 𝜙(𝑋, 𝑌)

Counterpart of 2QBF Φ = ∀𝑋∃𝑌. 𝜙(𝑋, 𝑌)

Exist-random quantified SSAT (ER-SAT,
a.k.a. E-MAJSAT) formula Φ = ∃𝑋ℛ𝑌. 𝜙(𝑋, 𝑌)

Counterpart of 2QBF Φ = ∃𝑋∀𝑌. 𝜙(𝑋, 𝑌)

2019/8/23 FLOLAC 2019 133

FLOLAC 2019 134

Stochastic Boolean
Satisfiability

Random-Exist SSAT

2019/8/23

RE-SSAT
Main Results

 Exploit weighted model counting to handle
randomized quantification

 Use a SAT solver as a plug-in engine for SSAT
solving

 Stand-alone usage of SAT solver and model counter
without solver modification

 Directly benefit from the advancements of SAT solvers
and model counters

 Applicable to both exact and approximate RE-
SSAT solving

2019/8/23 FLOLAC 2019 135

RE-SSAT
Terms and Notations

Consider 𝜙 𝑥1, 𝑥2, 𝑦1, 𝑦2 = 𝑥1 ∧ ¬𝑥2 ∨ 𝑦1 ∨ 𝑦2
with weights 𝑤 𝑥1 = 0.3 and 𝑤 𝑥2 = 0.7

 𝜏1 = 𝑥1𝑥2 is a SAT minterm, since 𝜙|𝜏1 can be

satisfied by μ = 𝑦1𝑦2 𝑤 𝜏1 = 0.21

 𝜏1
+ = 𝑥1 is a SAT cube  𝑤 𝜏1

+ = 0.3

 𝜏2 = ¬𝑥1𝑥2 is an UNSAT minterm since 𝜙|𝜏2 is

unsatisfiable  𝑤 𝜏2 = 0.49

 𝜏2
+ = ¬𝑥1 is an UNSAT cube  𝑤 𝜏2

+ = 0.7

 The process of expanding 𝜏 to 𝜏+ is called
minterm generalization

2019/8/23 FLOLAC 2019 136

RE-SSAT
Basic Ideas

 Given Φ = ℛ𝑋∃𝑌. 𝜙(𝑋, 𝑌), Pr[Φ] equals

 sum of weights of all SAT minterms, or

 1 – sum of weights of all UNSAT minterms

 Collect all SAT and/or UNSAT minterms with
minterm generation into cubes

 SAT: minimal hitting set

 UNSAT: minimal UNSAT core

 Compute sum of weights of collected cubes

 Complement the collected cubes into a CNF formula

 Apply weighted model counting once (needed to cope
with the potential non-disjointness between cubes)

2019/8/23 FLOLAC 2019 137

RE-SSAT
Procedure for Solving RE-2SSAT

2019/8/23 FLOLAC 2019 138

Matrix solver

Selection solver

𝜏 is a SAT minterm

SAT generalization

𝜏 is a UNSAT minterm

UNSAT generalization

If 𝜓 is satisfiable

Block 𝜏+ from 𝜓

Compute weight

RE-SSAT
Example

Φ = ℛ0.5𝑎, 𝑏, 𝑐, 𝑑∃𝑥, 𝑦, 𝑧. 𝜙

𝜙 = 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ 𝑥 𝑎 ∨ 𝑏 ∨ 𝑐 ∨ ¬𝑥 (¬𝑎 ∨ ¬𝑏 ∨
¬𝑑 ∨ 𝑦)(¬𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∨ ¬𝑦)(¬𝑎 ∨ 𝑏 ∨ ¬𝑑 ∨
𝑧)(¬𝑎 ∨ 𝑏 ∨ ¬𝑑 ∨ ¬𝑧)

2019/8/23 139FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 140

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes:

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 141

v 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes:

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 142

0 1 1 1

0 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 143

0 v 1 1

0 1 1 1

1 1 1 1

1 1 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 144

0 0 1 1

0 0 1 1

1 0 1 1

1 0 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 145

0 0 v 1

0 0 1 1

1 0 1 1

1 0 1 1

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 146

0 0 0 0

0 0 1 1

1 0 1 1

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 147

0 0 0 0

0 0 v 1

1 0 1 1

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 148

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 149

0 0 0 0

0 0 0 0

v 0 0 0

1 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

0 1 1 1

0 1 0 0

1 1 0 0

1 1 1 1

2019/8/23 150

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

∃𝑥, 𝑦, 𝑧. 𝜙(𝑎, 𝑏, 𝑐, 𝑑) 𝜓(𝑎, 𝑏, 𝑐, 𝑑)
SAT cubes:¬𝑎𝑏 ∨ 𝑎¬𝑑 ∨ ¬𝑎𝑐
UNSAT cubes: ¬𝑎¬𝑏¬𝑐 ∨ 𝑎𝑑

