
FLOLAC’12

Logic
Lecture 1: intuitionistic logic

27 August 2012

柯向上

Department of Computer Science
University of Oxford

Hsiang-Shang.Ko@cs.ox.ac.uk

http://www.cs.ox.ac.uk/people/hsiang-shang.ko/
http://www.cs.ox.ac.uk/
http://www.ox.ac.uk/
mailto:Hsiang-Shang.Ko@cs.ox.ac.uk

Formal logic

Highlights of this course:

the use of formal languages to represent reasoning patterns;
reasoning in the meta-language about the object language
(especially by induction);
the intimate connection between logic and computation.

1

Propositional logic

In propositional logic, we formalise and study various logical
connectives like “and”, “or”, and “implies” that we use to combine
propositions into more complex ones.

For an extreme example, the truth of the following proposition is
determined by the way we use the connectives alone.

if herba viridi and area est infectum, then area est infectum

The actual meanings/structures of the two atomic propositions
“herba viridi” and “area est infectum” do not matter.

2

Syntactic structure of propositions

The proposition from the previous slide:

if herba viridi and area est infectum, then area est infectum

Since the contents of the atomic propositions do not matter, we
may just replace them with simpler symbols.

if A and B , then B

The syntactic structure is more explicitly shown as a tree, which
we call a propositional formula.

..→.

∧

.

A

.

B

.

B

3

Building up a propositional formula

The “jigsaw pieces” we have:

an infinite supply of propositional variable symbols A , B , C , …,

a special atomic proposition symbol ..⊥ , and
three connective symbols that combine two propositional
formulas — conjunction ..∧ , disjunction ..∨ , and

implication ..→ .

Even though there are an infinite number of jigsaw pieces, we can
only build up a propositional formula by using a finite number of
them.

4

Typesetting propositional formulas

We will just use a one-dimensional syntax to describe the
tree-shaped propositional formulas.

Boxes around propositional variable symbols and the circle
enclosing ⊥ are omitted.
For the connective symbols, we write φ ∧ ψ, φ ∨ ψ, and
φ→ ψ to denote ..∧.

φ

.

ψ

, ..∨.

φ

.

ψ

, and ..→.

φ

.

ψ

,

putting parentheses around φ and ψ where necessary.

Example. A ∨ (B ∧ C) denotes ..∨.

A

.

∧

.

B

.

C

,

whereas A ∨ B ∧ C is ambiguous. 5

Formal definition of propositional formulas
Let PV = { A, B, C, . . . } be an infinite set of propositional variable
symbols.

Definition. The set Prop of propositional formulas is inductively
defined by the following rules:

⊥ : Prop;
v : Prop if v : PV;
φ ∧ ψ : Prop if φ, ψ : Prop;
φ ∨ ψ : Prop if φ, ψ : Prop;
φ→ ψ : Prop if φ, ψ : Prop.

Remark. The set Prop contains exactly the propositional
formulas that can be built up by using a finite number of jigsaw
pieces previously specified.

6

Induction
We can perform induction on an inductively defined set.

Practically, we can
define functions on the inductively defined set and
prove properties about all the elements in the set

by “case analysis”.

7

Defining functions on Prop

Definition. The function nAtoms : Prop → N, which computes
the number of occurrences of atomic propositional formulas in a
propositional formula, is defined by

nAtoms ⊥ = 1
nAtoms v = 1 for v : PV
nAtoms (φ ∧ ψ) = nAtoms φ+ nAtoms ψ
nAtoms (φ ∨ ψ) = nAtoms φ+ nAtoms ψ
nAtoms (φ→ ψ) = nAtoms φ+ nAtoms ψ.

Notation. Function application is denoted by juxtaposition,
which has the highest precedence.

8

Well-definedness of nAtoms
Why is the function nAtoms well-defined? That is, why can we
unambiguously assign a value to each propositional formula
according to the equations?

In the definition of nAtoms, we have exactly one case
corresponding to each rule in the definition of Prop.
Every φ : Prop is necessarily constructed using instances of
the rules.
So given any φ : Prop, we can always unambiguously find the
corresponding computations specified in the definition of
nAtoms.

Example. nAtoms ((A ∧ B) → (B ∧ A)) = (1 + 1) + (1 + 1) = 4.

