
Quantifier-Free Equality
and Data Structures

Ming-Hsien Tsai
Academia Sinica

Reference book: Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation:
Decision Procedures with Applications to Verification. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA.

Theory of Equality

• Denoted by TE

• Referred to as the theory of EUF (Equality with
Uninterpreted Functions)

• Play a central role in combining theories that share
the equality predicate

2

In This Lecture
• The theory TE and its quantifier-free fragment

• Deciding TE-satisfiability of quantifier-free ΣE-formulae

• Congruence closure algorithm

• Implementation of the decision procedure

• TRDS - recursive data structures

• Tcons - lists

• TA - arrays

3

Relations

4

Binary Relation

• Consider a set S and a binary relation R over S

• For two elements s1, s2 ∈ S, either s1Rs2 or ¬(s1Rs2)

5

S: Humans
R: IsChildOf

S: Integers
R: <

Equivalence Relation

• The relation R is an equivalence relation if it is

• reflexive: ∀s ∈ S. sRs;

• symmetric: ∀s1,s2 ∈ S. s1Rs2 → s2Rs1;

• transitive: ∀s1,s2,s3 ∈ S. s1Rs2 ⋀ s2Rs3 → s1Rs3

6

=, ・≡・ (mod c)

Congruence Relation

• The relation R is a congruence relation if it
additionally obeys congruence: for every n-ary
function f,

∀S,T. (⋀i=1 to n siRti) → f(S)Rf(T)

Capital S and T are vectors of variables
7

Theory of Equality

8

Signature of TE

consists of

• =, a binary predicate;

• and all constant, function and predicate symbols

ΣE : {=, a, b, c, …, f, g, h, …, p, q, r, …},

9

ΣE-formulae

• x = g(y, x) → f(x) = f(g(y, z))

• f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

10

f(a) ≠ a abbreviates ¬(f(a) = a)

Axioms of Equality
• Reflexivity

• ∀x. x = x

• Symmetry

• ∀x,y. x = y → y = x

• Transitivity

• ∀x,y,z. x = y ∧ y = z → x = z

11

Axioms of Equality
• Reflexivity

• ∀x. x = x

• Symmetry

• ∀x,y. x = y → y = x

• Transitivity

• ∀x,y,z. x = y ∧ y = z → x = z

with the three axioms, = is defined
to be an equivalence relation

11

Equality of Function Terms

• When two function terms are equal?

f(x) = f(g(y, z))

12

Function Congruence
• Function congruence (axiom schema)

• ∀X,Y. (⋀i=1 to n xi = yi) → f(X) = f(Y)

• Instantiated axioms:

• ∀x,y. x = y → f(x) = f(y)

• ∀x1,x2,y1,y2. x1 = y1 ∧ x2 = y2 → g(x1, x2) = g(y1, y2)

Capital X and Y are vectors of variables
13

Function Congruence
• Function congruence (axiom schema)

• ∀X,Y. (⋀i=1 to n xi = yi) → f(X) = f(Y)

• Instantiated axioms:

• ∀x,y. x = y → f(x) = f(y)

• ∀x1,x2,y1,y2. x1 = y1 ∧ x2 = y2 → g(x1, x2) = g(y1, y2)

Capital X and Y are vectors of variables

makes = a congruence relation

13

Predicate Congruence

• Predicate congruence

• ∀X,Y. (⋀i=1 to n xi = yi) → (p(X) ↔ p(Y))

14

TE-Satisfiablility - Example 1

• Is the following ΣE-formula TE-satisfiable?

