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Why Functional Programming?

I “What could be more fashionable than functional
programming?”

I ICFP is having more and more attendees in recent years.

I A clean model of computation that encourages mathematical
reasoning.

I A “common language” among PL people, upon which other
models can be based.
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Maximum Segment Sum

I Given a list of numbers, find the maximum sum of a
consecutive segment.

I [−1; 3; 3;−4;−1; 4; 2;−1] ⇒ 7
I [−1; 3; 1;−4;−1; 4; 2;−1] ⇒ 6
I [−1; 3; 1;−4;−1; 1; 2;−1] ⇒ 4

I Not trivial. However, there is a linear time algorithm.

I

−1 3 1 −4 −1 1 2 −1
3 4 1 0 2 3 2 0 0 (up + right) ↑ 0
4 4 3 3 3 3 2 0 0 up ↑ right
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A Simple Program Whose Proof is Not

I The specification: max { sum (i , j) | 0 ≤ i ≤ j ≤ N }, where
sum (i , j) = a[i ] + a[i + 1] + . . .+ a[i ].

I What we want the program to do.

I The program:

s = 0; m = 0;

for (i=0; i<=N; i++) {

s = max(0, a[j]+s);

m = max(m, s);

}

I How to do it.

I They do not look like each other at all!

I Moral: programs that appear “simple” might not be that
simple after all!
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Programming and Programming Languages

I Programming is more than about producing a pile of code.

I The code has to meet the specification. And, as the example
showed, it is sometimes hard to see even for short programs.

I A good programming languages makes it easier for one to
argue for the correctness of a program, by making it easier to
reason about programs,

I which, in my opinion, is the main achievement of functional
programming: it is relatively easy to show that a program
possess certain properties.

I We will see in this course (and in this summer school) how
programs and proofs are closely related.
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This Course

I Was to be taught by Dr. Tyng-Ruey Chuang, but eventually
handed over to me.

I The functional fragment of the Program Construction course
is thus integrated into this course.

I Program Construction will be mainly about derivation of
procedural programs.
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Haskell v.s. OCaml

I OCaml (an implementation of Caml):
I Developed and maintained by INRIA since 1985.
I A strict language with some impure but useful and practical

features — references, exceptions, threads, . . .
I A relatively mature language with excellent tools and libraries.
I In particular, Coq.

I Haskell:
I Developed in late 80’s and early 90’s.
I Non-strict. All impure features are encapsulated by pure

constructs (e.g. monads).
I A testbed for type theoretic experiments.
I Excellent tools for research and rapid prototyping.

I To prepare for the use of Coq in this summer school, we will
be teaching OCaml this year.
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Values and Evaluation
Functions

Types — A Brief Start

Part I

Functions, Values, and Evaluation
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Values and Evaluation
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Values and Evaluation
Talking to the Interpreter
Evaluation and Termination

Functions
Currying
Sectioning
Definitions

Types — A Brief Start
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

A Quick Introduction to OCaml

I We will mostly learn some (boring) syntactical issues, but
there are some important messages too.

I Some contents are inherited from Dr. Tyng-Ruey Chuang’s
course in the previous year. The rest are adapted from my
(Haskell) course notes, which are in turn adapted from
Richard Bird’s textbook .

I More OCaml texbooks: Chailloux et. al and Cousineau et. al.

I Other books on FP and Haskell: Hutton and O’Sullivan et. al.
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

Simple Expressions

I Type an expression, and the interpreter evaulates it.

# 1+2*3;;

- : int = 7

# let pi = 4.0 *. atan 1.0;;

val pi : float = 3.14159265358979312

# pi;;

- : float = 3.14159265358979312

I int and float are different types.

# 1.0 * 2;;

Error: This expression has type float but an

expression was expected of type int
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

Defining Functions

I A function definition:

# let square x = x * x;;

val square : int -> int = <fun>

# square 3768;;

- : int = 14197824
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

Defining Functions

Another function definition:

# let smaller (x,y) = if x <= y then x else y;;

val smaller : ’a * ’a -> ’a = <fun>

# smaller (3,4);;

- : int = 3
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

Evaluation

One possible sequence of evaluating (simplifying, or reducing)
square (3 + 4):

square (3 + 4)

= { definition of + }
square 7

= { definition of square }
7× 7

= { definition of × }
49
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

Another Evaluation Sequence

I Another possible reduction sequence:

square (3 + 4)

= { definition of square }
(3 + 4)× (3 + 4)

= { definition of + }
7× (3 + 4)

= { definition of + }
7× 7

= { definition of × }
49

I In this sequence the rule for square is applied first. The final
result stays the same.

I Do different evaluations orders always yield the same thing?
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

A Non-terminating Reduction

I Consider the following program:

let three x = 3

let infinity = infinity + 1
I Notice how the second definition is different from an

assignment infinity := infinity + 1.

I Try evaluating three infinity . If we simplify infinity first:

three infinity
= { definition of infinity }

three (infinity + 1)
= three ((infinity + 1) + 1) . . .

I If we start with simplifying three:

three infinity
= { definition of three }

3
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

Values

I In functional programming, an expression is used solely to
describe a value.

I A value is an abstract being. An expression is but its
representation.

I The value forty-nine can be represented by 49, 7× 7, 110001,
or XLIX.

I The evaluator tries to reduce an expression to a canonical
representation. But what canonical representation to use?

I We usually go for the normal form: the one that cannot be
reduced anymore. Thus 49 is preferred over 7× 7.

I Some values have a reasonable canonical representation that is
not finite. E.g. π.

I Some expressions do not have a normal form. E.g. infinity .

17 / 150



Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

Evaluation Order

I There can be many other evaluation orders. As we have seen,
some terminates while some do not.