9

Sub-formulas
Definition. The function sub : Prop → List Prop computing
the list of occurrences of sub-formulas in a propositional formula is
defined by

sub ⊥ = [⊥]
sub v = [v] for v : PV
sub (φ ∧ ψ) = [φ ∧ ψ] ++ sub φ ++ sub ψ
sub (φ ∨ ψ) = [φ ∨ ψ] ++ sub φ ++ sub ψ
sub (φ→ ψ) = [φ→ ψ] ++ sub φ ++ sub ψ.

Example.

sub ((A ∧ B) → (B ∧ A))
= [(A ∧ B) → (B ∧ A), A ∧ B, A, B, B ∧ A, B, A]

Notation. [_] turns an element into a singleton list, and ‘++’ is
list concatenation.

10

Induction principle on Prop

Let P φ be a property on φ : Prop. If we can show that P can be
“propagated” by every construction rule of Prop, then for any
φ : Prop, a proof of P φ can be derived in the same way as how
φ is constructed.

Slightly more formally, P φ holds for every φ : Prop if
P ⊥ holds,
P v holds for every v : PV,
for any φ, ψ ∈ Prop, P (φ ∧ ψ) holds if P φ and P ψ hold,
for any φ, ψ ∈ Prop, P (φ ∨ ψ) holds if P φ and P ψ hold,
and
for any φ, ψ ∈ Prop, P (φ→ ψ) holds if P φ and P ψ hold.

11

Inductive proof on Prop

Theorem. | sub φ | = 2× nAtoms φ− 1 for every φ : Prop.
PROOF Induction on φ.

1 | sub ⊥ | = 2× nAtoms ⊥− 1.
2 ASSUME v : PV PROVE | sub v | = 2× nAtoms v − 1

3 ASSUME φ : Prop, | sub φ | = 2× nAtoms φ− 1,
ψ : Prop, | sub ψ | = 2× nAtoms ψ− 1

PROVE | sub (φ ∧ ψ) | = 2× nAtoms (φ ∧ ψ)− 1

4 ASSUME the same as in 3
PROVE | sub (φ ∨ ψ) | = 2× nAtoms (φ ∨ ψ)− 1

5 ASSUME the same as in 3
PROVE | sub (φ→ ψ) | = 2× nAtoms (φ→ ψ)− 1

6 QED.
PROOF By 1 – 5 and the induction principle on Prop. 12

| sub φ | = 2× nAtoms φ− 1 for every φ : Prop

1 | sub ⊥ | = 2× nAtoms ⊥− 1.
PROOF Evaluate the left-hand and right-hand sides.
1.1 | sub ⊥ | = 1.
1.2 2× nAtoms ⊥− 1 = 1.
1.3 QED.

PROOF 1.1 and 1.2 , and indeed 1 = 1.

2 ASSUME v : PV
PROVE | sub v | = 2× nAtoms v − 1

PROOF Similar to 1 .

13

| sub φ | = 2× nAtoms φ− 1 for every φ : Prop

3 ASSUME φ : Prop, | sub φ | = 2× nAtoms φ − 1,
ψ : Prop, | sub ψ | = 2× nAtoms ψ − 1

PROVE | sub (φ ∧ ψ) | = 2× nAtoms (φ ∧ ψ)− 1

PROOF We reason:∣∣ sub (φ ∧ ψ)
∣∣

= { definition of sub }∣∣ [φ ∧ ψ] ++ sub φ ++ sub ψ
∣∣

= { list size }
1 + | sub φ |+ | sub ψ |

= { induction hypothesis }
1 + 2× nAtoms φ− 1 + 2× nAtoms ψ − 1

= { arithmetic }
2× (nAtoms φ+ nAtoms ψ)− 1

= { definition of nAtoms }
2× nAtoms (φ ∧ ψ)− 1. 14

| sub φ | = 2× nAtoms φ− 1 for every φ : Prop

4 ASSUME φ : Prop, | sub φ | = 2× nAtoms φ − 1,
ψ : Prop, | sub ψ | = 2× nAtoms ψ − 1

PROVE | sub (φ ∨ ψ) | = 2× nAtoms (φ ∨ ψ)− 1

PROOF Similar to 3 .

5 ASSUME φ : Prop, | sub φ | = 2× nAtoms φ − 1,
ψ : Prop, | sub ψ | = 2× nAtoms ψ − 1

PROVE | sub (φ→ ψ) | = 2× nAtoms (φ→ ψ)− 1

PROOF Similar to 3 .

15

Meta-connectives
For this course, we simply take the negation of a propositional
formula φ to be φ→ ⊥, which can be shortened to ¬φ.

We can define other connectives in the same way. For example,

⊤ := ¬⊥ = ⊥ → ⊥

and
φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

Note that ‘¬’, ⊤, and ‘↔’ are defined in the meta-language.

