
Functional Programming
Practicals 1. Program Synthesis

Shin-Cheng Mu

July, 2018

1. Go to our course homepage, download practicals_01_code.zip. Un-
compress the file, and change to the directory.

2. Let n be a digit between 0 and 9. Load the file Tn.hs by the command
ghci Tn.hs.

3. This module imports a number of functions. Among them is a function
f0. Find out its type, and try some inputs.

4. Your task is to define, in Tn.hs, a function that is identical to f0. Use
your favourite editor to open the file Tn.hs and define your function
there. (You have to give your function a different name, since f0 is
already in use.)

5. Hint:

• Try exploiting the functions mentioned in the previous two lec-
tures, including those in the work sheet. Compose them to form
larger functions.

• You do not need to define recursive functions at all. All the ex-
ercises can be completed by simply composing existing functions.
I do not mind if you come up with some recursive definitions,
however.

• For now, forget about efficiency. There is no need to come up
with the most efficient algorithm. This exercise is about building
specifications using existing functions.

1



• The solutions could be rather short — usually one or two lines per
function.

• Of course, you are not allowed to simply say solution = f0 (or
referring to functions defined in Mn.hs, copying their definitions,
etc). Other than that, you can construct your target function in
whatever ways you like.

• Some f0 may have a type looking like Eq a => T. Ignore the part
Eq a for now, and assume that it has type T. It may help you
to know, however, that Eq a suggests that f0 tests for equality
somewhere...

6. Auxiliary Functions. It could be rather difficult seeing what f0 is
about. In all files there is an auxiliary function f1, which could be
easier than f0. You may try constructing f1 first. Typically, f0 may
then call f1.

7. In some files there is even an f2. Use :t f2 to see whether it exists. If
it exists, it may be useful for f1 or f0.

8. The goal is to construct a function identical to f0. Functions f1 (and
f2, if exists) are merely there to give you hints.

9. Testing. How do you know whether your function is correct?

• There is a function, correct0, defined in Tn.hs, specifying that
it should produce the same result as f0 for any input.

• Assuming that your function is called solution, try quickCheck

(correct0 solution) in ghci.

• If the output says +++ OK, passed 100 tests. Congratulations!

• Otherwise, QuickCheck gives you counterexamples when your func-
tion do not agree with f0.

• There is also a correct1, to be used in the same way to check
whether a given function is identical to f1. And a correct2 as
well.

10. If you find it too easy... you may download and try other exercises.
Or try the challenge in TChallenge.hs and MChallenge.hs, where a
function find is defined. As the name suggests, find xs ys finds the

2



first occurrence of xs in ys, and returns the rest of the list. Can you
define the same function? As before, you do not need to come up with
a very efficient algorithm. It is preferable to specify the problem in the
clearest way.

3


