
Functional Programming

Practicals

Shin-Cheng Mu

1 Functions

1. Define a function even :: Int → Bool that determines whether the input is an even number. You may
use the following functions:

mod :: Int → Int → Int ,

(==) :: Int → Int → Bool .

(Types of the functions written above are not in their most general form.)

2. Define a function that computes the area of a circle with given radius r (using 22/7 as an approximation
to π). The return type of the function might be Double.

3. Type in the definition of smaller into your working file. Then try the following:

(a) In GHCi, type :t smaller to see the type of smaller .

(b) Try applying it to some arguments, e.g. smaller 3 4, smaller 3 1.

(c) In your working file, define a new function st3 = smaller 3.

(d) Find out the type of st3 in GHCi. Try st3 4, st3 1. Explain the results you see.

4. Type in the definition of square in your working file.

(a) Define a function quad :: Int → Int such that quad x computes x4.

(b) Type in this definition into your working file. Describe, in words, what this function does.

twice :: (a→ a)→ (a→ a)
twice f x = f (f x) .

(c) Define quad using twice.

5. Replace the previous twice with this definition:

twice :: (a→ a)→ (a→ a)
twice f = f · f .

(a) Does quad still behave the same?

(b) Explain in words what this operator (·) does.

6. Let the following identifiers have type:

f :: Int → Char
g :: Int → Char → Int
h :: (Char → Int)→ Int → Int
x :: Int
y :: Int
c :: Char

Which of the following expressions are type correct?

1

1. (g · f) x c

2. (g x · f) y

3. (h · g) x y

4. (h · g x) c

5. h · g x c

You may type the expressions into Haskell and see whether they type check. To define f , for example,
include the following in your working file:

f :: Int → Char
f = undefined

However, it is better if you can explain why the answers are as they are.

2 Products and Sums

1. In GHCi, issue the command

let x = ((1,’a’), True)

This defines a new symbol x, with value ((1, 'a'),True).

(a) Find out the type of x by a GHCi command.

(b) How do you extract the 1 in x? Type an expression . . . x into GHCi such that the result is 1.

(c) Try to extract 'a' and True from x too.

2. Define a function swap :: (a, b)→ (b, a) that, as the name and type suggests, swaps the components

(a) Define swap using pattern matching: swap (x, y) =

(b) Define swap using fst and snd : swap x =

(c) Define swap using case.

3. Define a function half :: Int → Either Int Int such that

• if n is even, half n returns Left k with 2× k = n;

• if n is odd, half n returns Right k with 2× k + 1 = n.

You may use the function div . Find out what it does by youself.

4. What are the types of the following expressions?

(a) λx→ (snd x, fst x).

(b) λf x→ f x x.

(c) Define:

myEither f g x = case x of
Left y → f y
Right z → g z .

What is the type of myEither?1

(d) λf x y → f (fst y) x.

(e) λf x y → fst (f y x).

(f) λx y → x.

(g) λf g x→ f x (g x).

1There is such a function called either , which is sometimes quite convenient.

Page 2

3 Inductively Defined Functions on Lists

1. Define a function fstEven :: [Int]→ Int that returns the first even number of the input list.

2. Define a function hasZero :: [Int]→ Bool that returns True if and only if there is a 0 in the input list.

3. Define a function myLast that takes a list and returns the last (rightmost) element.

(a) Let the type be myLast :: [a]→ a. Define myLast .

(b) What happens in the previous definition of the input list is empty?

(c) Define myLast :: [a]→ Maybe a, which returns Nothing if the list is empty.

4. Define a function pos such that pos x xs looks for x in xs and returns its position. For example,
find 'a' "abc" yields 0, and find 'a' "bac" yields 1.

(a) Let the type be pos :: Eq a ⇒ a → [a] → Int . In your definition, what happens if x is not in the
list?

(b) Let the type be pos :: Eq a⇒ a→ [a]→ Maybe Int , such that pos x xs returns Nothing if x is not
in the list.