00 01 11 10 00 01 11 10

00

01

11

10

00

01

11

10

FLOLAC 2019

RE-SSAT
Example (cont’d)

Complement the collected SAT cubes
¬𝑎𝑏, 𝑎¬𝑑, ¬𝑎𝑐 into a CNF formula 𝜓 =
(𝑎 ∨ ¬𝑏)(¬𝑎 ∨ 𝑑)(𝑎 ∨ ¬𝑐)

Apply weighted model counting on 𝜓 with
weights 𝑤 𝑎 = 𝑤 𝑏 = 𝑤 𝑐 = 𝑤 𝑑 = 0.5
(recall Φ = ℛ0.5𝑎, 𝑏, 𝑐, 𝑑∃𝑥, 𝑦, 𝑧. 𝜙)

Obtain satisfying probability of Φ= 0.375

2019/8/23 151FLOLAC 2019

RE-SSAT
Experimental Settings

 SAT solver MiniSAT and weight model counter
Cachet were used

 Computation platform: Xeon 2.1 GHz CPU and
126 GB RAM

 Timeout limit: 1000 seconds

 Prior methods under comparison
 reSSAT: the proposed algorithm

 reSSAT-b: the proposed alg. w/o minterm-
generalization techniques

 DC-SSAT: state-of-the-art SSAT solver [3]

2019/8/23 152FLOLAC 2019

[3] S. Majercik and B. Boots. DCSSAT: A divide-and-conquer approach to solving
stochastic satisfiability problems efficiently, 2005

RE-SSAT
Planning Benchmark Experiments

 Converted from 2QBF planning instances of
strategic company problem [CEG97]

 Universal quantifiers in original 2QBFs were changed to
randomized ones with probability 0.5

 The converted RE-2SSAT formulas characterize the
winning probabilities of the exist-player of the original
QBF games

 60 formulas from QBFLIB were evaluated
 reSSAT-b solved 12 formulas

 DC-SSAT solved 30 formulas

 reSSAT solve all 60 formulas

2019/8/23 153FLOLAC 2019

[CEG97] M. Cadoli, T. Eiter, and G. Gottlob. Default logic as a query language, 1997.

RE-SSAT
Planning Benchmark Experiments

2019/8/23 154FLOLAC 2019

RE-SSAT
Probabilistic Circuit Experiments

Obtained in VLSI domain for equivalence
checking of probabilistic circuits [LJ14]

 The formula evaluates the expected difference
between a deterministic specification against
its probabilistic implementation

 Encoded as RE-2SSAT formulas

2019/8/23 FLOLAC 2019 155

[LJ14] N.-Z. Lee and J.-H. Jiang. Towards formal evaluation and verification of probabilistic design,
2014

RE-SSAT
Probabilistic Circuit Experiments

2019/8/23 156

reSSAT
(TO=60s)

reSSAT
(TO=1000s)

DC-SSAT
(TO=1000s)

circuit Answer UB LB UB LB runtime Prob.

c432 1.03E-02 1.07E-02 4.30E-05 1.05E-02 8.50E-05 TO TO

c499 1.56E-13 1.56E-13 1.56E-13 1.56E-13 1.56E-13 0.00 1.56E-13

c880 4.18E-02 9.78E-02 3.00E-06 8.18E-02 3.00E-06 TO TO

c1355 6.41E-02 3.20E-01 0 3.08E-01 0 TO TO

c1908 7.38E-04 8.83E-04 4.00E-05 7.38E-04 7.90E-05 210.86 7.38E-04

c3540 1.71E-03 1.17E-02 5.03E-04 1.17E-02 1.61E-03 217.42 1.71E-03

c5315 4.64E-01 6.28E-01 0 6.28E-01 0 TO TO

c7552 2.34E-01 2.35E-01 7.23E-03 2.35E-01 7.23E-03 TO TO

FLOLAC 2019

RE-SSAT
Random 𝑘-CNF Experiments

Used 𝑘-CNF with 𝑛 variables and 𝑚 clauses

 𝑘 equals 3, 4, 5, 6, 7, 8, and 9

 𝑛 equals 10, 20, 30, 40, and 50

 equals 𝑘 − 1, 𝑘, 𝑘 + 1, and 𝑘 + 2

Selected 300 formulas whose satisfying
probabilities evenly distributed in [0, 1]
for fair evaluation