• f(x) = f(y) ⋀ x ≠ y

x ≠ y abbreviates ¬(x = y)

15

TE-Satisfiablility - Example 2
Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

16

TE-Satisfiablility - Example 2
Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

1. f(f(f(f(a)))) = f(a)

16

(function congruence)

TE-Satisfiablility - Example 2
Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

1. f(f(f(f(a)))) = f(a)

2. f(f(f(f(f(a))))) = f(f(a))

16

(function congruence)

(function congruence)

TE-Satisfiablility - Example 2
Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

1. f(f(f(f(a)))) = f(a)

2. f(f(f(f(f(a))))) = f(f(a))

3. f(f(a)) = f(f(f(f(f(a)))))

16

(function congruence)

(function congruence)

(symmetry)

TE-Satisfiablility - Example 2
Is the following ΣE-formula TE-satisfiable?

f(f(f(a))) = a ⋀ f(f(f(f(f(a))))) = a ⋀ f(a) ≠ a

1. f(f(f(f(a)))) = f(a)

2. f(f(f(f(f(a))))) = f(f(a))

3. f(f(a)) = f(f(f(f(f(a)))))

4. f(f(a)) = a
16

(function congruence)

(function congruence)

(symmetry)

(transitivity)

Get Rid of Predicate
Congruence

• Transform a ΣE-formula to a ΣE-formula without predicates other
than =

• Example p1

• x = y → (p(x) ↔ p(y)) is transformed to

• x = y → ((fp(x) = •) ↔ (fp(y) = •))

• Example p2

• p(x) ⋀ q(x, y) ⋀ q(y, z) → ¬q(x, z) is transformed to

• fp(x) = • ⋀ fq(x, y) = • ⋀ fq(y, z) = • → fq(x, z) ≠ •

17

In The Following

• Consider ΣE-formulae without predicates other than
=

• TE-satisfiability of ΣE-formulae is undecidable

• ΣE-formula means quantifier-free ΣE-formula

• Consider formulae in disjunctive normal form (DNF)

18

(a1⋀a2⋀…⋀an) ∨ … ∨ (b1⋀b2⋀…⋀bm)

Congruence Closure
Algorithm

19

Observation
• Applying (symmetry), (reflexivity), (transitivity), and (congruence) to positive

literals s = t of a ΣE-formula F produces more equalities over terms occurring
in F

• There are only a finite number of terms in F

• Only a finite number of equalities among these terms are possible

• Then, either

• some equality is formed that directly contradicts a negative literal s’ ≠ t’ of
F; or

• the propagation of equalities ends without finding a contradiction

20

Observation
• Applying (symmetry), (reflexivity), (transitivity), and (congruence) to positive

literals s = t of a ΣE-formula F produces more equalities over terms occurring
in F

• There are only a finite number of terms in F

• Only a finite number of equalities among these terms are possible

• Then, either

• some equality is formed that directly contradicts a negative literal s’ ≠ t’ of
F; or

• the propagation of equalities ends without finding a contradiction

form the congruence closure of =
20

Class

• Consider an equivalence relation R over a set S

• The equivalence class of s ∈ S under R is the set

[s]R ≝ {s’ ∈ S : sRs’}

• If R is a congruence relation over S, then [s]R is the
congruence class of s

21

Example of Class
• Consider the set ℤ of integers and the equivalence

relation ≡2 such that

• m ≡2 n iff (m mod 2) = (n mod 2)

22

[3]≡2 = {n ∈ ℤ : (n mod 2) = (3 mod 2)}
= {n ∈ ℤ : (n mod 2) = 1}
= {n ∈ ℤ : n is odd}

Partition

A partition P of S is a set of subsets of S that is total,

(⋃S’ ∈ P S’) = S,

and disjoint,

∀S1,S2 ∈ P. S1 ≠ S2 → S1 ∩ S2 = ∅

23

Quotient

• The quotient S/R of S by the equivalence
(congruence) relation R is a partition of S: it is a set
of equivalence (congruence) classes

• S/R = {[s]R : s ∈ S}

24

Example of Quotient

• The quotient ℤ/≡2 is a partition: it is the set of
equivalence classes

• {{n ∈ ℤ : n is odd}, {n ∈ ℤ : n is even}}

25

Equivalence Relation,
Partition, and Quotient

• An equivalence relation R induces a partition S/R
of S

• A given partition P of S induces an equivalence
relation over S

• s1Rs2 iff for some S’ ∈ P, both s1,s2 ∈ S’

