HOARE LOGIC

Parts of the slides are taken from the lecture notes of
Carl Leonadsson, Yih-Kuen Tsai, and Michael Gordon

Outline

Prove Program Correctness
WHILE program
Hoare Triple

Axioms and Rules
Assignment Axiom
Composition Rule
Conditional Rule
lteration Rule

Hoare Logic

Hoare Logic - An axiomatic basis for computer
programming (1969, C.A.R. Hoare)
Describes a deductive system for proving program correctness.
A set of axioms and inference rules about asserted programs.

Development to the logic is still active
E.g., separation logic (reasoning about pointers)

WHILE Program

Assume that we have an underlying logic L, e.g. Integer Arithmetic

o _ E.g. X+5, 4-Y*Z

Define inductively -)
For all integer variable X and term E, X:=E is a program.

If S, and S, are programs, B is a Boolean expression, then the following
are programs

_ A sample program:
5152 SUM:=0;
If B then S, else S, fi F=1:

while B do S, od while 1<100 do
if 1%2=0 then
SUM:=SUM+I : I:=1+1
else
I:=1+1
fi
od

Program States and Transitions

o A state is a valuation of all program variables.

o A program statement defines transitions between
program states.

SUM=0 SUM:=0; I:=1; SUM=0
=0 | - =
N N
M:=0:1:=1; while I<1 M:=SUM+I ; I:=I1+1 od
e SuU 0; - while 00 do SU S : o) SUM=2

" ~———

Predicates
]

o A predicate characterizes a set of program states

I<5 A SUM>3 % Written in standard mathematical
" notations together with logical operators

such as A(and), Vv(or), =(not), = (implies)

Specification of Imperative Programs

Acceptable Acceptable

Initial States Final States

“X'is greater 5| 'Y is the square
el 220 Action of the Program root of X

Hoare’s notation

C.A.R. Hoare introduced the following notation called a
partial correctness specification for specifying what a
program does:

{P}S{Q}
Here S is a program,

P is a predicate describes the precondition of S
Q is a predicate describes the postcondition of S

Note: Hoare’s original notation was P{S}Q instead of
{P}S{Q}, but the latter form is now more widely used

Meaning of Hoare's Notation

{P}S{Q} means

Whenever S is executed in a state satisfying P

and if the execution of S terminates

Then the state in which S terminates satisfies Q.
Example: {X =1} X:= X+1 {X = 2}

P: the value of X is 1

Q: the value of X is 2

S: an assignment X:= X + 1
X becomes X + 1

(X=1} X =X+1{X=2}istrue
(X=1} X =X+1{X=2}isfalse

Some practices

(1) Is the following formula valid?
X< 1} Xi=X+1; X:i= X+1 {X < 3}

(2) Is the following formula valid?
{X <100} while true do X:=X+1 od {X < 0}

(3) Is the following formula valid?
{X <100} if X=1then S, else S, {X < 200}
S,= while true do X:=X+1 od
S,= Xi=X+2

NO oUW

— e O 00
!_‘.o-o

Formal versus Informal Proof

o Informal Proof:
Like what we used in the previous slides

o Formal verification uses formal proof
The rules used are described and followed very precisely

o An example: proof of (X+1)? = X2 + 2x X +1

(X +1)? =(X+1)x (X+1) Definition of ()2.

(X+1) x(X+1) =(X+1)xX+(X+1)x1 Left distributive law of x over +.

(X +1)? =(X+1)xX+(X+1) x1 Substituting line 2 into line 1.
(X+1)x1 =X+1 Identity law for 1.

(X+1) xX =XxX+1xX Right distributive law of x over +.
(X +1)? =XxX+1xX+X+1 Substituting lines 4 and 5 into line 3.
1xX =X Identity law for 1.

(X +1)? =XXxX+X+X+1 Substituting line 7 into line 6.

X xX = X2 Definition of ()2.

X+X =2xX 2=1+1, distributive law.

(X +1)? =X24+2xX+1 Substituting lines 9 and 10 into line 8.

The Structure of Proofs

A proof consists of a sequence of lines

Each line is an instance of an atom
E.g., the definition of ()*2

or follows from previous lines by a rule of inference
E,g, the substitution of equivalent objects

The statement on the last line of the proof is the statement proved
by it
Thus (X+1)? = X2 + 2xX +1 is proved by the proof on the previous slides

These are “Hibert style” formal proofs
can use a tree structure rather than a linear one
the choice is a matter of convenience

Formal proof is syntactic “symbol pushing”

Formal system reduce verification and proof to symbol
pushing.

The rule say...
If you have a string of characters of this form
You can obtain a new string of characters of this other form

Even if you don’t know what the strings are intended to
mean, provided the rules are designed properly and you
apply them correctly, you will get correct results.