I A corollary of the Church–Rosser theorem: an expression has
at most one normal form.

I If two evaluation sequences both terminate, they reach the
same normal form.

I Applicative order evaluation: starting with the innermost
reducible expression (a redex).

I Normal order evaluation: starting with the outermost redex.
I If an expression has a normal form, normal order evaluation

delivers it. Hence the name.

I For now you can imagine that OCaml uses applicative order
evaluation (while Haskell uses normal order evaluation).
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Values and Evaluation
Functions

Types — A Brief Start

Talking to the Interpreter
Evaluation and Termination

Bottom and Strictness

I Some expressions do not have a normal form. E.g. infinity .

I Some expressions do not denote a well-defined value: 1/0.

I To be able to talk about them we denote such undefined
values by the symbol ⊥.

I A function f is strict if f ⊥ = ⊥. Otherwise it is non-strict.

I Functions in OCaml are strict, thus OCaml is called a strict
language.

I Haskell allows non-strict functions.
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Values and Evaluation
Talking to the Interpreter
Evaluation and Termination

Functions
Currying
Sectioning
Definitions

Types — A Brief Start
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Mathematical Functions

I Mathematically, a function is a mapping between arguments
and results.

I A function f : A→ B maps each element in A to a unique
element in B.

I In contrast, C “functions” are not mathematical functions:
I int y = 1; int f (x:int) { return ((y++) * x); }

I Pure functional languages exclude such side-effects:
(unconstrained) assignments, IO, etc.

I Why removing these useful features? We will talk about that
later in this course.
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Extensionality

I Two functions are equal if they give equal results for equal
arguments.

I f = g if and only if f x = g x for all x .

I For instance, double = double ′:

let double x = x + x
let double ′ x = 2× x

I They describe different procedures for obtaining the same
results.

I Being equal means that they can be used interchangeably.
I Much of this course is about transformation between functions

that are equal.
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Pairs

I Our first compound type: pairs.

# let flolac12 = (12, ”flolac”); ;
val flolac12 : int ∗ string = (12, ”flolac”)

I type constructor: for types a and b, the type a ∗ b can be
seen as the collection of stuffs putting one a and one b
together.

I constructor: pairs are built by comma (,).

I deconstructor: The two components can be extracted
respectively by fst and snd :

# fst flolac12 ; ;
− : int = 12
# snd flolac12 ; ;
− : string = ”flolac”
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Currying

I Consider again the function smaller :

#let smaller (x , y) = if x ≤ y then x else y ; ;
val smaller : ′a ∗ ′a→ ′a = 〈fun〉

I Another way:

#let smallerc x y = if x ≤ y then x else y ; ;
val smallerc : ′a→ ′a→ ′a = 〈fun〉

I It’s a function returning a function.

#smallerc 3; ;
− : int → int = 〈fun〉
#smallerc 3 4; ;
− : int = 3

I Currying: replacing structured arguments by a sequence of
simple ones.
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Precedence and Association

I Syntax of some functional languages are talored toward
encouraging the use of curried function.

I Type: a→ b → c = a→ (b → c), not (a→ b)→ c .
I Application: f x y = (f x) y , not f (x y).

I smallerc 3 4 means (smallerc 3) 4.
I square square 3 means (square square) 3, which results in a

type error.

I Function application binds tighter than infix operators. E.g.
square 3 + 4 means (square 3) + 4.
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Why Currying?

I It exposes more chances to reuse a function, since it can be
partially applied.

#let twice f x = f (f x); ;
val twice : (′a→ ′a)→ ′a→ ′a = 〈fun〉
#let quad = twice square; ;
val quad : int → int = 〈fun〉

I Try evaluating quad 3:

quad 3

= twice square 3

= square (square 3)

= . . .
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Currying and Uncurrying

I An uncurried function can be converted to a curried function:

# let curry f x y = f (x , y)
val curry : (′a ∗ ′b → ′c)→ ′a→ ′b → ′c = 〈fun〉

I We have curry smaller = smallerc .
I We will explain the meaning of those types with “dots” later.

I Can you define uncurry?

# let uncurry . . .
val uncurry : (′a→ ′b → ′c)→ (′a ∗ ′b → ′c)
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Sectioning

I OCaml determines the fixty and associativity of an operator
by its first character. See appendix.

I To use an infix operator in prefix position, surrounded it in
parentheses. For example, (+) 3 4 is equivalent to 3 + 4.

I These operators are curried too. The operator (+) has type
int → int → int.

I Infix operator can be partially applied too.
I (+) 1 has type int → int and increments its argument by one.
I (/.) 1 has type float → float. We have (/.) 1 2 = 1/.2.
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Function Composition

I Functions composition:

# let (�) f g x = f (g x); ;
val (�) : (′a→ ′b)→ (′c → ′a)→ ′c → ′b = 〈fun〉

I Putting (�) in infix position, we get (f � g) x = f (g x).

I E.g. another way to write quad :

let quad = square � square

I The identity function: let id x = x .
I Some important properties:

I id � f = f = f � id .
I (f � g)� h = f � (g � h).
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Anonymous Functions

I A function is a value that can be created, passed around, and
used, like any other values.

I fun x → e is a function (without a name) that takes an
argument x and yields e.

I Instead of let square x = x ∗ x , one can also write

let square = fun x → x ∗ x

I Such anonymous function is a legacy of λ-calculus, which
forms the core theory of functional programming and will be
talked about in another course.
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Recursive Definitions

I The keyword rec informs that a definition is recursive. E.g.