16

Syntax vs. semantics

The propositional formulas are defined to be a certain type of trees
and nothing more. They are merely symbols amenable to mechanic
manipulation.

We need to interpret the symbols to something we intuitively
understand to make them meaningful (useful) to us.

17

The Brouwer–Heyting–Kolmogorov interpretation

The BHK interpretation is one possible (informal) interpretation of
the elements of Prop.

What is a proposition? From the intuitionist position, a
proposition is an expression of what counts as its proof.

There is no proof of ⊥.
A proof of φ ∧ ψ is a proof of φ and a proof of ψ.
A proof of φ ∨ ψ is either a proof of φ or a proof of ψ.
A proof of φ→ ψ is a method which constructs a proof of ψ
given a proof of φ.

A proposition is considered true if there is a proof of it, and is
considered false if there is a proof of its negation.

18

The Brouwer–Heyting–Kolmogorov interpretation

Example. A proof of (A ∧ B) → (B ∧ A) is a method that converts
a proof of A ∧ B into one of B ∧ A.

Does such a method exist? Yes! Assume that a proof of A ∧ B is
given. Since a proof of A ∧ B is a proof of A and a proof of B, we
certainly have a proof of B and a proof of A, which together
constitute a proof of B ∧ A. This method serves as a proof of
(A ∧ B) → (B ∧ A).

19

Natural deduction
“Assume that a proof of A ∧ B is given. Since a proof of A ∧ B is a
proof of A and a proof of B, we certainly have a proof of B and a
proof of A, which together constitute a proof of B ∧ A. This
method serves as a proof of (A ∧ B) → (B ∧ A).”

The above reasoning can be rendered as a derivation in natural
deduction as follows:

A ∧ B ⊢ A ∧ B (∧ER)
A ∧ B ⊢ B

A ∧ B ⊢ A ∧ B (∧EL)
A ∧ B ⊢ A (∧I)

A ∧ B ⊢ B ∧ A (→I)
⊢ (A ∧ B) → (B ∧ A)

20

Deduction rule
A derivation in natural deduction consists of pre-specified
deduction rules like

Γ ⊢ φ Γ ⊢ ψ (∧I)
Γ ⊢ φ ∧ ψ

A node Γ ⊢ φ (read “Γ entails φ”; the symbol ‘⊢’ is called
“turnstile”) can be intuitively understood as “the proposition φ
can be proved under context Γ” where the context Γ is a (possibly
infinite) list of propositions whose proofs are assumed to exist.

Nodes above the line are called premises and the node below the
line is called the conclusion.

The rule is given a name (∧I), which stands for “∧-introduction”.

21

Introduction and elimination rules
For each connective we have

introduction rule(s) which introduce the connective in the
conclusion, and
elimination rule(s) which eliminate the connective in a premise.

For example, the introduction rule for ‘∧’ is
Γ ⊢ φ Γ ⊢ ψ (∧I)

Γ ⊢ φ ∧ ψ
as we have seen, while there are two elimination rules for ‘∧’:

Γ ⊢ φ ∧ ψ (∧EL)
Γ ⊢ φ

Γ ⊢ φ ∧ ψ (∧ER)
Γ ⊢ ψ

The BHK interpretation of a connective is reflected in its
introduction rule(s).

22

Assumption rule
We also have the assumption rule

(assum)
Γ ⊢ φ

which has a side condition that φ ∈ Γ.

The name of the rule can be omitted in derivations as this cannot
cause confusion.

23

Introducing and eliminating ‘→’

Γ, φ ⊢ ψ (→I)
Γ ⊢ φ→ ψ

Γ ⊢ φ→ ψ Γ ⊢ φ (→E)
Γ ⊢ ψ

Example.

Γ ⊢ A → B → C Γ ⊢ A (→E)
Γ ⊢ B → C Γ ⊢ B (→E)

Γ︷ ︸︸ ︷
A → B → C, B, A ⊢ C (→I)

A → B → C, B ⊢ A → C (→I)
A → B → C ⊢ B → A → C (→I)

⊢ (A → B → C) → (B → A → C)

Notation. We stipulate that ‘→’ associates to the right, so
A → B → C is shorthand for A → (B → C).

24

Introducing and eliminating ‘∨’

Γ ⊢ φ (∨IL)
Γ ⊢ φ ∨ ψ

Γ ⊢ ψ (∨IR)
Γ ⊢ φ ∨ ψ

Γ ⊢ φ ∨ ψ Γ, φ ⊢ ϑ Γ, ψ ⊢ ϑ (∨E)
Γ ⊢ ϑ

Example.