26

Relation Refinement
• Consider two binary relations R1 and R2 over the

set S

• R1 is a refinement of R2, or R1 ≺ R2, if

• ∀s1,s2 ∈ S. s1R1s2 → s1R2s2

• We also say that R1 refines R2

• Viewing the relations as sets of pairs, R1 ⊆ R2

27

R2 R1

Example 1 of Relation
Refinement

• S = {a, b}

• R1 : {aR1b}

• R2 : {aR2b, bR2b}

• R1 ≺ R2

28

Example 2 of Relation
Refinement

• Consider set S

• R1 : {sR1s : s ∈ S}

• R2 : {sR2t : s,t ∈ S }

• R1 ≺ R2

29

Example 2 of Relation
Refinement

• Consider set S

• R1 : {sR1s : s ∈ S}

• R2 : {sR2t : s,t ∈ S }

• R1 ≺ R2

29

P1 : {{s} : s ∈ S}

Example 2 of Relation
Refinement

• Consider set S

• R1 : {sR1s : s ∈ S}

• R2 : {sR2t : s,t ∈ S }

• R1 ≺ R2

29

P1 : {{s} : s ∈ S}

P2 : {S}

Example 3 of Relation
Refinement

• Consider the set ℤ

• R1 : {xR1y : x mod 2 = y mod 2}

• R2 : {xR1y : x mod 4 = y mod 4}

• R2 ≺ R1

30

Closure
• The equivalence closure RE of the binary relation R over S is

the equivalence relation such that

• R refines RE: R ≺ RE;

• for all other equivalence relations R’ such that R ≺ R’, either

• R’ = RE, or

• RE ≺ R’

• RE is the smallest equivalence relation that covers R

31

Example of Equivalence
Closure

• Then,

• aRb, bRc, dRd ∈ RE (since R ⊆ RE);

• aRa, bRb, cRc ∈ RE (by reflexivity);

• bRa, cRb ∈ RE (by symmetry);

• aRc ∈ RE (by transitivity);

• cRa ∈ RE (by symmetry);

• Hence

• RE = {aRb, bRa, aRa, bRb, bRc, cRb, cRc, aRc, cRa, dRd}

32

S = {a, b, c, d}

R = {aRb, bRc, dRd}

Congruence Closure

• The congruence closure RC of R is the smallest
congruence relation that covers R

33

Congruence Closure

• The congruence closure RC of R is the smallest
congruence relation that covers R

33

Compute the congruence closure of a term set

Subterm Set

• Subterm set SF of ΣE-formula F is the set that
contains precisely the subterms of F

• Example:

• F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

• SF = {a, b, f(a, b), f(f(a, b), b)}

34

Congruence Relation over
Subterm Set

• F is TE-satisfiable iff there exists a congruence
relation ∼ over SF such that

• for each i ∈ {1, …, m}, si ∼ ti;

• for each i ∈ {m + 1, …, n}, si ≁ ti

35

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

TE-interpretation
• The congruence relation ∼ defines a TE-interpretation I :

(DI, αI) of F

• DI consists of |SF / ∼| elements

• αI assigns elements of DI to the terms of SF in a way that
respects ∼

• αI assigns to = a binary relation over DI that behaves
like ∼

• We abbreviate (DI, αI) ⊨ F with ∼ ⊨ F

36

Congruence Closure
Algorithm

1. Construct the congruence closure ∼ of

{s1 = t1, …, sm = tm}

over the subterm set SF

2. If si ∼ ti for any i ∈ {m + 1, …, n}, return unsatisfiable

3. Otherwise, ∼ ⊨ F, so return satisfiable

37

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

Step 1
• Begin with ∼0 given by the partition {{s} : s ∈ SF}

• Import si = ti by merging the congruence classes
[si]∼i-1 and [ti]∼i-1

• Form the union of [si]∼i-1 and [ti]∼i-1

• Propagate new congruences that arise within the
union

38

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

39

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

39

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

39

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

39

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

(function congruence)