# let rec fact n =
if n = 0 then 1 else n ∗ fact (n − 1); ;

val fact : int → int = 〈fun〉
I How can something be defined in terms of itself? Are such

definitions valid? We will talk about it later.
I Notice the difference:

I let rec f x = ...f ... recursively defines f ;
I let f x = ...f .. defines f using some other f defined in the

surrounding context.
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Mutually Recursive Definitions

I A group of functions can be defined in terms of each other:

# let rec is even n =
if n = 0 then true else is odd (n − 1)

and is odd n =
if n = 0 then false else is even (n − 1); ;

val is even : int → bool
val is odd : int → bool
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Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Pattern Matching

I The famous Fibonacci function:

let rec fib n = if n = 0 then 0
else if n = 1 then 1
else fib (n − 1) + fib (n − 2)

I A equivalent definition using match:

let rec fib n = match n with
| 0→ 0
| 1→ 1
| n→ fib (n − 1) + fib (n − 2)

I An abbreviation:

let rec fib = function
| 0→ 0
| 1→ 1
| n→ fib (n − 1) + fib (n − 2)

33 / 150



Values and Evaluation
Functions

Types — A Brief Start

Currying
Sectioning
Definitions

Local Definitions

I Local bindings are defined by let . . . in . . ., which can be
nested:

let f (x , y) = let a = (x + y)/2 in
let b = (x + y)/3 in
(a + 1) ∗ (b + 2)
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Types — A Brief Start

Values and Evaluation
Talking to the Interpreter
Evaluation and Termination

Functions
Currying
Sectioning
Definitions

Types — A Brief Start
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Values and Evaluation
Functions

Types — A Brief Start

Types

I The universe of values is partitioned into collections, called
types.

I Some basic types: int, float, bool , char . . .

I Type “constructors”: functions, lists, trees . . . to be
introduced later.

I Operations on values of a certain type might not make sense
for other types. For example: square square 3.

I See appendix for a list of frequently used types and operations.
I Strong typing: the type of a well-formed expression can be

deducted from the constituents of the expression.
I It helps you to detect errors.
I More importantly, programmers may consider the types for the

values being defined before considering the definition
themselves, leading to clear and well-structured programs.
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Values and Evaluation
Functions

Types — A Brief Start

Type Inference

I So far, however, we never had to explicit enter the type of a
function. Instead, when OCaml sees a function definition it
infers its type for us.

# let f g x y = g (char of int x) + y ; ;

val f : (char → int)→ int → int → int = 〈fun〉
I To make inference possible, OCaml adopts a variation of the

Hindley-Milner type system — a careful balance of
expressiveness and decidability. More on this in the lecture on
types.
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Values and Evaluation
Functions

Types — A Brief Start

Polymorphic Types

I Consider the function

# let fork f g x = (f x , g x)
# fork ((+) 1) (( ∗) 2) 5; ;
− : int ∗ int = (6, 10)

I Can it have type (int → int)→ (int → int)→ int → int ∗ int?

I What about
(int → char)→ (int → string)→ int → char ∗ string?

I It turns out that we can assign it a most general type:
(′a→ ′b)→ (′a→ ′c)→ ′a→ ′b ∗ ′c .

I Types starting with quotes are type variables, which can be
instantiated to other types.
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Values and Evaluation
Functions

Types — A Brief Start

Polymorphic Types

I Polymorphic types could be instantiated upon application.

# fork int of char ; ;
− : (char → ′ a)→ char → int ∗ ′ a = 〈fun〉
# fork char of int; ;
− : (int → ′ a)→ int → char ∗ ′ a = 〈fun〉
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Values and Evaluation
Functions

Types — A Brief Start

Polymorphism

I Allowing values of different types to be handled through a
uniform interface.

I Christopher Strachey descriped two kinds of polymorphism:
I Ad-hoc polymorphism: allowing potentially different code (e.g.

printing or comparison for int and float) to “look the same”.
I e.g. function overloading, and method overloading in many

OO languages.
I e.g. type classes (Eq a⇒ . . .) in Haskell.

I Parametric polymorphism: allowing the same piece of code,
which does not depend on the type of the input data, to be
used on a wide range of types.

I e.g. fork , as we have just seen.

I In this summer school we will mainly talk about only the
second kind.
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Values and Evaluation
Functions

Types — A Brief Start

Summary

I The functional programming model of computation — given
an expression, reduce it to a normal form, if any.

I Functions are essential building blocks in a functional
language They can be applied, composed, passed as
arguments, and returned as results.

I Function definition and pattern matching.

I Polymorphic types. Types are very important, and we will
have a separate course talking about them.
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Values and Evaluation
Functions

Types — A Brief Start

Books and Tutorials

I E. Chailloux et. al. Developing Applications with Objective
Caml..

I G. Cousineau et. al. The Functional Approach to
Programming.

I R. Bird. Intro. to Functional Programming using Haskell.

I G. Hutton. Programming in Haskell.

I B. O’Sullivan et. al. Real World Haskell.
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User-Defined Types
Induction on Natural Numbers

Induction on Lists

Part II

Induction on Datatypes
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User-Defined Types
Induction on Natural Numbers

Induction on Lists

User-Defined Types

Induction on Natural Numbers
Datatypes, Functions, and Proofs
What is a Proof, Anyway?

Induction on Lists
Append, and Some of Its Properties
More Inductively Defined Functions
Other Patterns of Induction

44 / 150



User-Defined Types
Induction on Natural Numbers

Induction on Lists

Variant, or Sum Types

I A simple example of a sum type:

# type state = On | Off ; ;

I The type state has two values

# On; ;
− : state = On
# Off ; ;
− : state = Off

I This type is isomorphic to bool . One can (and perhaps should)
imagine that bool is actually defined this way.