Though not necessary the desired result

Hoare Logic

Hoare Logic is a deductive proof system for Hoare triple
{P}S{Q}

Can be used to verify programs

Original proposal by Hoare
Tedious and error prone

Exists tools to help its automation

Partial Correctness Specification

An expression {P} S {Q} is called a partial correctness specification
P is called its precondition
Q is called its postcondition

{P} S {Q} means
Whenever S is executed in a state satisfying P
and if the execution of S terminates
Then the state in which the execution of S terminates satisfies Q

It is partial because for {P} S {Q} to be true, it is not necessary for
the execution of S to terminate when stated in a state satisfying P

{X=1}while Tdo X :=X+1 od {X =-3 } — this specification is true!

Total Correctness Specification

A stronger kind of specification is a total correctness
specification

There is no standard notation for such specifications
Here we use [P] S [Q]

[P] S [Q] means

Whenever S is executed in a state satisfying, the execution of S
terminates

After S terminates Q holds

[X = 1] while T do X := X + 1 od [X = -3]

This says the execution of the program terminates when stated in a
state satisfying X = 1

After which Y = 1 will hold

Clearly false

Total Correctness

Informally

Total Correctness = Termination + Partial Correctness

Total correctness is the ultimate goal
Usually easier to show partial correctness and termination

separately

Termination is usually straightforward to show, but there
exists examples where it is not.

Example

while X > 1 do
if X%2==

Collatz conjecture: if the program
terminates with X = 1 for all values of X

then X := (3*X)+1

else X ;= X/2

fi
od

Auxiliary Variables

{X=x A Y=y} R:=X; X:=Y; Y:=R {X=y A Y=x}

If the program terminates, then the values of X and Y are swapped

The variables x and y, which do not occur in the program and
are used to name the initial values of program variables X
andY

They are called auxiliary variables or ghost variables.

Informal convention:
Program variables are upper case
Auxiliary variables are lower case

More examples

X=xAY=y} X:=Y;Y:=X{X=yAY =x}
It says the program can swap the values of X and Y, which is not true

{T} S{Q}
Whenever S halts, Q holds

{P}SA{T}
This specification is true for all P and S
Because T is always true

[P1S[T]

S terminates if initially P holds

[T]1S[Q]

S always terminates and ends in a state where Q holds

A More Complicated Example

{T}
R:=X;Q=0; while Y< R do R:=R-Y; Q:=Q+1 od
{R<YAX=R+ (Y x Q)}

The specification is true if the execution of the program
terminates, then Q is the quotient and R is the reminder
resulting from dividing Y into X

This is true even if X is initially negative

Some Easy Exercises

When is [T] S [T] true?

Write a partial correctness specification which is true iff
the program S has the effect of multiplying the values of
X and Y and storing the results in X

Write a specification which is true if the execution of S
always terminates when the execution is stated in a
state satisfying P

Specification can be Tricky

“The program must set Y to the maximum of X and Y”
[T] S [Y=max(X,Y)]
A suitable program
if X > Y thenY:=Xelse X := Xfi

Another?
If X >Y then X:=Y else X := X fi

Or even
Y:=X

Later we will be able to prove that all the programs are “correct”

The postcondition [Y=max(X,Y)] is the maximum of X and Y in the final
state

Specification can be Tricky

The intended specification was not properly captured by
[T] S [Y=max(X,Y)]
The correct one should be
[X=xA Y=y] S [Y=max(x,y)]

The lesson
It is easy to write the wrong specification
A proof system will not help since the incorrect program can be
proved “correct”
Testing could be helpful in this case

Outline

Prove Program Correctness
WHILE program
Hoare Triple

Axioms and Rules
Assignment Axiom
Composition Rule
Conditional Rule
lteration Rule

Formal Proof

(1) Is the following formula valid?
X< 1} Xi=X+1; X:i= X+1 {X < 3}

(2) Is the following formula valid?
{X <100} while true do X:=X+1 od {X < 0}

(3) Is the following formula valid?
{X <100} if X=1then S, else S, {X < 200}
S,= while true do X:=X+1 od
S,= Xi=X+2

How can we formally prove the previous examples?

Assignment Axiom

We begin with Foyld’s version of the assignment axiom
{P} X :=E {?}

The term E might contain X, e.g. E = X+1
An example: X =X + 1

The value of X after The value of X before

We need to differentiate these two values!

Assignment Axiom

We begin with Foyld’s version of the assignment axiom
{P} X:=E {?}

IV.(X=E[V/X] A PVIX])

Intuition: we use new variable V to denote the old value of X

Notations

E[V/X]

P[V/X] replacing all free occurrences of Xin _ with V

P

Assignment Axiom

We do not want to have quantifiers in the reasoning path!