5. Define myConcat :: [[a]] → [a] such that, for example myConcat [[1, 2, 3], [], [4], [5, 6]] = [1, 2, 3, 4, 5, 6].
Hint: use (++).

6. Define double :: [a]→ [a] such that, for example, double [1, 2, 3] = [1, 1, 2, 2, 3, 3].

7. Define interleave :: [a]→ [a]→ [a] such that, for example, interleave [1, 2, 3, 4] [5, 6, 7] = [1, 5, 2, 6, 3, 7, 4].

8. Define splitLR :: [Either a b]→ ([a], [b]) such that, for example:

splitLR [Left 1, Left 3,Right 'a', Left 2,Right 'b'] = ([1, 3, 2], "ab") .

9. Define a function fan :: a→ [a]→ [[a]] such that fan x xs inserts x into the 0th, 1st. . .nth positions of
xs, where n is the length of xs. For example:

fan 5 [1, 2, 3, 4] = [[5, 1, 2, 3, 4], [1, 5, 2, 3, 4], [1, 2, 5, 3, 4], [1, 2, 3, 5, 4], [1, 2, 3, 4, 5]] .

10. Define perms :: [a]→ [[a]] that returns all permutations of the input list. For example:

perms [1, 2, 3] = [[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]] .

11. Try to define functions inits and tails yourself, and make sure you understand them. Recall that
inits [1, 2, 3] = [[], [1], [1, 2], [1, 2, 3]], and tails [1, 2, 3] = [[1, 2, 3], [2, 3], [3], []].

4 Inductively Defined Functions on Natural Numbers

1. Define mul :: N→ N→ N such that mul m n = m× n, by induction on natural number, using addition
(+).

2. Define myMin :: N→ N→ N that returns the smaller of its two arguments. There is a built-in operator
(min) for this, but try defining it inductively on natural numbers.

3. Define a function elemAt :: N→ [a]→ a such that elemAt n xs yields the nth element of xs.2

4. Define a function insertAt :: N → a → [a] → [a] such that insertAt n x xs inserts x into xs such that
the nth element of the new list is x.

2This function is denoted (!!) in the standard library.

Page 3

5 User-Defined Inductive Datatypes

1. Consider the type

data ETree a = Tip a | Bin (ETree a) (ETree a) .

(a) How is it different from the type Tree in the lecture note?

(b) Define Define minT :: ETree Int → Int , which computes the minimal element in a tree. The
operator for binary minimum in Haskell is min :: Ord a⇒ a→ a→ a.

2. Define minT :: Tree Int → Int , which computes the minimal element in a tree. The operator for binary
minimum in Haskell is min :: Ord a → a → a → a. And the largest Int in Haskell is denoted by
maxBound .

3. Define mapT :: (a→ b)→ Tree a→ Tree b, which applies the functional argument to each element in a
tree.

4. Define flatten :: Tree a → [a] that traverses a tree and collects all the labels, in-order, in a list. For
example,

flatten (Node 4 (Node 2 (Node 1 Null Null)
(Node 3 Null Null))

(Node 6 (Node 5 Null Null)
(Node 7 Null Null)))

yields [1, 2, 3, 4, 5, 6, 7]. Hint: use (++).

5. A binary search tree is a tree of type Tree a, with Ord a, defined by:

1. Null is a binary search tree, and

2. Node x t u is a binary search tree if:

• every label in t is less than x,

• every label in u is greater than x, and

• t and u are also binary search trees.

Define (assuming that t is a binary search tree):

(a) memberT :: Ord a⇒ a→ Tree a→ Bool, such that memberT x t determines whether x occurs in
t, and

(b) insertT :: Ord a⇒ a→ Tree a→ Tree a, such that insertT x t inserts x into t and still returns a
binary tree, if x does not appear in t, and returns t if x is in t.

Page 4

