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Classical semantics of propositional logic

Classical semantics adopts the principle of bivalence: every
proposition denotes exactly one of the two truth-values, 0 (false)
or 1 (true).

Definition. The set of valuations is defined to be PV — 2, where
2 :={0,1}.

Definition. Let o be a valuation. The truth-value interpretation
[_]s : PROP — 2 of propositional formulas is defined by

[L]o =0

[vlo = ov for v: PV
[[90 A w]]a = min [[90]]0 [W]]a

[evile = max[els [¥]s

lo = ¢]e = if[¥]s < [¢], then 1 else 0
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Meta-connectives

Let o be a valuation.

" [ele =1 & [¢lo <[Lle & [¢lo <0 < [¢lo =0.
2 [T]e = [L]e = 1-[L]y = 1-0 = 1.

= [p < ¥]o =1
& {case ‘A" }
min [o = Y] [ = ¢lo =1
& { arithmetic }
[ =dlo=1 and [¢ = ¢ =1
& {case '—'}
[elo < [¥]c and  [¢]o < [v]o

& { antisymmetry }

[elo = [¥]6-

64



Semantic definitions
Definitions. Let ¢, ¥ : PROP and I' : LisT PROP.

= A valuation o satisfies ¢ if [¢], = 1; it satisfies I" if it satisfies
every formula in I'.

= ¢ is a semantic consequence of I" if, for any valuation o, ¢ is
satisfied by o whenever I' is satisfied by o. In this case we
write I' |= ¢.

= pis valid if O = . In this case ¢ is also called a tautology,
and we simply write = ¢.

=  and ¢ are semantically equivalent if [¢], = [¢], for every
valuation o. In this case we write ¢ ~ .

65



Example: = ¢V —p

w2
[ el -1
Case analysis on [¢],-

[ele =1
[V —¢lo = max [¢ls (1= [¢]o) = max10=1.

el = 0
[V —¢le = max [¢]s (1 —[¢]s) = max01=1.
QED.
Either [¢], = 1 or [¢], = 0;[1]and [2]

Notation. “[CASE| C" abbreviates “{ASSUME | C [PROVE | QED".
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= ¢ V =@ — truth table method

We may just summarise the case analysis on [¢], and evaluation
of the value of the entire propositional formula in a truth table.

ele V. o o
0j]0 1 1 0
11 1 0 1

Theorem. Validity in classical propositional logic is decidable, i.e.,
there is a mechanical procedure that, given a propositional formula,
decides whether it is valid or not in a finite amount of time.
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Reducing connectives

We do not actually need that many connectives for classical
propositional logic.

Definition. The set PROP™ is inductively defined by the following
rules:

= | : PrROP™;
= v: PrROP™ if v:PV;
= o = : PROP™ if ¢, ¢: PROP™.

Definition. Let the function _" : PROP~ — PROP be defined by

1t = 1
vt = v for v: PV
(=)t = ot =yt
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Reducing connectives

Theorem. For every ¢ : PROP, there exists ¢~

that p ~ (p7)*.

PROOF | Induction on ¢.
1 S )t for some ¢~ : PROP™.

Choose ¢~ := 1.
/Py

v (o~ )T for some ¢~ : PROP™

Choose ¢~ :=v.

: PrOP™

such
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Reducing connectives

¢ : PROP, ¢~ : PROP™, ¥

~ ()T

9 : PrROP, ¥~ : PROP™, ¥ ~ (97)"
Y AY = (p~)T for some o~ : PROP™
Choose ¢~ := =(¢p~ — —97), which is justified by

the following truth table:

Lemma. ¢ = ¢ if and only if = ¢ <> 9.

v 9 A Y e o (@) o o ()
00/0001 0 0 1 1 0
0 1/0 01 1 0 0 1 0 1
1 0/1 001 0 1 1 1 0
111111 1 1 00 1
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Reducing connectives

¢ : PROP, ¢~ : PROP™, ¢~ (¥7)7,

9 : PrROP, ¥~ : PROP™, ¥ ~ (97)"

VI = (p~)T for some o~ : PROP™
Choose ¢~ := =)~ — 97, which is justified by the

following truth table:

v 9 VI e o @)t~ (00)F)
0 0[0 00 T T 0 0 0
0 1/0 1 1 1 1 0o 1 1
1 0[{1 101 0 1 1 0
1 1{1 111 0 1 1 1



Reducing connectives

¥ : PROP, ¢~ : PROP™, ¢ ~ (¢,

9 : PROP, ¥~ : PROP™, ¥ ~ (V)"

b — 19 =~ (¢)T for some ¢~ : PROP™

Choose p~ :=¢~ = ¥~.
B QeD.