I Value of a sum type can be deconstructed by matching:

let flip = function
| On→ Off
| Off → On
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I A sum type that carries another type:

# type int option = Nothing | Just of int

I This particular type can be used for handling “exceptions”:

# let div x y = if y <> 0 then Just (x/y)
else Nothing ; ;

val div : int → int → int option = 〈fun〉
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Proof by Induction on Natural Numbers
I We’ve all learnt this principle of proof by induction. To prove

that a property P holds for all natural numbers, we show that
I P 0 holds;
I P (n + 1) holds provided that P n does.

I We can see this as a result of seeing natural numbers as
defined by the datatype 1

type N = 0 | 1+ N
I That is, any natural number is either 0, or 1+ n where n is a

natural number.
I The type N is the smallest set such that

1. 0 is in N;
2. if n is in N, so is 1+ n.

I Thus to show that P holds for all natural numbers, we only
need to consider these two cases.

1Not a real OCaml definition.
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Inductively Defined Functions

I Since the type N is defined by two cases, it is natural to define
functions on N following the structure:

# let rec exp b n = match n with
| 0→ 1
| 1+ n→ b ∗ exp b n

I Even addition can be defined inductively

# let rec m + n = match m with
| 0→ n
| 1+ m→ 1+ (m + n)

I Exercise: define (∗)?
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I Since the type N is defined by two cases, it is natural to define
functions on N following the structure:

# let rec exp b n = match n with
| 0→ 1
| 1+ n→ b ∗ exp b n

I Even addition can be defined inductively

# let rec (+) m n = match m with
| 0→ n
| 1+ m→ 1+ (m + n)

I Exercise: define (∗)?

49 / 150



User-Defined Types
Induction on Natural Numbers

Induction on Lists

Datatypes, Functions, and Proofs
What is a Proof, Anyway?

Embedding N into int

I Most functional languages do not have a separate type for
natural numbers. Instead we have to write:

# let rec exp b n = match n with
| 0→ 1
| n→ b ∗ exp b (n − 1); ;

val exp : int → int → int = 〈fun〉
I In this lecture we sometimes use the previous form in proofs.

Remember to translate them to “real” programs.
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Proof by Induction

To prove properties about N, we follow the structure as well. E.g.
to prove that bm+n = bm × bn.
Case m := 0:

exp b (0 + n)

= { defn. of (+) }
exp b n

= { defn. of (∗) }
1 ∗ exp b n

= { defn. of exp }
exp b 0 ∗ exp b n
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Proof by Induction

Case m := 1+ m:

exp b ((1+ m) + n)

= { defn. of (+) }
exp b (1+ (m + n))

= { defn. of exp }
b ∗ exp b (m + n)

= { induction }
b ∗ (exp b m ∗ exp b n)

= { (∗) associative }
(b ∗ exp b m) ∗ exp b n

= { defn. of exp }
exp b (1+ m) ∗ exp b n
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Structure Proofs by Programs

I The inductive proof could be carried out smoothly, because
both (+) and exp are defined inductively on N.

I The structure of the proof follows the structure of the
program, which in turns follows the structure of the datatype
the program is defined on.
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Lists and Natural Numbers

I We have yet to prove that (×) is associative.

I The proof is quite similar to the proof for associativity of (@),
which we will talk about later.

I In fact, N and lists are closely related in structure.

I Most of us are used to think of numbers as atomic and lists as
structured data. Neither is necessarily true.

I For the rest of the course we will demonstrate induction using
lists, while taking the properties for N as given.
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But What is a Proof, Anyway?

Xavier Leroy, “How to prove it”:

Proof by example Prove the case n = 2 and suggests that it
contains most of the ideas of the general proof.

Proof by intimidation ‘Trivial’.

Proof by cumbersome notation Best done with access to at least
four alphabets and special symbols.

Proof by reference to inaccessible literature a simple corollary of a
theorem to be found in a privately circulated memoir
of the Slovenian Philological Society, 1883.

Proof by personal communication ‘Eight-dimensional colored cycle
stripping is NP-complete [Karp, personal
communication] (in the elevator).’

Proof by appeal to intuition Cloud-shaped drawings.
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A semantic proof

A map of London is place on the ground of Trafalgar Square.
There is a point on the map that is directly above the point on the
ground that it represents.

Proof.
The map is directly above a part of London. Thus the entire map is

directly above the part of the area which it represents. Now, the smaller

area of the map representing Central London is also above the part of the

area which it represents. Within the area representing Central London,

Trafalgar Square is marked, and this yet smaller part of the map is

directly above the part it represents. Continuing this way, we can find

smaller and smaller areas of the map each of which is directly above the

part of the area which it represents. In the limit we reduce the area on

the map to a single point.
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Proof of Pythagoras’s Theorem

I B J

E

AC

L D K

a c

b

Let ABC be a triangle with

B̂AC = 90o . Let the lengths of BC ,
AC , AB be, respectively, a, b, and c .
We wish to prove that a2 = b2 + c2.
Construct a square IJKL, of side
b + c , and a square BCDE , of side a.
Clearly, area(IJKL) = (b + c)2. But

area(IJKL) = area(BCDE )+

4× area(ABC )

= a2 + abc.

That is, (b + c)2 = a2 + 2bc,
whence b2 + c2 = a2.
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Informal v.s. Formal Proofs

I To read an informal proof, we are expected to have a good
understanding of the problem domain, the meaning of the
natural language statements, and the language of
mathematics.

I A formal proof shifts some of the burdens to the “form”: the
symbols, the syntax, and rules manipulating them. “Let the
symbols do the work!”