A ∨ B ⊢ A ∨ B
A ∨ B, A ⊢ A (∨IR)

A ∨ B, A ⊢ B ∨ A
A ∨ B, B ⊢ B (∨IL)

A ∨ B, B ⊢ B ∨ A (∨E)
A ∨ B ⊢ B ∨ A (→I)

⊢ A ∨ B → B ∨ A

Notation. We stipulate that ‘→’ has lower precedence than
‘∧’ and ‘∨’, so A ∨ B → B ∨ A is shorthand for (A ∨ B) → (B ∨ A).

25

Eliminating ⊥

There is no introduction rule for ⊥. The elimination rule is a form
of the principle of explosion.

Γ ⊢ ⊥ (⊥E)
Γ ⊢ φ

Example.

A ∨ B,¬A ⊢ A ∨ B

A ∨ B,¬A, A ⊢ ¬A A ∨ B,¬A, A ⊢ A (→E)
A ∨ B,¬A, A ⊢ ⊥ (⊥E)
A ∨ B,¬A, A ⊢ B A ∨ B,¬A, B ⊢ B (∨E)

A ∨ B,¬A ⊢ B (→I)
A ∨ B ⊢ ¬A → B (→I)

⊢ A ∨ B → ¬A → B

Notation. We stipulate that ‘¬’ has higher precedence than ‘∧’,
‘∨’, and ‘→’, so ¬A → B is shorthand for (¬A) → B.

26

Derivability

Let NJ denote the deduction system that consists exactly of all the
previous deduction rules.

A derivation in NJ is closed if there are no premises left.

A formula φ is derivable from a list Γ of formulas in NJ if there is
a closed derivation in NJ whose conclusion is Γ ⊢ φ. In this case
we write Γ ⊢NJ φ.

A formula φ is called a theorem if ∅ ⊢NJ φ. In this case we simply
write ⊢NJ φ.

27

Remark on negation and disjunction

We can derive

¬¬(φ ∨ ¬φ) but not φ ∨ ¬φ (law of excluded middle),
φ→ ¬¬φ but not ¬¬φ→ φ (principle of indirect proof),
¬φ ∨ ¬ψ → ¬(φ ∧ ψ) but not ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ, and
(φ→ ψ) → (¬ψ → ¬φ) but not (¬ψ → ¬φ) → (φ→ ψ)

Treat negation and disjunction with care; in particular, do not
unconsciously cancel out double negations!

28

Syntactic nature of deduction systems

Even though we used the BHK interpretation to explain the rules
of natural deduction, the deduction system itself is really just a
game of symbols, whose rules we must strictly follow.

Do not arbitrarily invent new rules!

29

An alternative elimination rule for ‘→’
The following rule is sound according to the BHK interpretation,
but is not one of the pre-specified rules in NJ.

Γ ⊢ φ→ ψ Γ ⊢ φ Γ, ψ ⊢ ϑ
(→E′)

Γ ⊢ ϑ

We can, however, reduce it to the introduction rule and the
standard elimination rule for ‘→’.

Γ, ψ ⊢ ϑ (→I)
Γ ⊢ ψ → ϑ

Γ ⊢ φ→ ψ Γ ⊢ φ (→E)
Γ ⊢ ψ (→E)

Γ ⊢ ϑ
This shows the admissibility of (→E′).

Definition. A deduction rule is admissible if a closed derivation of
its conclusion can be constructed from closed derivations of it
premises.

30

A richer structure of propositions
When talking about mathematical structures like natural number
arithmetic, we use statements like

for every x, if x ̸= 0 then there exists y such that suc y = x

that involve quantification over individuals, which is not present in
the language of propositional logic.

(The function suc is the successor function on natural numbers.)

This motivates us to extend propositional logic with first-order
quantification, the result of which is called first-order logic.

31

Adding quantification to the language

We represent the statement

for every x, if x ̸= 0 then there exists y such that suc y = x

as the formula ..∀.

x

.

→

.

→

.

Eq x zero

.

⊥

.

∃

.

y

.

Eq (suc y) x

which is simply typeset as

∀ x. ¬(Eq x zero) → ∃ y. Eq (suc y) x

Notation. The scope of a quantifier extends as far as possible. 32

Substitution
Variables are to be substituted for. For example, from

∀ x. ¬(Eq x zero) → ∃ y. Eq (suc y) x

we should be able to deduce

¬(Eq (suc zero) zero) → ∃ y. Eq (suc y) (suc zero)

by substituting “suc zero” for the variable x.