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

• {{a, f(a, b), f(f(a, b), b)}, {b}}

39

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

(function congruence)

Example 1 of Congruence
Closure Algorithm

• {{a}, {b}, {f(a, b)}, {f(f(a, b), b)}}

• {{a, f(a, b)}, {b}, {f(f(a, b), b)}}

• {{a, f(a, b), f(f(a, b), b)}, {b}}

• TE-unsatisfiable

39

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

(f(a, b) = a)

(function congruence)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

• {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

• {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

(function congruence)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

• {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

• {{a, f(a), f2(a), f3(a), f4(a), f5(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

(function congruence)

Example 2 of Congruence
Closure Algorithm

• {{a}, {f(a)}, {f2(a)}, {f3(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a)}, {f2(a)}, {f4(a)}, {f5(a)}}

• {{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}}

• {{a, f2(a), f3(a), f5(a)}, {f(a), f4(a)}}

• {{a, f(a), f2(a), f3(a), f4(a), f5(a)}}

40

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

(f3(a) = a)

(function congruence)

(f5(a) = a)

(function congruence)

TE-unsatisfiable

Example 3 of Congruence
Closure Algorithm

• {{x}, {y}, {f(x)}, {f(y)}}

41

F : f(x) = f(y) ∧ x ≠ y

Example 3 of Congruence
Closure Algorithm

• {{x}, {y}, {f(x)}, {f(y)}}

41

F : f(x) = f(y) ∧ x ≠ y

(f(x) = f(y))

Example 3 of Congruence
Closure Algorithm

• {{x}, {y}, {f(x)}, {f(y)}}

• {{x}, {y}, {f(x), f(y)}}

41

F : f(x) = f(y) ∧ x ≠ y

(f(x) = f(y))

Example 3 of Congruence
Closure Algorithm

• {{x}, {y}, {f(x)}, {f(y)}}

• {{x}, {y}, {f(x), f(y)}}

• TE-satisfiable

41

F : f(x) = f(y) ∧ x ≠ y

(f(x) = f(y))

Implementation

42

DAG

• A directed graph G : ⟨N, E⟩

• nodes N = {n1, n2, …, nk}

• edges E = {…, ⟨ni, nj⟩, …}

• A directed acyclic graph (DAG) is a directed graph
containing no loop (or cycle)

43

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

Subterm Set as DAG

44

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

{a, b, f(a, b), f(f(a, b), b)}

Node
type node = {

id : id

fn : string

args : id list

mutable find : id

mutable ccpar : id set

}

45

(unique identification number)

(constant or function symbol)

(identification numbers of the function arguments)

(another node in its congruence class)

(congruence closure parents,∅ for non-representative nodes)

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

(following a chain of find references leads to the representative)

DAG as Partition

46

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

node 2 = {
id = 2;
fn = f;
args = [3; 4];
find = 3;
ccpar = ∅;

}

node 3 = {
id = 3;
fn = a;
args = [];
find = 3;
ccpar = {1, 2};