I Our proof of the swapping program is formal:

{x = A ∧ y = B}
x := x − y ; y := x + y ; x := y − x

{x = B ∧ y = A}.
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Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 5 heads and 14 legs. Find out the
numbers of cranes and tortoises.
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Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 5 heads and 14 legs. Find out the
numbers of cranes and tortoises.

I The kindergarten approach: plain simple enumeration!
I Crane 0, Tortoise 5 . . . No.
I Crane 1, Tortoise 4 . . . No.
I Crane 2, Tortoise 3 . . . No.
I Crane 3, Tortoise 2 . . . Yes!
I Crane 4, Tortoise 1 . . . No.
I Crane 5, Tortoise 0 . . . No.
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Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 5 heads and 14 legs. Find out the
numbers of cranes and tortoises.

I Elementary school: let’s do some reasoning . . .
I If all 5 animals were cranes, there ought to be 5× 2 = 10 legs.
I However, there are in fact 14 legs. The extra 4 legs must

belong to some tortoises. There must be (14− 10)/2 = 2
tortoises.

I So there must be 5− 2 = 3 cranes.

I It generalises to larger numbers of heads and legs.

I Given a different problem, we have to come up with another
different way to solve it.
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Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed in a cage.
Known is that there are 5 heads and 14 legs. Find out the
numbers of cranes and tortoises.

I Junior high school: algebra!

x + y = 5

2x + 4y = 14.

I It’s a general approach applicable to many other problems . . .

I . . . and perhaps easier.

I However, it takes efforts to learn!
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Formal Proof

Recall our proof

exp b ((1+ m) + n)
= { defn. of (+) }

exp b (1 + (m + n))
= { defn. of exp }

b × exp b (m + n)
= { induction }

b × (exp b m × exp b n)
= { (×) associative }

(b × exp b m)× exp b n
= { defn. of exp }

exp b (m + 1)× exp b n

It has a rather formal taste.
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Lists in OCaml

I Traditionally an important datatype in functional languages.

I In OCaml, all elements in a list must be of the same type.

# [1; 2; 3; 4]; ;
− : int list = [1; 2; 3; 4]

I [true; false; true] has type bool list.

I [[1; 2]; [ ]; [6; 7]] has type int list list.

I [(+); (−); (/)] has type (int → int → int) list.

I [ ], the empty list, has type ′a list.
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List as a Datatype

I [ ] is the empty list whose element type is not determined.

I If a list is non-empty, the leftmost element is called its head
and the rest its tail.

I The constructor (::) :: ′a→ ′a list → ′a list builds a list. E.g.
in x :: xs, x is the head and xs the tail of the new list.

I You can think of a list as being defined by

type ′a list = [ ] | ′a :: ′a list

I [1; 2; 3] is an abbreviation of 1 :: (2 :: (3 :: [ ])).
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Head and Tail

I The following functions are in module List. You have to issue
a command

I hd : ′a list → ′a. e.g. hd [1; 2; 3] = 1.

I tl : ′a list → ′a list. e.g. tl [1; 2; 3] = [2; 3].

I They are both partial functions on non-empty lists (exceptions
are raised when applied to empty lists).

I length : ′a list → int returns the length of a list.
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Finite Lists are Inducitvely Defined

I Recall that a (finite) list can be seen as a datatype defined
by: 2

type ′a list = [ ] | ′a :: ′a list

I Every list is built from the base case [ ], with elements added
by (::) one by one: [1; 2; 3] = 1 :: (2 :: (3 :: [ ])).

I The type ′a list is the smallest set such that

1. [ ] is in ′a list;
2. if xs is in ′a list and x is in a, x :: xs is in ′a list as well.

I Compare with the definition of N!
I But what about infinite lists?

I For now let’s consider finite lists only, as having infinite lists
make the semantics much more complicated.

2Not a real OCaml definition.
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Inductively Defined Functions on Lists

I Many functions on lists can be defined according to how a list
is defined. Eg. summation:

# let rec sum = function
| [ ]→ 0
| x :: xs → x + sum xs; ;

val sum : int list → int = 〈fun〉
I E.g. “mapping” over a list:

# let rec map f = function
| [ ]→ [ ]
| x :: xs → f x :: map f xs; ;

val map : (′a→ ′b)→ ′a list → ′b list
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List Append

I The function (@) appends two lists into one 3

let rec (@) xs ys = match xs with
| [ ]→ ys
| x :: xs → x :: (xs @ ys)

val (@) : ′a list → ′a list → ′a list

I Compare the definition with that of (+)!

3This function has an alias: append .
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Proof by Structural Induction on Lists

I Recall that every finite list is built from the base case [ ], with
elements added by (::) one by one.

I The type ′a list is the smallest set such that

1. [ ] is in ′a list;
2. if xs is in ′a list and x is in a, x :: xs is in ′a list as well.

I To prove that some property P holds for all finite lists, we
show that

1. P [ ] holds;
2. P (x :: xs) holds, provided that P xs holds.
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Appending is Associative

To prove that xs @(ys @ zs) = (xs @ ys) @ zs. Case xs := [ ]:

[ ] @(ys @ zs)
= { defn. of (@) }

ys @ zs
= { defn. of (@) }

([ ] @ ys) @ zs
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Appending is Associative

Case xs := x :: xs:

(x :: xs) @(ys @ zs)
= { defn. of (@) }

x :: (xs @(ys @ zs))
= { induction }

x :: ((xs @ ys) @ zs)
= { defn. of (@) }

(x :: (xs @ ys)) @ zs
= { defn. of (@) }

((x :: xs) @ ys) @ zs
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Length

I The function length can be defined inductively:

let rec length = function
| [ ]→ 0
| x :: xs → 1 + length xs

val length : ′a list → int

I Exercise: prove that length distributes into (@):

length (xs @ ys) = length xs + length ys
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Concatenation

I While (@) repeatedly applies (::), the function concat
repeatedly calls (@):

let rec concat = function
| [ ]→ [ ]
| xs :: xss → xs @ concat xss

val concat : ′a list list → ′a list

I Compare with sum.