The structure of the atomic formula “Eq (suc y) x” must be
refined so the variable x can be substituted.

33

Sub-atomic structure
In the atomic formula Eq (suc y) x,

‘Eq’ is a predicate symbol that accepts two terms, and
‘suc’ is a function symbol that can be used to construct more
complex terms, which can contain variables.

..Eq.

suc

.

y

.

x

Each symbol has an associated natural number called its arity,
which specifies the number of sub-terms the symbol expects.

34

Terms
Let IV = { x, y, z, . . . } be an infinite set of individual variable
symbols.

Definition. Given a set F of symbols with arities, the set TermF
of terms is inductively defined by the following rules:

v : TermF if v : IV;
for any f : F with arity n,
f t1 . . . tn : TermF if t1, …, tn : TermF .

Example. For terms in Peano/Heyting arithmetic, we choose
F := { zero/0, suc/1, add/2, mult/2 }.

35

First-order formulas
Definition. A signature S is a pair of sets (P,F) of symbols with
arities, where elements of P are called predicate symbols and
elements of F are called function symbols.

Definition. Given a signature S = (P,F), the set FormS of
first-order formulas is defined by the following rules:

⊥ : FormS ;
for any p : P with arity n,
p t1 . . . tn : FormS if t1, …, tn : TermF ;
φ ∧ ψ : FormS if φ, ψ : FormS ;
φ ∨ ψ : FormS if φ, ψ : FormS ;
φ→ ψ : FormS if φ, ψ : FormS ;
∀ v. φ : FormS if v : IV and φ : FormS ;
∃ v. φ : FormS if v : IV and φ : FormS .

36

First-order formulas
Example. The signature for Peano/Heyting arithmetic consists of
P := { Eq/2 } and F := { zero/0, suc/1, add/2, mult/2 }.

..∀.

x

.

→

.

→

.

Eq

.

x

.

zero

.

⊥

.

∃

.

y

.

Eq

.

suc

.

y

.

x

∀ x. ¬(Eq x zero) → ∃ y. Eq (suc y) x

37

Variable binding

Variable binding refers to the association of variable occurrences
with quantifiers.

∀ x. ¬(Eq x zero) → ∃ y. Eq (suc y) x

..∀.

x

.

→

.

→

.

Eq

.

x

.

zero

.

⊥

.

∃

.

y

.

Eq

.

suc

.

y

.

x

38

Free/bound occurrences of variables

A quantifier does not necessarily bind all occurrences of the
associated variable, but only the free occurrences.

P x → ∀ x. P x

..∃.

x

.

→

.

P

.

x

.

∀

.

x

.

P

.

x

The first occurrence of x is free, whereas the last one is bound
by ‘∀ x’.

39

Free/bound occurrences of variables

A quantifier does not necessarily bind all occurrences of the
associated variable, but only the free occurrences.

∃ x. (P x → ∀ x. P x)

..∃.

x

.

→

.

P

.

x

.

∀

.

x

.

P

.

x

The outermost ‘∃ x’ binds the previously free occurrence of x,
which now becomes bound.

40

Free variables
Definition. Let S = (P,F) be a signature. The function
FV : FormS → List IV computing the list of free variables in a
first-order formula is defined by

FV ⊥ = ∅
FV (p t1 . . . tn) = FV t1 ∪ · · · ∪ FV tn for p : P
FV (φ ∧ ψ) = FV φ ∪ FV ψ
FV (φ ∨ ψ) = FV φ ∪ FV ψ
FV (φ→ ψ) = FV φ ∪ FV ψ
FV (∀ v. φ) = FV φ \ v
FV (∃ v. φ) = FV φ \ v,

where FV : TermF → List IV is defined by

FV v = [v] for v : IV
FV (f t1 . . . tn) = FV t1 ∪ · · · ∪ FV tn for f : F .

41

Free variables
Notation. ‘∪’ concatenates two lists and removes duplicate
elements. ‘\’ takes a list and an element and returns the list with
the element removed.