Assignment Axiom
S =

Backward reasoning

Expressions with Side-effect

The validity of the assignment axiom depends on
expressions not having side-effects.

Suppose that our language were extended so that it
contained the “block expression”

BEGIN Y:=1;2 END

This expression has value 2, but its evaluation also change the value
of Y to 1

If the assignment axiom applied to block expressions, then
it could be used to deduce the following, which is false
{Y=0} X:= BEGIN Y:=1; 2 END {Y=0}
Notice that (Y=0)[E/X] = (Y=0)

Assignment Axiom

Backward reasoning

Hoare’s Assignment Axiom

{Q[E/X]} X:=E {Q}

Below is an informal proof of the soundness of this axiom:

Let s be the state before X := E and s' the state after.
So, s’ = s[X — E] (assuming E has no side-effect).

Q[E/X] holds in s if and only if Q holds in s’, because

(1) Every variable, except X, has the same value in s and s’, and
(2) Q[E/X] has every X in Q replaced by E,

(3) Q has every X evaluated to E in s (s’ = s[X — E]).

Assignment Axiom
S =

Backward reasoning

Composition Rule
S

Composition Rule

Example
P: {true} X:=2; Y:=X {X>0A Y=2}

(1) 2>0 A 2 = 2 < true (Integer arithmetic)

(2){2>0A1n2=2} X:=2 {X>0 A X =2} (assignment axiom)

() {X>0AX=2}Y:=X{X>0AY =2} (assignment axiom)

(4) {true} X:=2 {X >0 A X =2} (by (1), we can replace 2>0 A 2 = 2 in (3) with true)
(5) {true} X:=2; Y:=X {X>0A Y=2} (by (3), (4), and composition rule)

Composition Rule

Example
P: {X=x A Y=y} R:=X; X:=Y; Y:=R {Y=xAX=y}

(1) {X=x A Y=y} R:i=X{R =x A Y =y} (assignment axiom)

(2) {R =x A Y =y} X:=Y {R =x A X =y} (assignment axiom)

(3) {R =x A X =y} Y:=R {Y =x A X =y} (assignment axiom)

(4) {X=x A Y=y} R:=X; X:=Y {R =x A X =y} (by (1), (2), and composition rule)

(5) {X=x A Y=y} R:=X; X:=Y; Y:=R {Y=xAX=y} (by (4), (3), and composition rule)

Conditional Rule
T e

Conditional Rule

{PAE} S,{Q} {PA—E} S,{Q}
| en S, else S,

We can infer P if we can infer
(1) P4: {true A X <10} X:=10 {X=10 v X=0}
(2) P,: {true A X > 10} X:=0 {X=10 v X=0}

Here we need other proof rule to prove (1) and (2)

Consequence Rule

Consequence Rule
P= P {P}S{Q}Q = Q
{P} S{Q}

* We can strengthen the precondition, i.e. assume more than we need

« We can weaken the postcondition, i.e. conclude less than we are
allowed to

Consequence Rule

Consequence Rule
P= P {P}S{Q}Q = Q
{P} S{Q}

Example
P,: {true A X <10} X:=10 {X=10 v X=0}

(1) {true} X:=10 {X=10 v X=0} (by Assignment Rule)

(2) trueAX<10 = true (by underlying logic)

(3)X=10v X=0= X=10 Vv X =0 (by underlying logic)

(4) {true A X <10} X:=10 {X=10 v X=0} (by consequence rule, (2), and (3))

Consequence Rule
S

Another example

Example
{T} if X > Y then MAX =X else MAX =Y fi {MAX = max (X,Y)}

(1) T AX>Y = X=max(X,Y) (by Underlying Logic)

2) TA-(X>Y) =Y =max(X,Y) (by Underlying Logic)

(3) MAX=max(X,Y) = MAX=max(X,Y) (by Underlying Logic)

(4) {X = max(X,Y) } MAX:=X {MAX=max(X,Y)} (by Assignment Axiom)

(5) {Y = max(X,Y) } MAX:=Y {MAX=max(X,Y)} (by Assignment Axiom)

(6) {T A X > Y} MAX:=X {MAX=max(X,Y)} (by Consequence Rule, (1), and (3))

(7)) {T A =~(X>Y) } MAX:=Y {MAX=max(X,Y)} (by Consequence Rule, (2), and (3))