I Exercise: prove sum� concat = sum� map sum.
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Why Functional Programming?

I Back to the question: why functional programming? Why
removing useful features (assignment, concurrency, IO. . . )?

I By doing so, the functions possess richer mathematical
properties we can exploit.

I Contrast: in C we cannot even be sure that
f (1) + f (1) = 2 ∗ f (1).

I We can prove properties about functions. The properties can
be used to optimise programs.

I These properties even help to construct programs, which will
be the subject of another course.
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Definition by Induction/Recursion

I Rather than giving commands, in functional programming we
specify values; instead of performing repeated actions, we
define values on inductively defined structures.

I Thus induction (or in general, recursion) is the only “control
structure” we have. (We do identify and abstract over plenty
of patterns of recursion, though.)

I To inductively define a function f on lists, we specify a value
for the base case (f [ ]) and, assuming that f xs has been
computed, consider how to construct f (x :: xs) out of f xs.

74 / 150



User-Defined Types
Induction on Natural Numbers

Induction on Lists

Append, and Some of Its Properties
More Inductively Defined Functions
Other Patterns of Induction

Filter

I filter p xs keeps only those elements in xs that satisfy p.

let rec filter p = function
| [ ]→ [ ]
| x :: xs → if p x then x :: filter p xs

else filter p xs
val filter : (′a→ bool)→ ′a list → ′a list
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Take and Drop

I Recall take and drop, which we used in the previous exercise.

let rec take n xs = match n, xs with
| 0, → [ ]
| (1+ n), [ ]→ [ ]
| (1+ n), (x :: xs)→ x :: take n xs

val take : int → ′a list → ′a list

let rec drop n xs = match n, xs with
| 0, xs → xs
| (1+ n), [ ]→ [ ]
| (1+ n), (x :: xs)→ drop n xs

val drop : int → ′a list → ′a list

I Prove: take n xs @ drop n xs = xs, for all n and xs.
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TakeWhile and DropWhile

I takeWhile p xs yields the longest prefix of xs such that p
holds for each element.

let rec takeWhile p = function
| [ ]→ [ ]
| x :: xs → if p x then x :: takeWhile p xs

else [ ]; ;
val takeWhile : (′a→ bool)→ ′a list → ′a list

I dropWhile p xs drops the prefix from xs.

let rec dropWhile p = function
| [ ]→ [ ]
| x :: xs → if p x then dropWhile p xs

else x :: xs; ;
val dropWhile : (′a→ bool)→ ′a list → ′a list

I Prove: takeWhile p xs @ dropWhile p xs = xs.
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List Reversal

I reverse [1; 2; 3; 4] = [4; 3; 2; 1].

let rec reverse = function
| [ ]→ [ ]
| x :: xs → reverse xs @[x ]; ;

val reverse : ′a list → ′a list
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All Prefixes and Suffixes

I Can you define these functions? Both inits and tails have type
′a list → ′a list list.

I inits [1; 2; 3] = [[ ]; [1]; [1; 2]; [1; 2; 3]]

I tails [1; 2; 3] = [[1; 2; 3]; [2; 3]; [3]; [ ]]
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Totality

I Structure of our definitions so far:

let rec f = function
| [ ]→ . . .
| x :: xs → . . . f xs . . .

I Both the empty and the non-empty cases are covered,
guaranteeing there is a matching clause for all inputs.

I The recursive call is made on a “smaller” argument,
guranteeing termination.

I Together they guarantee that every input is mapped to some
output. Thus they define total functions on lists.
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Variations with the Base Case

I Some functions discriminate between several base cases. E.g.

let rec fib = function
| 0→ 0
| 1→ 1
| n→ fib (n − 1) + fib (n − 2)
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I Some functions make more sense when it is defined only on
non-empty lists:

let rec f = function
| [x ]→ . . . x . . .
| x :: xs → . . . f xs . . .

I What about totality?
I They can be seen as functions defined on a different datatype:

type ′a list+ = [a] | a :: ′a list+

I We do not want to define map, filter again for ′a list+. Thus
we reuse ′a list and pretend that we were talking about
′a list+.

I It’s the same with N. We embedded N into Int.
I Ideally we’d like to have some form of subtyping. But that

makes the type system more complex.

82 / 150



User-Defined Types
Induction on Natural Numbers

Induction on Lists

Append, and Some of Its Properties
More Inductively Defined Functions
Other Patterns of Induction

Lexicographic Induction

I It also occurs often that we perform lexicographic induction
on multiple arguments: some arguments decrease in size,
while others stay the same.

I E.g. the function merge merges two sorted lists into one
sorted list:

let rec merge xs ys = match xs, ys with
| [ ], [ ] → [ ]
| [ ], y :: ys → y :: ys
| x :: xs, [ ] → x :: xs
| x :: xs, y :: ys → if x ≤ y

then x :: merge xs (y :: ys)
else y :: merge (x :: xs) ys
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Non-Structural Induction

I In most of the programs we’ve seen so far, the recursive call
are made on direct sub-components of the input (e.g.
f (x :: xs) = ..f xs..). This is called structural induction.

I It is relatively easy for compilers to recognise structural
induction and determine that a program terminates.

I In fact, we can be sure that a program terminates if the
arguments get “smaller” under some (well-founded) ordering.
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Mergesort

I In the implemenation of mergesort below, for example, the
arguments always get smaller in size.

let rec msort = function
[ ] → [ ]
[x ] → [x ]
xs → let n = length xs / 2 in

let ys = take n xs in
let zs = drop n xs in
merge (msort ys) (msort zs)

I What if we omit the case for [x ]?