By — and the induction principle on PROP.

72



Soundness

From now on we assume that _* is implicitly applied where needed.

Theorem. ;- ¢ implies |= ¢ for every ¢ : PROP™.
Semantic truth is preserved by every deduction rule.

I' Fyy- @ implies I' = ¢ for every ¢ : PROP™ and
I': LisT ProprP™.

PROOF | Induction on the derivation of I' ;- ¢.

QED.
Choose ' := () in .
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Inductive definition of derivations

Definition. The sets NJ7[I'; ] of (closed) derivations, where
I" ranges over LisST PROP™ and ¢ over PROP™, are inductively
defined by the following rules:

" TFo (assum):NJf[F;go] if el
d

(LE) : NJ7[I; ] if d:NJTI; L]

| R )

-wﬁ(—ﬂ):l\u_[r;gp—)¢] if d:NJ[T, ;0

. H(—E) :NJ™[[;9] if d:NJ"[[;¢ — o] and
e: NJ7[I; ]
Definition. ¢ is derivable from T in NJ~ if the set NJ7[['; ¢] is
inhabited. In this case we write I - 5- .

Treating proofs as formal objects is the defining characteristic of
proof theory.
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Induction principle on NJ™

The rule

d N P
-m(—ﬂ).NJ Ty =] if d:NJT[L, ;9]

is interpreted as “if d is a derivation with conclusion I, ¢ - ¢, then
TF o9 (—1) is a derivation with conclusion I' - ¢ — 9"

Let PT ¢ d be a property on I' : LisT PROP™, ¢ : PROP™, and
d:NJ7[I';¢], i.e., P talks about a derivation d and the context I"
and formula ¢ in the conclusion of d. The corresponding case of
the above rule in the induction principle on NJ™ is

= For any I' : LisT PROP™, ¢, ¥ € PROP™, and d: NJ7[I, p; ],

PT (p—1) (FHPd—Hﬁ (al)) holds if P (T, ) v d holds.
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Soundness

I'Fyjy- @ implies ' = ¢ for every ¢ : PROP™ and
I': LisT ProP™.

I' = ¢ holds for every I' : LisT PROP™ and

@ : PROP™ such that I b5 .

PROOF | Induction on the derivation of I' ;- ¢.

Case (assum).
I': List PrROP™, ¢ :PrOP™, €T,

o:PY — 2, o satisfies I

[¢o =1
Since o satisfies I and ¢ € T".
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Soundness

Case (LE).
I':List PRoP™, Ty~ L, TE L

p: PROP™, 0:PV — 2, o satisfies I'

el = 1
Such ¢ could not have been given.

[L]o = 0.

By definition.
[l =1.

I' = L and o satisfies I'.
W] QED.

[PROOF| [1.2.1]and[1.2.2] are contradictory —
invoke the principle of explosion.
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Soundness

Case (—l).
I': LisT PROP™, ¢, 9 : PROP™,

L |_NJ‘ P, T'p ): Y,
o: PV — 2, o satisfies I

[p = ¢ =1

Case analysis on the truth value of .
[ele =0

[ele =1

QED.

[PROOF| By|[1.3.1]and[1.3.2].
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Soundness

[¢]o =0
[ = ¥lo =1
& { definition of truth }

[elo < [¥]o

& { assumption }
0< [¥],

& { truth value is either O or 1}
true.
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Soundness

[l =1
1 must be true, and therefore so must ¢ — .

o satisfies I, .

o satisfies I' and ¢.
[¥]o = 1.

I\o o and [1321]
FEEX] QED.

[ = ¥ls =1

& { definition of truth }

[¢]o < [¥]o
& {1322}

[e]o <1
& { truth value is either 0 or 1}
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Soundness

I': LisTt PrOP™, ¢, ¥ : PROP™,
Fl_NJ_ @_)1#, F>:SO_>/¢)1 Fl—NJ_ Soy
o: PV — 2, o satisfies I

[[1“]0 =1

Left as an exercise.

By — and the induction principle

on NJ™.

I'=o,

]



Semantic completeness

Non-theorem. |= ¢ implies ;- ¢ for any ¢ : PROP™.

Counterexample. We have = =—A — A but not Fy;- -—A — A.