}

Partition: {{f(f(a, b), b), f(a, b), a}, {b}}

Union-Find Algorithm -
NODE

NODE i returns the node n with id i

47

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

(NODE i).id = i
(NODE 2).find = 3

Union-Find Algorithm -
FIND

let rec FIND i =

let n = NODE i in

if n.find = i then i else FIND n.find

48

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

FIND 2 = 3
FIND 1 = 3

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

49

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

49

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

UNION 1 2

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

49

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

UNION 1 2
n1

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

49

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

UNION 1 2
n1

n2

Union-Find Algorithm -
UNION

let UNION i1 i2 =

let n1 = NODE (FIND i1) in

let n2 = NODE (FIND i2) in

n1.find ← n2.find;

n2.ccpar ← n1.ccpar ⋃ n2.ccpar;

n1.ccpar ← ∅

49

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

UNION 1 2
n1

n2

Union-Find Algorithm -
CCPAR

50

let CCPAR i =

(NODE (FIND i)).ccpar

Congruence Closure Algorithm -
CONGRUENT

51

let CONGRUENT i1 i2 =

let n1 = NODE i1 in

let n2 = NODE i2 in

n1.fn = n2.fn

⋀ |n1.args| = |n2.args|

⋀ ∀i ∈ {1, …, |n1.args|}. FIND n1.args[i] = FIND n2.args[i]

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

n1

n2

Congruence Closure Algorithm -
MERGE

52

let rec MERGE i1 i2 =

if FIND i1 ≠ FIND i2 then begin

let P1 = CCPAR i1 in

let P2 = CCPAR i2 in

UNION i1 i2;

foreach t1, t2 ∈ P1 ✕ P2 do

if FIND t1 ≠ FIND t2 ⋀ CONGRUENT t1 t2

then MERGE t1 t2

done

end

9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

t1

t2

Decision Procedure for TE-
Satisfiability

1. Construct the initial DAG for the subterm set SF

2. For i ∈ {1, …, m}, MERGE si ti

3. If FIND si = FIND ti for some i ∈ {m + 1, …, n},
return unsatisfiable

4. Otherwise, return satisfiable

53

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1.MERGE 2 3

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1.MERGE 2 3
(1)P2 = CCPAR 2 = {1}

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1.MERGE 2 3
(1)P2 = CCPAR 2 = {1}
(2)P3 = CCPAR 3 = {2}

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1.MERGE 2 3
(1)P2 = CCPAR 2 = {1}
(2)P3 = CCPAR 3 = {2}
(3)UNION 2 3

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1.MERGE 2 3
(1)P2 = CCPAR 2 = {1}
(2)P3 = CCPAR 3 = {2}
(3)UNION 2 3

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1.MERGE 2 3
(1)P2 = CCPAR 2 = {1}
(2)P3 = CCPAR 3 = {2}
(3)UNION 2 3
(4)MERGE 1 2

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1.MERGE 2 3
(1)P2 = CCPAR 2 = {1}
(2)P3 = CCPAR 3 = {2}
(3)UNION 2 3
(4)MERGE 1 2

Deciding TE-Satisfiability
Example 1

54

F : f(a, b) = a ∧ f(f(a, b), b) ≠ a

SF = {a, b, f(a, b), f(f(a, b), b)}
9.3 Congruence Closure with DAGs 251

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

1 : f

2 : f

3 : a 4 : b

(a) (b) (c)

Fig. 9.1. (a) DAG representation; (b), (c) with find

9.3 Congruence Closure with DAGs

So far, we have considered the congruence closure algorithm at an abstract
level. In this section, we describe an efficient implementation of the algorithm.

Section 9.3.1 defines a graph-based data structure for representing all mem-
bers of the subterm set SF of a ΣE-formula F . Each node represents a sub-
term. Congruence classes are stored within this data structure via references
between nodes. Sections 9.3.2 and 9.3.3 present algorithms that manipulate
the data structure to construct the congruence closure of the relation defined
by F .

9.3.1 Directed Acyclic Graphs

A graph G : ⟨N, E⟩ has a set of nodes N = {n1, n2, . . . , nk} and a set of
edges E = {. . . , ⟨ni, nj⟩, . . .}, which consists of pairs of nodes. In a directed
graph, edges point from one node to another. For example, the edge ⟨n3, n5⟩
is not the same edge as ⟨n5, n3⟩: the first points to n5, while the second points
to n3. In a directed edge ⟨m, n⟩, m is the source, and n is the target. A
directed acyclic graph (DAG) is a directed graph in which no subset of
edges forms a directed loop, or cycle.