42

Variable capture
Naive substitution can result in undesired change of variable
binding. (

¬(Eq x zero) → ∃ y. Eq (suc y) x
)
[y/x]

̸= ¬(Eq y zero) → ∃ y. Eq (suc y) y

Instead, we should perform α-conversion, which allows us to
change names of bound variables to fresh ones, where necessary.(

¬(Eq x zero) → ∃ y. Eq (suc y) x
)
[y/x]

=
(
¬(Eq x zero) → ∃ z. Eq (suc z) x

)
[y/x]

= ¬(Eq y zero) → ∃ z. Eq (suc z) y

43

α-equivalence
We casually adopt α-equivalence between first-order formulas:
formulas that differ only in the naming of bound variables are
equated.

We are thus allowed to freely change the names of bound variables
to fresh ones.

Example.

¬(Eq x zero) → ∃ y. Eq (suc y) x
= ¬(Eq x zero) → ∃ z. Eq (suc z) x
̸= ¬(Eq x zero) → ∃ x. Eq (suc x) x

44

Definition of substitution
Definition. Let S = (P,F) be a signature, t : TermF , and
v : IV. The function _[t/v] : FormS → FormS , which
substitutes t for v in a first-order formula, is defined by

⊥ [t/v] = ⊥
(p t1 . . . tn) [t/v] = p (t1 [t/v]) . . . (tn [t/v]) for p : P
(φ ∧ ψ) [t/v] = φ [t/v] ∧ ψ [t/v]
(φ ∨ ψ) [t/v] = φ [t/v] ∨ ψ [t/v]
(φ→ ψ) [t/v] = φ [t/v] → ψ [t/v]
(∀ u. φ) [t/v] = ∀ u. φ [t/v] where u ̸= v and u /∈ FV t
(∃ u. φ) [t/v] = ∃ u. φ [t/v] where u ̸= v and u /∈ FV t,

where _[t/v] : TermF → TermF is defined by

u [t/v] = if u = v then t else u for u : IV
(f t1 . . . tn) [t/v] = f (t1 [t/v]) . . . (tn [t/v]) for f : F .

45

Example of substitution
(¬(Eq x zero) → ∃ y. Eq (suc y) x) [add x y/x]

= { case ‘→’ }
(¬(Eq x zero)) [add x y/x] → (∃ y. Eq (suc y) x) [add x y/x]

= {α-conversion }
(¬(Eq x zero)) [add x y/x] → (∃ z. Eq (suc z) x) [add x y/x]

= { case ‘∃’ }
(¬(Eq x zero)) [add x y/x] → ∃ z. (Eq (suc z) x) [add x y/x]

= { predicate symbol }
(¬(Eq x zero)) [add x y/x] →
∃ z. Eq ((suc z) [add x y/x]) (x [add x y/x])

46

Example of substitution
(¬(Eq x zero) → ∃ y. Eq (suc y) x) [add x y/x]

= { previous slide }
(¬(Eq x zero)) [add x y/x] →
∃ z. Eq ((suc z) [add x y/x]) (x [add x y/x])

= { function symbol }
(¬(Eq x zero)) [add x y/x] →
∃ z. Eq (suc (z [add x y/x])) (x [add x y/x])

= { variable (twice) }
(¬(Eq x zero)) [add x y/x] → ∃ z. Eq (suc z) (add x y)

= {… }
¬(Eq (add x y) zero) → ∃ z. Eq (suc z) (add x y)

47

BHK interpretation of quantifiers
We assume a set D, called the domain of discourse, over which we
quantify.

A proof of ∀ v. φ is a method that, for every d : D, produces a
proof of φ about d.
A proof of ∃ v. φ is a value d : D (called the witness) and a
proof of φ about d.

To obtain a deduction system for intuitionistic first-order logic, we
extend NJ with introduction and elimination rules for ‘∀’ and ‘∃’.

48

Introducing and eliminating ‘∀’

Γ ⊢ φ (∀I)
Γ ⊢ ∀ v. φ

Γ ⊢ ∀ v. φ (∀E)
Γ ⊢ φ [t/v]

(∀I) has a side condition that v /∈ FV Γ, where

FV Γ :=
∪

[FV φ | φ ∈ Γ].

Example.

∀ x. ∀ y. P x y ⊢ ∀ x. ∀ y. P x y
(∀E)

∀ x. ∀ y. P x y ⊢ ∀ y. P x y
(∀E)

∀ x. ∀ y. P x y ⊢ P x y
(∀I)

∀ x. ∀ y. P x y ⊢ ∀ x. P x y
(∀I)

∀ x. ∀ y. P x y ⊢ ∀ y. ∀ x. P x y
(→I)

⊢ (∀ x. ∀ y. P x y) → ∀ y. ∀ x. P x y
49

Non-example of (∀I)

Eq x zero ⊢ Eq x zero
(∀I)

Eq x zero ⊢ ∀ x. Eq x zero
(→I)

⊢ Eq x zero → ∀ x. Eq x zero
(∀I)

⊢ ∀ x. Eq x zero → ∀ x. Eq x zero
(∀E)

⊢ Eq zero zero → ∀ x. Eq x zero

The topmost (∀I) is illegal, since x appears free in Eq x zero.