I If all cases are covered, and all recursive calls are applied to
smaller arguments, the program defines a total function.
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A Non-Terminating Definition

I Example of a function, where the argument to the recursive
does not reduce in size:

let rec f = function
| 0→ 0
| n→ f n

I Certainly f is not a total function. Do such definitions
“mean” something? We will talk about these later.
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Summary

I Types may guide you through the design of a program.
I Define a datatype inductively.
I Define functions by following the structure of the type being

processed
I Construct proofs by following the structure of the functions

whose properties we are concerned with.

I Equational reasoning: let the symbols do the work!
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Constant-Time v.s. Linear-Time Operations

I So far we have (surprisingly) been talking about mathematics
without much concern regarding efficiency. Time for a change.

I Our representation of lists is biased: (::), hd , and tl are
constant-time operations, while init and last takes linear-time.

let rec init = function
| [x ]→ [ ]
| x :: xs → x :: init xs

I Consider init [1; 2; 3; 4]:

init (1 :: 2 :: 3 :: 4 :: [ ])
= 1 :: init (2 :: 3 :: 4 :: [ ])
= 1 :: 2 :: init (3 :: 4 :: [ ])
= 1 :: 2 :: 3 :: init (4 :: [ ])
= 1 :: 2 :: 3 :: [ ]
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List Concatenation Takes Linear Time

I Recall (@):

let rec (@) xs ys = match xs with
| [ ]→ ys
| x :: xs → x :: (xs @ ys)

val (@) : ′a list → ′a list → ′a list

I Consider [1; 2; 3] @[4; 5]:

(1 :: 2 :: 3 :: [ ]) @(4 :: 5 :: [ ])
= 1 :: ((2 :: 3 :: [ ]) @(4 :: 5 :: [ ]))
= 1 :: 2 :: ((3 :: [ ]) @(4 :: 5 :: [ ]))
= 1 :: 2 :: 3 :: ([ ] @(4 :: 5 :: [ ]))
= 1 :: 2 :: 3 :: 4 :: 5 :: [ ]

I (@) runs in time proportional to the length of its left
argument.
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Sum, Map, etc

I Functions like sum, maximum, etc. needs to traverse through
the list once to produce a result. So their running time is
definitely at least O(n).

I If f takes time O(t), map f takes time O(n × t) to complete.
Similarly with filter p.

I In a lazy setting, map f produces its first result in O(t) time.
We won’t talk about lazy features for now, however.
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Reversing a List

I The function reverse was defined by:

let rec reverse = function
| [ ]→ [ ]
| x :: xs → reverse xs @[x ]; ;

val reverse : ′a list → ′a list

I E.g.
reverse [1; 2; 3; 4] = ((([ ] @[4]) @[3]) @[2]) @[1] = [4; 3; 2; 1].

I But how about its time complexity? Since (@) is O(n), it
takes O(n2) time to revert a list this way.

I Can we make it faster? Yes, there is a linear time
implementation of reverse, which will be the subject of the
next part. For now, assume that reverse is linear.
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Persistency

I In the world of a functional language, like that of
mathematics, values are persistent — you have access to all
“previous versions” of a value.

let x = [1; 2; 3; 4] in
let x ′ = reverse x in
let x ′′ = tl x ′ . . .
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Persistency v.s. Efficiency

I Arrays, when implemented as a consecutive chunk of memory,
allows constant time access to an arbitrary element.

I Such implementation is costly in a world with persistent
values:

let x = [1; 2; 3; 4] in
let x ′ = set x 0 2 in
let x ′′ = set x 0 3 . . .

I After each assignment do we have to copy the entire array?

I We thus need some smarter implementations of arrays — and
other aggregate data.

I Still, we often end up having to pay a O(log n) penalty for
persistency.

I Nevertheless, people have developed some smart data
structures for more specific usages.
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FILO Queues

I How do you implement a first-in-last-out queue?

I If we represent a queue by a list:

type ′a queue = ′a list
let head xs = hd xs
let tail xs = tl xs
let snoc xs y = xs @[y ]

I The operation snoc takes O(n) time.
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Representing a Queue by Two Lists

I Idea: let ([1; 2], [5; 4; 3]) represent the queue [1; 2; 3; 4; 5].

I Invariant: the left list is never empty, unless both lists are.

([1; 2], [5; 4; 3])

−→ { remove 1 }
([2], [5; 4; 3])

−→ { add 6 }
([2], [6; 5; 4; 3])

−→ { remove 2 }
([ ], [6; 5; 4; 3])

−→ { shifting elements }
([3; 4; 5; 6], [ ])

−→ { remove 3 }
([4; 5; 6], [ ])
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Amortized Constant Time

I Removal and addition are constant time operations.

I Shifting is linear in the worst case, but it cannot happen all
the time!

I Each element can be shifted from right to left at most once.
Thus the linear cost of one shift can be distributed to each
addition.

I We say that shift is an amortized-constant time operation.
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FILO Queue: Methods

I Define type ′a queue = ′a list ∗ ′a list.
I Goal: define the following methods:

I empty : ′a queue
I is empty : ′a queue → bool
I head : ′a queue → ′a
I tail : ′a queue → ′a queue
I snoc : ′a queue → ′a→ ′a queue
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Empty Queue

type ′a queue = ′a list ∗ ′a list

let empty = ([ ], [ ])

let is empty = function
| [ ], → true
| → false
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Extracting Elements

let head = function
| x :: xs, ys → x

let tail = function
| x :: xs, ys → shift (xs, ys)
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Shifting and Adding Elements

let shift = function
| [ ], ys → (rev ys, [ ])
| q → q

let snoc (xs, ys) y = shift (xs, y :: ys)
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Binary Tree

I There are many variations of binary trees — internally
labelled, externally labelled . . .