If, however, we extend NJ~ to NK™ with the rule
I'F—gp
'k

we do obtain semantic completeness of NK™ with respect to the
truth-value semantics.

(==E)

Theorem. |= ¢ implies Fyk- ¢ for any ¢ : PROP™.

82



The NK™ deduction system

Definition. The sets NK™[I'; ¢] of (closed) derivations, where
I" ranges over LisT PROP™ and ¢ over PROP™, are inductively
defined by the following rules:

(assum) . NK—[I; ] if @ eT;

" I'koyp
= L (B NK [Ty if dsNKC[Ts L
d . - . H . — . .
. H(%E) : NK—[F;’I!)] if d: NK_[F;QD — w] and
e : NK™[I; ¢];
Flijgo (=—E) : NK™[I'; ] if d: NK™[I'; ).

Definition. ¢ is derivable from T in NK™ if the set NK™[I'; ¢] is
inhabited. In this case we write I' - ¢. 83



Weakening lemma

Lemma. Let I, IV : LisT PROP™ such that ' C TV (i.e.,, p €T
implies ¢ € I for any ¢). Then I' Fyi— ¢ implies IV Fyi— ¢
for any ¢ : PROP™.

Induction on the derivation of I' k- .
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Reconstruction lemma

Definition. The function vars: PRoP~ — LI1ST PV, which
computes the list of propositional variables occurring in a
propositional formula, is defined by

vars 1 =0
vars v = [v] for v: PV
vars (p — 1) = varsp U vars 1

Lemma. Let ¢ : PROP™ and o : PV — 2. Define
T, ¥ = if [Y], = 1 then ¢ else —.
Then T, (vars ¢) Fyg- To ¢, where
T, (vars ) = [Ty v| veE vars ¢].

Induction on .
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Reconstruction lemma

- L

PROOF 11 (1)

L

v:PY
Tov Fyg- Tov
R A
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Reconstruction lemma

o PrOP, T, (vars ) e To

Y :PrOP™, T, (vars ) byg- To ¥
To (vars (¢ = ¥)) bk To (9 = 1)
Case analysis to determine T, (¢ — ¥).
[v], =1
[¥], =0
Left as an exercise.

QED.
[PROOF| By|[3.1]and[3.2]
QED.

By — and the induction principle on PROP™.

87



Reconstruction lemma

ol -1
In this case T, (¢ — 1) = ¢ — 1. We can prove
1 and thus ¢ — .
3.1.1 [ QVETCR VNN N )
Induction hypothesis T, (vars ¢) Fyk— To ¥,
where T, 1) = 1) since [¢], = 1.
d: NK™[T5 (vars (¢ = v)), @3 ]

]PROOF\ ’3.1.1 ‘ and weakening.
CR] QED.

d )

T, (vars (p = ¥)) F o — 9 =
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Semantic completeness

Theorem. |= ¢ implies Fyk- ¢ for any ¢ : PROP™.

Construct a derivation that encodes the truth table,
where each sub-derivation that encodes an entry of the
table is produced by the reconstruction lemma.

For any finite I' : L1sT PV whose elements are all distinct,
Ty I'yg- @ for any o implies  Fyi- ¢.

Induction on (the size of ) T'.

QED.
Choose T" := vars ¢ in -
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Semantic completeness

QED.
Choose T" := vars ¢ in .
T, (vars ¢) Fxyg— To @ for any o.

PROOF| By the reconstruction lemma.

BA 7. (vars o) Fyx- ¢ forany o.

]PROOF\ In ]2.1 \ Ty @ = @ for any o since g is valid.

QED.
Choose I' := vars ¢ in and discharge the
condition by .
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Semantic completeness

For any finite I' : L1ST PV whose elements are all distinct,
To I' k- @ for any o implies  Fyi— ¢.

Induction on (the size of ) T'.

Fni- ¢ forany o implies  Fyi- .

Use the condition by choosing an arbitrary o.

[ : LisT PV consisting of a finite number of

QED.

distinct elements, v: PV, v¢T,
Ts I'yg- @ for any o implies  Fyi- ¢,
To I, Ty v Eyg— @ for any o

N

| PROOF |

By ] 1.1 H 1.2\ and the induction principle on

lists.



Semantic completeness

[ : L1ST PV consisting of a finite number of

distinct elements, v: PV, v¢T,
Ty I' k- ¢ for any o implies  Fyi- ¢,
T, I, Tov l_NK’ (0} for any o

N

Use the induction hypothesis.
Ts I', v Fyg- @ for any o.

