Logic: Homework 2

柯向上

Sixth Formosan Summer School on Logic, Language, and Computation, 2012

Please submit your solutions to me before 9:10AM on Monday, 3 September 2012.

- 1. Let Γ : LIST PROP and φ : PROP. Prove that $\Gamma \models \varphi$ if and only if the list $\Gamma, \neg \varphi$ is not satisfiable.
- 2. How do you check satisfiability of a propositional formula and "finite" semantic consequence (i.e., a statement of the form $\Gamma \models \varphi$ where the number of propositional formulas in Γ is finite) using the truth table method? Justify your answer.
- 3. Show that $\models \neg \neg A \rightarrow A$.
- 4. Show that $\models ((A \rightarrow B) \rightarrow A) \rightarrow A$.
- 5. Prove statement 1.4 in the proof of the soundness theorem.
- 6. Prove the weakening lemma.
- 7. Prove statement 3.2 in the proof of the reconstruction lemma.
- 8. Give the derivation of $\vdash_{\rm NK} A \rightarrow A$ constructed by the completeness theorem.
- 9. Let $\varphi := (\forall \mathbf{x}. P \mathbf{x}) \to (\exists \mathbf{x}. P \mathbf{x})$. Show that $\vdash_{NJ} \varphi$ and $\models \varphi$.
- 10. Prove *Glivenko's Theorem*: $\Gamma \vdash_{NK} \varphi$ if and only if $\neg \neg \Gamma \vdash_{NJ} \neg \neg \varphi$ for every Γ : LIST PROP and φ : PROP, where $\neg \neg \Gamma := [\neg \neg \varphi | \varphi \in \Gamma]$.