50

Introducing and eliminating ‘∃’

Γ ⊢ φ [t/v]
(∃I)

Γ ⊢ ∃ v. φ
Γ ⊢ ∃ v. φ Γ, φ ⊢ ψ (∃E)

Γ ⊢ ψ

(∃E) has a side condition that v /∈ FV Γ ∪ FV ψ.

Example.

Γ ⊢ ∃ x. ∀ y. P x y

Γ, ∀ y. P x y ⊢ ∀ y. P x y
(∀E)

Γ, ∀ y. P x y ⊢ P x y
(∃I)

Γ, ∀ y. P x y ⊢ ∃ x. P x y
(∃E)

Γ︷ ︸︸ ︷
∃ x. ∀ y. P x y ⊢ ∃ x. P x y

(∀I)
∃ x. ∀ y. P x y ⊢ ∀ y. ∃ x. P x y

(→I)
⊢ (∃ x. ∀ y. P x y) → ∀ y. ∃ x. P x y

51

Non-example of (∃E)

∃ x. P x ⊢ ∃ x. P x ∃ x. P x, P x ⊢ P x (∃E)
∃ x. P x ⊢ P x (∀I)

∃ x. P x ⊢ ∀ x. P x (→I)
⊢ (∃ x. P x) → ∀ x. P x

The topmost (∃E) is illegal, since x appears free in P x in the
conclusion.

52

Remark on negation and the existential quantifier

We can derive

(∃ v. ¬φ) → (¬∀ v. φ) but not (¬∀ v. φ) → (∃ v. ¬φ).

Do not unconsciously convert a negated universal statement into
an existential statement!

53

Heyting arithmetic

The signature for Heyting arithmetic consists of P := { Eq/2 } and
F := { zero/0, suc/1, add/2, mult/2 }.

We write t1 ≡ t2 for Eq t1 t2, t1 + t2 for add t1 t2, and t1 × t2 for
mult t1 t2.

Properties about these constants are postulated by the Peano
axioms.

54

Peano axioms
The first three axioms make ‘Eq’ an equivalence relation.

reflexivity := ∀ x. x ≡ x
transitivity := ∀ x. ∀ y. ∀ z. x ≡ y ∧ y ≡ z → x ≡ z
symmetry := ∀ x. ∀ y. x ≡ y → y ≡ x

55

Peano axioms
The next three axioms are about zero and ‘suc’.

disjointness := ∀ x. ¬(suc x ≡ zero)
injectivity := ∀ x. ∀ y. suc x ≡ suc y → x ≡ y
congruence := ∀ x. ∀ y. x ≡ y → suc x ≡ suc y

56

Peano axioms
The following four axioms characterise ‘plus’ and ‘mult’.

additionZ := ∀ y. zero + y ≡ y
additionS := ∀ x. ∀ y. (suc x) + y ≡ suc (x + y)
multiplicationZ := ∀ y. zero × y ≡ zero
multiplicationS := ∀ x. ∀ y. (suc x)× y ≡ x + (x × y)

57

Peano axioms
Finally there is an axiom scheme that generates instances of the
induction principle on natural numbers: for every formula φ and
variable v there is an axiom

inductionφ, v :=
closure (φ [zero/v] ∧ (∀ v. φ→ φ [suc v/v]) → ∀ v. φ)

Definition. The universal closure of a formula ψ is defined by

closure ψ := ∀ v1. . . . ∀ vn. ψ where FV ψ = [v1, . . . , vn].

58

Example: 1 + 1 = 2

Let HA be the list containing exactly the Peano axioms. We show
that HA ⊢NJ suc zero + suc zero ≡ suc (suc zero).