Ty I',2v k- @ for any o.

T, I' =y~ @ for any o.

QED.

Discharge the condition of the induction
hypothesis by .
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Semantic completeness

WY 7,1, v Iyk- ¢ forany o.

PROOF | Given o, instantiate the last assumption

with o [1/v]. Then T,/ v=v, and
Tonp I'= T, T'sincevg T

oy 1,1, v byk- ¢ for any o.

Similar to but instantiating the

assumption with o [0/v].

Definition. Let f: S— T, s: S, and t: T. The function
f[t/s]: S— Tis defined by
(f[t/s]) x := if x=sthen t else fx.
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Semantic completeness

xRy 7, I Fyk- ¢ forany o.

o:PVY —2

To T by ¢

Refute = and use double negation elimination.
d:NK™ [T, T,=p,v; ¢

[PROOF| [1.2.1] and weakening.

e NK-[T, T, ~p,~v; 4]

[PROOF| [1.2.2] and weakening.

QED.
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Semantic completeness

QED.
A —vE —p e A v —p d
A, —vF L (_>|)HE) A vi L (_>|)HE)

T, T (i

ol,7p

|
T, TF g (HE))
T. ko

gs



Classical semantics of first-order logic

Definition. Given a signature S = (P, F), an S-structure M
consists of

= a nonempty set called the domain, which is simply denoted
by M,

= a function [p]a @ (M —)" 2 for each predicate symbol p: P
of arity n, and

= a function [f]aq : (M —)" M for each function symbol f: F
of arity n.

Definition. Given a structure M, the set of M-assignments is
defined to be ZV — M.

96



Classical semantics of first-order logic

Definition. Let S = (P, F) be a signature, M an S-structure,

and o an M-assignment. The truth-value interpretation
[_Im,o : FORMs — 2 of formulas is defined as follows:

[[J—]]M,U =
[Pt talmo =
[[90/\1/}]]/\/1,0 =
[[@VM]M,U =
[ — ¢]]M,a =
[[V V. (P]]M,U =

[Bv. ¢Im, o =

0

lplm [tilm,o --- [ta]am, o for p:P

min [[90]]/\/1,0' [["M]/\/Lg-

max [[SO]]M,O' [W]]M,g

if []m, o < [Y]m, o then 1 else 0

if [[(P]]M,U[m/v] =1 for every m: M
then 1 else 0

if [, o{mp] = O for every m: M
then O else 1

where [_]am, o : TERMF — M is defined as follows:

[VIm, o =
[fti...thlmo =

ov for v:ZV
[[f]]M [[tl]]./\/l,o--- [[tn]]./\/l,o for f: F.
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Semantic definitions

Definitions. Let S be a signature, ¢, ¥ : FORMg, and
I' : LisT FORMg.

= An S-structure M and an Me-assignment o satisfy ¢ if
[elm, o = 1; they satisfy I" if they satisfy every formula in I'.

=  is a semantic consequence of I if, for any S-structure M
and M-assignment o, ¢ is satisfied by M and o whenever T’
is satisfied by M and o. In this case we write I" |= ¢.

= pis valid if ) = . In this case we also call ¢ a tautology and
simply write = .

m  and v are semantically equivalent, written ¢ ~ 1), if

[elm, o = []m, o for every S-structure M and
Me-assignment o.
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Semantic definitions
Definitions. Let M be a structure, ¢ a sentence, and T a theory.
n M satisfies ¢ if ¢ is satisfied by M and any M-assignment o.
In this case we call M a model of ¢ and write M = .

m M satisties T if M satisfies every axiom in 7. In this case we
call M a model of T and write M |=T.

= T is satisfiable or (semantically) consistent if it has a model.

This satisfaction relation is at the heart of model theory, which we
do not cover in this course.
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Example: = =(Vv. =p) <> Jv. ¢

Equivalently we can prove that (Y v. —¢) =~ Jv. ¢.

S : signature, M : S-structure, o : M-assignment
[=(Vv. 2p)]m,o = Lif and only if [Fv. p]m,0 =1
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Example: = =(Vv. =p) <> Jv. ¢
By definition of truth-value interpretation.

[~(Vv. =o)[m,0 =1
& { truth value of ‘=" }

[[V v. _‘(p]]./\/l,o' =0
& { truth value is either 0 or 1}

it is not the case that [V v. =¢]r, 0 =1
& { truth value of V' }

it is not the case that [—~¢] x(, o[mp] = 1 for every m: M
& {truth value of '="}

it is not the case that [] vq, o[mp] = O for every m: M
& { truth value of ‘3" }

it is not the case that [Tv. a6 =0
& { truth value is either O or 1}

[[El v. 90]]/\/1,0' =1
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Soundness and semantic completeness

Theorem. by ¢ (or Fnk @) implies = ¢ for any first-order
formula ¢.