2019/8/23 157

𝑚

𝑛

FLOLAC 2019

RE-SSAT
Random 𝑘-CNF Experiments

2019/8/23 158FLOLAC 2019

RE-SSAT
Summary

Proposed a new algorithm to solve
random-exist SSAT

 Plug-in SAT solver and model counter without
modification

Outperform prior methods in runtime and
memory efficiency

Extended to approximate SSAT with
upper/lower bound derivation

2019/8/23 159FLOLAC 2019

FLOLAC 2019 160

Stochastic Boolean
Satisfiability

Exist-Random SSAT

2019/8/23

ER-SSAT
Main Results

Adopt QBF clause selection technique to
ER-SSAT solving for effective search space
pruning

Propose three enhancement techniques

Applicable to both exact as well as
approximate ER-SSAT

2019/8/23 FLOLAC 2019 161

ER-SSAT
Naïve Solution

Given Φ = ∃𝑋ℛ𝑌. 𝜙 𝑋, 𝑌

Search among assignments 𝜏 to 𝑋

Compute ℛ𝑌.𝜙(𝜏, 𝑌) by weighted model

counting

 Find 𝜏∗ maximizing ℛ𝑌.𝜙(𝜏∗, 𝑌)

How to effectively prune search space?

2019/8/23 FLOLAC 2019 162

ER-SSAT
Clause Selection for QBF Solving

𝑋 = {𝑒1, 𝑒2, 𝑒3}, 𝑌 = {𝑎1, 𝑎2, 𝑎3}, 𝜙 𝑋, 𝑌 = 𝑖=1ٿ
3 𝐶𝑖

 𝐶1 = (𝑒1 ∨ 𝑎1 ∨ 𝑎2)

 𝐶2 = (𝑒1 ∨ 𝑒2 ∨ 𝑎1 ∨ ¬𝑎3)

 𝐶3 = (¬𝑒2 ∨ ¬𝑒3 ∨ 𝑎2 ∨ ¬𝑎3)

 𝑆 = {𝑠1, 𝑠2, 𝑠3}
 𝜓 𝑋, 𝑆 = 𝑠1 ≡ ¬𝑒1 ∧ 𝑠2 ≡ ¬𝑒1 ∧ ¬𝑒2 ∧ 𝑠3 ≡ 𝑒2 ∧ 𝑒3

𝑠𝑖 = ⊤ iff 𝐶𝑖 is selected, i.e., not satisfied by the
assignment on X variables [JM15]

E.g., (𝑒1=⊥, 𝑒2 =⊥, 𝑒3 =⊥) → (𝑠1= ⊤, 𝑠2 = ⊤)

 Prune search space by preventing selection of a
superset of the current clause set

2019/8/23 FLOLAC 2019 163

[JM15] M. Janota and J. Marques-Silva. Solving QBF by clause selection, 2015.

ER-SSAT
Clause Containment Learning (1/2)

Φ = ∃𝑋ℛ𝑌.𝜙(𝑋, 𝑌)

 𝜙(𝜏2, 𝑌) ⊨ 𝜙(𝜏1, 𝑌) → (Pr Φ|𝜏2 ≤ Pr Φ|𝜏1)

Prune assignments that select a superset
of selected clauses

Learning with selection variables

𝜓 𝑋, 𝑆 ← 𝜓 𝑋, 𝑆 ∧ 𝐶𝐿
 𝐶𝐿 = 𝑠𝐶¬ڀ

2019/8/23 FLOLAC 2019 164

ER-SSAT
Basic Algorithm

2019/8/23 FLOLAC 2019 165

ER-SSAT
Example

2019/8/23 166

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

𝜓 𝑎, 𝑏, 𝑐, 𝑑 = ⊤
Current assignment:
Current max value:
Blocking clause:

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

ER-SSAT
Example (cont’d)

2019/8/23 167

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Current assignment: ¬𝑎¬𝑏¬𝑐¬𝑑
Current max value: 0.62
Blocking clause: (𝑐 ∨ 𝑎 ∨ 𝑑)

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝒄 → 𝒙 ∨ ¬𝒚

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝒂 ∧ ¬𝒅 → (𝒚 ∨ 𝒛)

𝜓 𝑎, 𝑏, 𝑐, 𝑑 = ⊤

ER-SSAT
Example (cont’d)

2019/8/23 168

0 0 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Current assignment: 𝑎𝑏¬𝑐¬𝑑
Current max value: 0.65
Blocking clause: (𝑐)

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝒄 → 𝒙 ∨ ¬𝒚

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = (𝑐 ∨ 𝑎 ∨ 𝑑)

ER-SSAT
Example (cont’d)