(8) {T}if X > Y then MAX =X else MAX :=Y fi {MAX = max (X,Y)} (by Conditional
Rule, (6), and (7))

lteration Rule
T e

lteration Rule

Iteration Rule

{P A B} S{P}
fPTwhile B do S od {P A— B}

Example
{X<10} while X<10do X:=X + 1 od {X =10}

{X+1 < 10}X:=X+1{X < 10} (Assignment Axiom)
{X+1 <10 A X <10} X:=X+1{X < 10}
{X <10} while X+1 < 10 do X:=X+1 od {X <10 A X+1 £ 10} {X < 10}
l while X+1 < 10 do X:=X+1 od {X = 10}

by Underlying Logic

by Iteration Rule

by Underlying Logic

Another Example
S

Another Example

Example

{T}
R:=X;Q=0; while Y< R do R:=R-Y; Q:=Q+1 od
{R<YAX=R+ (Y xQ)}

Is valid by underlying logic

X=R+ (YxQ) ANY< R = X=R-Y + (YxQ) +Y {X=R-Y + (YxQ) +Y} R:=R-Y{X=R + (YxQ)+Y)) } (Assignment Axiom)
By consequence rule

{X=R + (YxQ) A Y< R} Ri=R-Y{X=R + (YxQ)+Y)) }
By underlying logic

{X=R+ (YxQ) A Y< R} R:=R-Y{X=R + (Yx(Q+1))} {X=R + (Yx(Q+1))} Q:=Q+1{X=R + (YxQ) } (Assignment Axiom)
By composition rule

(omitted...try it yourself) {X=R + (YxQ) A Y< R} R:=R-Y; Q:=Q+1 {X=R + (YxQ) }

By lteration rule
{T} R:=X; Q=0{X=R+(Y*Q)} {X=R+(Y*Q)} while Y< Rdo R:=R-Y; Q:=Q+1 od {R<YAX=R+ (Y x Q)}

By composition rule
{T} R:=X;Q=0; while Y< Rdo R:=R-Y; Q:=Q+1 od { R<Y A X=R + (Y x Q)}

lteration Rule and Invariants

An invariant at some point of a program is an assertion
that holds whenever execution of the program reaches
that point.

Iteration Rule

{P A B} S{P}
fPTwhile B do S od {P A— B}

Assertion P in the iteration rule for a while loop is called
a loop invariant of the while loop.

How Does One Find an Invariant?

Iteration Rule

{P A B} S {P}
{P} while B do S od {P A— B}

Look at the facts
Invariant P must hold initially
With negated test \neg B the invariant must establish the result
When the test B holds, the body must leave the invariant P unchanged

Think about how the loop works — the invariant should say that:

What has been done so far together with what remains to be done
Holds at each iteration of the loop
Gives the desired result when the loop terminates

Example

Example
{X=n A Y=1}
Look at the facts while X = 0 do Y:=Y xX; X:=X-1 od
Initially X=n and Y=1 {X=0 A Y=n!}

Finally X=0 and Y=n!
On each loop Y is increased and X is decreased

Think how the loop works
Y holds the results so far
X!is what remains to be computed
n! is the desired results

The invariant here is X! x Y =n!
“Stuff to be done” x “result so far’ = “desired result”
Decrease in X combines with increase in Y to make invariant

Try to prove the specification using the given invariant.

Example

Example

X=0 A Y=1}
while X < N do X:=X+1; Y:=YxX od

Look at the facts | {Y=N!}
Initially X=0 and Y=1

Finally X=N and Y=N!
On each loop both X and Y are increased: X by 1 and Y by X

An invariant should be Y = X
Try to prove the specification using the given invariant

Example

Example
{X=0 A Y=1}
while X < N do X:=X+1; Y:=YxX od

Look at the facts Y=NI}

Initially X=0 and Y=1
Finally X=N and Y=N!
On each loop both X and Y are increased: X by 1 and Y by X

An invariant is Y = X!, but not sufficient to prove the results
At the end need Y = N!, but the lteration rule only gives — (X<N)

The invariant neededis Y = XI A X <N

Atthe end, X< N A = (X<N) = X=N

Often need to strengthen invariants to get them to work.
Typical to add thing to “carry along” such as X< N

Conjunction/Disjunction Rule

Some Quick Review

Which of the following is correct?

Hoare’s Assignment Axiom

{P[E/X]} X:=E {P}

Hoare’s Assignment Axiom

[P} X:=E {P[E/X]}

Some Quick Review

Composition Rule

{P}S{R} {R}S,{Q}
{P}S1;5,{Q}

Iteration Rule
{P A B} S{P}

{P} while B do S od {P A—B}

Conditional Rule
{PAE} S,{Q} {PA-E} S,{Q}

{P} If E then S, else S, {Q}

Consequence Rule
P= P {P}S{Q}Q = Q

P} S{Q}

Further Studies

Soundness and completeness proof for the axioms and
inference rules.

Richer program constructs: pointers, procedure call,
arrays, code block

Automation. E.g., finding loop invariants