Completeness is trickier:

m classically it is a well-known result first proved by Goédel, but

= intuitionistically it has been shown to be unprovable by known
methods unless we switch to a more sophisticated semantics.

Assuming completeness, we get the following undecidability result
as a corollary of the negative answer to Hilbert's
Entscheidungsproblem independently given by Church and Turing.

Theorem. Validity in classical first-order logic is undecidable.
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Logical embedding

The fact that NK is obtained by extending NJ with the (—=—E) rule
suggests that intuitionistic logic is a sub-system of classical

logic — some results developed in classical mathematics are
constructive, while others are not.

The opposite view is possible, though: classical logic can be
embedded into intuitionistic logic by the Gédel-Gentzen negative
translation.
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Assertion strength

In terms of provability, Fnk ¢ V - does not assert that we can
prove either ¢ or =, but that it cannot be the case that both ¢
and —p lead to contradiction — its strength is equivalent to that
of Fny —\<—\(p A —|—|(P)_

= A disjunctive proposition ¢ V 1 in classical logic only amounts
to =(—¢® A —p°) in intuitionistic logic.

m An existential statement Jv. ¢ in classical logic only amounts
to =V v. =¢° in intuitionistic logic.

= An atomic proposition p t; ... t, in classical logic only
amounts to the assertion that the opposite is impossible, i.e.,
_‘_|(p t... tn).

As for L, ‘A", ‘—', and 'V', their strength are the same in classical

and intuitionistic logic.
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Godel-Gentzen negative translation

Definition. Given a signature S = (P, F), the Godel-Gentzen
negative translation _° : FORMgs — FORMg is defined by

1° = 1

(pti...ty)° = —-—=(pty...t,) forp:P
(pAY)° = ¢°AY°

(pVh)° = (7p° A Y°)
(p—=v)° = ¢*—=y°

(Vv. p)° = Vv p°

(Fv. ¢)° = Vv —p°.
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Godel-Gentzen negative translation

Theorem. For any first-order formula ¢ and list T" of first-order
formulas, T'Fnk ¢ if and only if I'° Fnj ¢°.

S signature, ¢ : FOrRMg, I':LisT FORMsg,

I |—NJ QOO
N
FNK @ ¢ ¢°.
I'° PNk ¢°. All rules of NJ are rules of NK.

QED. [PROOF| By [1.1], the “Gédel-Gentzen formulas”
in can be replaced by their untranslated versions
under NK.
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Godel-Gentzen negative translation

S signature
I'° Fny ¢° for every ¢ : FORMgs and

I : LisT FORMg such that T' Fnk .

Fng ¥ <> =—°  for any ¢ : FORMg. (For the
Godel-Gentzen formulas, double negation elimination is
admissible in NJ.)

QED.
Induction on the derivation of I" Fnk ¢, using

double negation elimination where necessary.

QED.
The two directions are proved in and .
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Godel-Gentzen negative translation

Case (VE).

I': LisT FORMg, ¢, 9, ¥ : FORMg,
4 NK[T; v ), NI[T% (g A %),
e: NK[[,p; 9], e :NJ[I° ¢°%9°],
f o NK[D, ;9] ' NJ[°,¢°;9°]

b 0°

PROOF | (d”, e”, and f" are suitably weakened versions of d’,

e/, and 1))
I‘O’ _‘,190’ (po '_ ﬁ,190 e// I‘O, ﬂ,L907 /(/}O I_ ﬂﬁo f//
(o] (o] o (—>E) [e) [e) [e) (_>E)
o e F L Lo L
%, —0° F —p° AT
d// FO, _|,L90 '_ _|<p0 /\ _w?Z}O (_>E)
I° —0°F L
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Classical logic as a sub-language of intuitionistic logic

We might view

= the language of classical logic as a convenient way of writing
the Godel-Gentzen formulas in intuitionistic logic, and

= NK as an abstraction with which we can write certain indirect
proofs in NJ more easily as direct proofs.

Under this view, intuitionistic logic is in fact a richer language,
which has stronger disjunction and existential quantification and
thus can distinguish constructive theorems from non-constructive
ones (whereas classical logic cannot).
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