Example 9.12. Consider the directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨3, 1⟩}⟩ .

It is not a DAG because it contains the loop 1 → 2 → 3 → 1. However, the
directed graph

G : ⟨N : {1, 2, 3}, E : {⟨1, 2⟩, ⟨2, 3⟩, ⟨1, 3⟩}⟩

is a DAG. !

1.MERGE 2 3
(1)P2 = CCPAR 2 = {1}
(2)P3 = CCPAR 3 = {2}
(3)UNION 2 3
(4)MERGE 1 2

TE-unsatisfiable

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0
2. MERGE 5 0

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0
2. MERGE 5 0

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0
2. MERGE 5 0

Deciding TE-Satisfiability
Example 2

55

F : f3(a) = a ∧ f5(a) = a ∧ f(a) ≠ a

SF = {a, f(a), f2(a), f3(a), f4(a), f5(a))}

258 9 Quantifier-Free Equality and Data Structures

(a) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(b) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

(c) 5 : f 4 : f 3 : f 2 : f 1 : f 0 : a

Fig. 9.2. DAGs for Example 9.17

The dotted edges distinguish deduced merges from merges dictated by F ,
which are marked by dashed edges. Thus, the partition is now

{{a, f3(a)}, {f(a), f4(a)}, {f2(a), f5(a)}} .

Next, according to the literal f(f(f(f(f(a))))) = a, merge 5 0. find 5 = 2
and find 0 = 0, so

P5 = {3} and P0 = {1, 4} .

After completing union 5 0 (by adding the dashed line from 2 to 0 in Figure
9.2(c)), it is the case that congruent 3 1, so merge 3 1. This merge causes
the final union 3 1, resulting in the dotted line from 0 to 1 in Figure 9.2(c).
Figure 9.2(c) represents the partition

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} .

Now, does

{{a, f(a), f2(a), f3(a), f4(a), f5(a)}} |= F ?

No, as f(a) ∼ a, but F asserts that f(a) ̸= a. Hence, F is TE-unsatisfiable. !

Theorem 9.18 (Sound & Complete). Quantifier-free conjunctive ΣE-
formula F is TE-satisfiable iff the congruence closure algorithm returns satis-
fiable.

9.3.5 ⋆Complexity

Let e be the number of edges and n be the number of nodes in the initial
DAG.

Theorem 9.19 (Complexity). The congruence closure algorithm runs in
time O(e2) for O(n) merges.

However, Downey, Sethi, and Tarjan described an algorithm with O(e log e)
average running time for O(n) merges. Computing TE-satisfiability is inex-
pensive.

1. MERGE 3 0
2. MERGE 5 0

TE-unsatisfiable

Soundness and
Completeness

Theorem (Sound & Complete). Quantifier-free
conjunctive ΣE-formula F is TE-satisfiable iff the
congruence closure algorithm returns satisfiable

56

Complexity

Let e be the number of edges and n be the number of
nodes in the initial DAG.

Theorem (Complexity). The congruence closure
algorithm run in time O(e2) for O(n) MERGEs.

57

Recursive Data
Structures

58

TRDS
• Can model

• records

• lists

• trees

• stacks

• Cannot model

• queues

59

Theory of Lists - Tcons

• cons: a binary function, called the constructor;

• car: a unary function, called the left projector;

• cdr: a unary function, called the right projector;

• atom: a unary predicate;

• =: a binary predicate

60

Σcons : {cons, car, cdr, atom, =}

car(cons(a, b)) = a
cdr(cons(a, b)) = b

Axioms of Tcons
• Axioms of (reflexivity), (symmetry), and (transitivity) of TE

• Instantiations of the (function congruence) axiom schema for cons, car,
and cdr:

• ∀x1,x2,y1,y2. x1 = x2 ⋀ y1 = y2 → cons(x1, y1) = cons(x2, y2)

• ∀x,y. x = y → car(x) = car(y)

• ∀x,y. x = y → cdr(x) = cdr(y)

• An instantiation of the (predicate congruence) axiom schema for atom:

• ∀x,y. x = y → (atom(x) ↔ atom(y))

61

Axioms of Tcons

• ∀x,y. car(cons(x, y)) = x

• ∀x,y. cdr(cons(x, y)) = y

• ∀x. ¬atom(x) → cons(car(x), cdr(x)) = x

• ∀x,y. ¬atom(cons(x, y))

62

(left projection)

(right projection)

(construction)

(atom)

Decidability

• Tcons: undecidable

• quantifier-free Tcons: decidable

63

Preprocess

By the (construction) axiom, replace

¬atom(ui)

with

ui = cons(ui1, ui2)

64

∀x. ¬atom(x) → cons(car(x), cdr(x)) = x (construction)

Decision Procedure

• Construct the initial DAG for the subterm set SF

• By the (left projection) and (right projection) axioms, for each node n such that n.fn =
cons,

• add car(n) to the DAG and MERGE car(n) n.args[1];

• add cdr(n) to the DAG and MERGE cdr(n) n.args[2];

• For i ∈ {1, …, m}, MERGE si ti

• For i ∈ {m + 1, …, n}, if FIND si = FIND ti, return unsatisfiable

• By the (atom axiom), for i ∈ {1, …, l}, if ∃v. FIND v = FIND ui ⋀ v.fn = cons, return
unsatisfiability

• Otherwise, return satisfiable 65

F : s1 = t1 ∧ … ∧ sm = tm ∧ sm+1 ≠ tm+1 ∧ … ∧ sn ≠ tn

∧ atom(u1) ∧ … ∧ atom(ul)

Combining TE and Tcons -
Example

66

F : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ≠ f(y) ∧
¬atom(x) ∧ ¬atom(y)

F’ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ≠ f(y) ∧
x = cons(u1, v1) ∧ y = cons(u2, v2)9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Step 1: initial DAG

Combining TE and Tcons -
Example

67

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Step 2: add car(n) and cdr(n)

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

Combining TE and Tcons -
Example

68

Step 3: MERGE si ti
1. car(x) = car(y)
2. cdr(x) = cdr(y)
3. x = cons(u1, v1)
4. y = cons(u2, v2)

9.4 Recursive Data Structures 261

car f cdr car f cdr

x y

cons cons

u1 v1 u2 v2

car f cdr car f cdr

x y

car cdr car cdr

cons cons

u1 v1 u2 v2

(a) (b)

Fig. 9.4. DAG after (a) Step 1 and (b) Step 2

equality according to the (congruence) axiom of TE. Hence, F is (Tcons ∪ TE)-
unsatisfiable.

To prepare F for the decision procedure, rewrite F according to the (con-
struction) axiom:

F ′ : car(x) = car(y) ∧ cdr(x) = cdr(y) ∧ f(x) ̸= f(y)
∧ x = cons(u1, v1) ∧ y = cons(u2, v2) .

The first two and final two literals imply that u1 = u2 and v1 = v2 so that
again x = y. The remaining reasoning is as for F .

Let us apply the decision procedure to F ′. The initial DAG of F ′ is dis-
played in Figure 9.4(a). Figure 9.4(b) displays the DAG after Step 2.