2019/8/23 169

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

Current assignment: ¬𝑎¬𝑏𝑐𝑑
Current max value: 0.95
Blocking clause: (𝑏 ∨ ¬𝑐)

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝒃 ∧ 𝒄) → 𝒙 ∨ 𝒛

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = (𝑐 ∨ 𝑎 ∨ 𝑑)(𝑐)

ER-SSAT
Example (cont’d)

2019/8/23 170

0 0 0 0

0 0 0 0

0 1 1 0

0 1 1 0

Current assignment: ¬𝑎𝑏𝑐𝑑
Current max value: 1
Blocking clause: ()

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = 𝑐 ∨ 𝑎 ∨ 𝑑 𝑐
(𝑏 ∨ ¬𝑐)

ER-SSAT
Example (cont’d)

2019/8/23 171

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Current assignment:
Current max value: 1
Blocking clause: ()

00 01 11 10

00

01

11

10

FLOLAC 2019

∃𝑎, 𝑏, 𝑐, 𝑑, ℛ0.5𝑥,ℛ0.7𝑦,ℛ0.9𝑧.

𝐶1: 𝑎 ∧ 𝑏 ∧ 𝑐 → 𝑥 ∨ 𝑦 ∨ 𝑧

𝐶2: ¬𝑐 → 𝑥 ∨ ¬𝑦

𝐶3: (¬𝑏 ∧ 𝑐) → 𝑥 ∨ 𝑧

𝐶4: ¬𝑎 ∧ ¬𝑑 → (𝑦 ∨ 𝑧)

𝜓 = 𝑐 ∨ 𝑎 ∨ 𝑑 𝑐
(𝑏 ∨ ¬𝑐)()

ER-SSAT
Enhancement Techniques

Minimal clause selection

Select a minimal set of clauses by iterative
SAT refinement

Clause subsumption

 Precompute subsumption relation and remove
selected clauses that are subsumed by other
selected clauses

Partial assignment pruning

Discard literals from a learnt clause to obtain
an upper bound of satisfying probability

2019/8/23 FLOLAC 2019 172

ER-SSAT
Refined Algorithm

2019/8/23 FLOLAC 2019 173

ER-SSAT
Approximate ER-SSAT

Can terminate at any time and return the
current best solution

A lower bound of the satisfying probability

Keep deriving tighter lower bounds and
converge to the exact solution

2019/8/23 FLOLAC 2019 174

ER-SSAT
Experimental Setup

SAT solver MiniSAT

Weight model counter
 Cachet

 CUDD

Xeon 2.1 GHz CPU and 126 GB RAM

Competing solvers
 erSSAT: the proposed algorithm

 DC-SSAT: state-of-the-art SSAT solver

 ComPlan: E-MAJSAT solver (based on c2d)

 MAXCOUNT: maximum model counter

2019/8/23 175FLOLAC 2019

ER-SSAT
Application Formulas

QBF-converted formulas

Conformant probabilistic planning

Sand-castle [ML98]

MaxSat [FRS17]

Quantitative information flow [FRS17]

Program synthesis [FRS17]

Maximum probabilistic eq. checking [LJ14]

2019/8/23 FLOLAC 2019 176

S. Majercik and M. Littman. MAXPLAN: A new approach to probabilistic planning, 1998.

D. Fremont, M. Rabe, and S. Seshia. Maximum model counting, 2017.

N.-Z. Lee and J.-H. Jiang. Towards formal evaluation and verification of probabilistic
design, 2014.

ER-SSAT
Experimental Results (1/2)

2019/8/23 FLOLAC 2019 177

ER-SSAT
Experimental Results (2/2)

Compared to DCSSAT

 Exactly solve or derive the tightest lower
bounds when DCSSAT solves a formula

Derive lower bounds when DCSSAT fails

Compared to MaxCount

Scale better on QBF-converted and planning

Derive tighter lower bounds on circuits

 Perform worse on QIF and PS

Derive more tightest lower bounds than
DCSSAT and MaxCount for all formulas

2019/8/23 FLOLAC 2019 178

ER-SSAT
Summary

Propose an algorithm to solve ER-SSAT

Clause containment learning

Approximate ER-SSAT

 Exactly solve or derive the tightest bounds
when state-of-the-art solvers solve a formula

Derive lower bounds when other solvers fail

2019/8/23 179FLOLAC 2019

FLOLAC 2019 180

Summary

We learned

 Representations of Boolean functions

 Boolean satisfiability

 Quantified Boolean satisfiability

 Stochastic Boolean satisfiability

 To explore logic synthesis and verification,
Berkeley ABC tool

 https://people.eecs.berkeley.edu/~alanmi/abc/

2019/8/23