HA ` transitivity

(8E)
HA ` 8 y. 8 z. suc zero+ suc zero ⌘ y ^ y ⌘ z ! suc zero+ suc zero ⌘ z

(8E)
HA ` 8 z. suc zero+ suc zero ⌘ suc (zero+ suc zero) ^ suc (zero+ suc zero) ⌘ z ! suc zero+ suc zero ⌘ z

(8E)
HA ` suc zero+ suc zero ⌘ suc (zero+ suc zero) ^ suc (zero+ suc zero) ⌘ suc (suc zero) ! suc zero+ suc zero ⌘ suc (suc zero)

HA ` additionS (8E)
HA ` 8 y. suc zero+ y ⌘ suc (zero+ y)

(8E)
HA ` suc zero+ suc zero ⌘ suc (zero+ suc zero)

HA ` congruence

(8E)
HA ` 8 y. zero+ suc zero ⌘ y ! suc (zero+ suc zero) ⌘ suc y

(8E)
HA ` zero+ suc zero ⌘ suc zero ! suc (zero+ suc zero) ⌘ suc (suc zero)

HA ` additionZ (8E)
HA ` zero+ suc zero ⌘ suc zero

(!E)
HA ` suc (zero+ suc zero) ⌘ suc (suc zero)

(^I)
HA ` suc zero+ suc zero ⌘ suc (zero+ suc zero) ^ suc (zero+ suc zero) ⌘ suc (suc zero)

(!E)
HA ` suc zero+ suc zero ⌘ suc (suc zero)

Informally:
The left-hand side suc zero + suc zero of ‘≡’ is transformed
into suc (zero + suc zero) by additionS.
The sub-term zero + suc zero is just suc zero by additionZ,
so by congruence we can derive that suc (zero+ suc zero) is
equal to suc (suc zero).
The above two equations are concatenated by transitivity.

59

Example: HA ⊢NJ ∀ x. x ≡ zero ∨ ∃ y. x ≡ suc y

This requires induction to analyse x.

HA ` induction

x⌘ zero_9 y. x⌘ suc y, x

HA ` reflexivity

(8E)
HA ` zero ⌘ zero (_IL)

HA ` zero ⌘ zero _ 9 y. zero ⌘ suc y

HA, x ⌘ zero _ 9 y. x ⌘ suc y ` reflexivity

(8E)
HA, x ⌘ zero _ 9 y. x ⌘ suc y ` suc x ⌘ suc x

(9I)
HA, x ⌘ zero _ 9 y. x ⌘ suc y ` 9 y. suc x ⌘ suc y

(_IR)
HA, x ⌘ zero _ 9 y. x ⌘ suc y ` suc x ⌘ zero _ 9 y. suc x ⌘ suc y

(!I)
HA ` x ⌘ zero _ 9 y. x ⌘ suc y ! suc x ⌘ zero _ 9 y. suc x ⌘ suc y

(8I)
HA ` 8 x. x ⌘ zero _ 9 y. x ⌘ suc y ! suc x ⌘ zero _ 9 y. suc x ⌘ suc y

(^I)
HA ` (zero ⌘ zero _ 9 y. zero ⌘ suc y) ^ (8 x. x ⌘ zero _ 9 y. x ⌘ suc y ! suc x ⌘ zero _ 9 y. suc x ⌘ suc y)

(!E)
HA ` 8 x. x ⌘ zero _ 9 y. x ⌘ suc y

Informally:
We invoke the induction principle on the formula
φ := x ≡ zero ∨ ∃ y. x ≡ suc y and variable x.
The first proof obligation φ [zero/x] is discharged by choosing
the left-hand side zero ≡ zero of ‘∨’ and instantiating
reflexivity.
For the second proof obligation ∀ x. φ→ (φ [suc x/x]), we
choose the right-hand side ∃ y. suc x ≡ suc y, supply x as the
witness, and invoke reflexivity again.

60

Theories
Definition. A formula φ is called a sentence if FV φ = ∅.

Definition. A list of sentences is called a theory, whose elements
are called axioms.

Definition. A sentence derivable from a theory T is called a
theorem of T .

Example. HA is a theory;
suc zero + suc zero ≡ suc (suc zero) and
∀ x. x ≡ zero ∨ ∃ y. x ≡ suc y are theorems of HA.

61

Syntactic consistency and completeness

Definition. A theory T is (syntactically) inconsistent if T ⊢NJ ⊥;
otherwise it is (syntactically) consistent.

Theorem. Let T be a theory. The following statements are
equivalent:

T is inconsistent;
there is a sentence φ such that T ⊢NJ φ and T ⊢NJ ¬φ;
T ⊢NJ φ for every sentence φ.

Definition. A theory T is (syntactically) complete if, for every
sentence φ, either T ⊢NJ φ or T ⊢NJ ¬φ.

62

	Propositional logic
	The propositional language
	Natural deduction

	First-order logic
	Natural deduction

	Heyting arithmetic
	Syntactic consistency and completeness