According to the literals car(x) = car(y) and cdr(x) = cdr(y), compute

merge car(x) car(y) and merge cdr(x) cdr(y) ,

which add the two dashed arrows on the top of Figure 9.5(a). Then according
to literal x = cons(u1, v1),

merge x cons(u1, v1) ,

which adds the dashed arrow from x to cons in Figure 9.5(a). Consequently,
car(x) and car(cons(u1, v1)) become congruent. Since

find car(x) = car(y) and find car(cons(u1, v1)) = u1 ,

the find of car(y) is set to point to u1 during the subsequent union, resulting
in the left dotted arrow of Figure 9.5(a). Similarly, cdr(x) and cdr(cons(u1, v1))
become congruent, with similar effects (the right dotted arrow of Figure

(Tcons∪TE)-unsatisfiable

Arrays

69

Theory of Arrays - TA

70

• a[i]: a binary function; a[i] represents the value of
array a at position i;

• a⟨i⊲v⟩: a ternary function; a⟨i⊲v⟩ represents the
modified array a in which position i has value v;

• =: a binary predicate

ΣA : {·[·], ·⟨·⊲·⟩, =}

Axioms of TA

• Axioms of (reflexivity), (symmetry), and (transitivity)
of TE

• ∀a,i,j. i = j → a[i] = a[j]

• ∀a,v,i,j. i = j → a⟨i⊲v⟩[j] = v

• ∀a,v,i,j. i ≠ j → a⟨i⊲v⟩[j] = a[j]

71

(array congruence)

(read-over-write 1)

(read-over-write 2)

Decision Procedure
• Based on a reduction to TE-satisfiability via

applications of the (read-over-write) axioms

• If the formula does not contain any write terms,
then the read terms can be viewed as
uninterpreted function terms

• Otherwise, any write term must occur in the context
of a read

72

Decision Procedure - Step 1

If F does not contain any write terms a⟨i⊲v⟩, perform
the following steps.

1. Associate each array variable a with a fresh
function symbol fa, and replace each read term
a[i] with fa(i)

2. Decide and return the TE-satisfiability of the
resulting formula

73

Decision Procedure - Step 2
Select some read-over-write term a⟨i⊲v⟩[j], and split on two cases:

1. According to (read-over-write 1), replace

F[a⟨i⊲v⟩[j]] with F1: F[v] ⋀ i = j

and recurse on F1. If F1 is found to be TA-satisfiable, return satisfiable

2. According to (read-over-write 2), replace

F[a⟨i⊲v⟩[j]] with F2: F[a[j]] ⋀ i ≠ j

and recurse on F2. If F2 is found to be TA-satisfiable, return satisfiable

If both F1 and F2 are found to be TA-unsatisfiable, return unsatisfiable

74

Example of TA

• First case:

• F1: i2 = j ∧ i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ v2 ≠ a[j]

• F1’: i2 = j ∧ i1 = j ∧ i1 ≠ i2 ∧ fa(j) = v1 ∧ v2 ≠
fa(j)

• F1 is TA-unsatisfiable

75

F : i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ a⟨i1⊲v1⟩⟨i2⊲v2⟩[j] ≠ a[j]

Example of TA

• Second case:

• F2: i2 ≠ j ∧ i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ a⟨i1⊲v1⟩[j] ≠ a[j]

• F3: i1 = j ∧ i2 ≠ j ∧ i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ v1 ≠ a[j]

• F4: i1 ≠ j ∧ i2 ≠ j ∧ i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ a[j] ≠
a[j]

• F2 is TA-unsatisfiable

76

F : i1 = j ∧ i1 ≠ i2 ∧ a[j] = v1 ∧ a⟨i1⊲v1⟩⟨i2⊲v2⟩[j] ≠ a[j]

Soundness and
Completeness

Theorem (Sound & Complete). Given quantifier-free
conjunctive ΣA-formula F, the decision procedure
returns satisfiable iff F is TA-satisfiable; otherwise, it
returns unsatisfiable

77

Complexity

Theorem (Complexity). TA-satisfiability of quantifier-
free conjunctive ΣA-formula is NP-complete

78

Summary
• Congruence closure algorithm

• relations, equivalence relations, congruence relations,
partitions, quotients, classes, closures

• DAG-based implementation

• union-find, merge

• Recursive data structures

• Tcons

• Arrays

79