I Here we will talk about one particular instance:

type ′a tree = Empty
| Node of ′a tree ∗ ′a ∗ ′a tree

I Example:

Node (Node (Empty , 1,Empty),
2,
Node (Node (Empty , 3,Empty),

4,
Empty))
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Inductively Defined Functions on Trees

I Height of a tree:

let rec height = function
| Empty → 0
| Node (t, , u)→

1 + max (height t) (height u)

I Size of a tree:

let rec size = function
| Empty → 0
| Node (t, , u)→ 1 + size t + size u
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Inductively Defined Functions on Trees

I Elements of a tree:

let rec flatten = function
| Empty → [ ]
| Node (t, x , u)→

flatten t @[x ] @ flatten u

I It’s inorder traversal. Can you define preorder and postorder
traversals?

I All these functions look similar. Is there a more general
definition that covers them all?
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Binary Search Tree

I A binary tree with the invariant: in every Node (t, x , u), all
elements in t are smaller than x , and all elements in u are
greater than x .

I Define the following methods:
I member : ′a→ ′a tree → bool
I insert : ′a→ ′a tree → ′a tree
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Membership

let rec member x = function
| Empty → false
| Node (t, y , u)→

if x < y then member x t
else if y < x then member x u
else true
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Insertion

I Inserting an element into a tree:

let rec insert x = function
| Empty → Node (Empty , x ,Empty)
| Node (t, y , u) as s →

if x < y then Node (insert x t, y , u)
else if y > x then Node (t, y , insert x u)
else s

I The inserted tree is not balanced. Thus member and insert
are both O(n) in the worst case.

I One could go for more advanced tree-like data structure for
better complexity. There are plenty of them: red-black trees,
2-3 trees . . .

I There has been a whole book about functional data
structures! [?]
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Summary

I Values in functional languages are persistent. For that we lose
some efficiency.

I In most cases, we still gain reasonable efficiency by carefully
designed data structures.

I Data structure works under assumptions that certain
invariants hold. These invariants are usually implicit in their
definitions, and need to be proved separately.
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Verification v.s. Derivation

I Verification: given a program, prove that it is correct with
respect to some specification.

I Derivation: start from the specification, and attempt to
construct only correct programs!

I Dijkstra: “to prove the correctness of a given program, was in
a sense putting the cart before the horse. A much more
promising approach turned out to be letting correctness proof
and program grow hand in hand: with the choice of the
structure of the correctness proof one designs a program for
which this proof is applicable.”

I What happened so far is that theoretical development of one
side benefits the other.

I We focus on verification today, and talk about derivation
tomorrow.
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Program Derivation

I Wikipedia: program derivation is the derivation of a program
from its specification, by mathematical means.

I To write a formal specification (which could be
non-executable), and then apply mathematically correct rules
in order to obtain an executable program.

I The program thus obtained is correct by construction.
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A Typical Functional Program Derivation

max { sum (i , j) | 0 ≤ i ≤ j ≤ N }
= { Premise 1 }

max � map sum� concat � map inits � tails

= { Premise 2 }
. . .

= { . . . }
The final program!
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Sum and Map

I Recall: the function sum adds up the numbers in a list:

# let rec sum = function
| [ ]→ 0
| x :: xs → x + sum xs; ;

I E.g. sum [7; 9; 11] = 27.

I The function map f takes a list and builds a new list by
applying f to every item in the input:

# let rec map f = function
| [ ]→ [ ]
| x :: xs → f x :: map f xs; ;

val map : (′a→ ′b)→ ′a list → ′b list
I E.g. map square [3; 4; 6] = [9; 16; 36].
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Sum of Squares

I Given a sequence a1,a2,. . . ,an, compute a2
1 + a2

2 + . . .+ a2
n.

Specification: let sumsq = sum� map square.

I The spec. builds an intermediate list. Can we eliminate it?

I The input is either empty or not. When it is empty:

sumsq [ ]

= { definition of sumsq }
(sum� map square) [ ]

= { function composition }
sum (map square [ ])

= { definition of map }
sum [ ]

= { definition of sum }
0
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Sum of Squares, the Inductive Case

I Consider the case when the input is not empty:

sumsq (x :: xs)

= { definition of sumsq }
sum (map square (x :: xs))

= { definition of map }
sum (square x :: map square xs)

= { definition of sum }
square x + sum (map square xs)

= { definition of sumsq }
square x + sumsq xs
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An Alternative Definition for sumsq

I From sumsq = sum� map square, we have proved that

let sumsq = function
| [ ]→ 0
| x :: xs → square x + sumsq xs

I Equivalently, we have shown that sum� map square is a
solution of

f [ ] = 0
f (x :: xs) = square x + f xs

I However, the solution of the equations above is unique.

I Thus we can take it as another definition of sumsq.
Denotationally it is the same function; operationally, it is
(slightly) quicker.
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Unfold/Fold Transformation

I Perhaps the most intuitive, yet still handy, style of functional
program derivation.

I Keep unfolding the definition of functions, apply necessary
rules, and finally fold the definition back.

I It works under the assumption that a function satisfying the
derived equations is the function defined by the equations.

I Do not confuse “fold” and “unfold” with foldr and unfoldr ,
which are important operations on datatypes and
unfortunately cannot be covered in this course.
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Reversing a List

I The function reverse was defined by:

let rec reverse = function
| [ ]→ [ ]
| x :: xs → reverse xs @[x ]; ;

val reverse : ′a list → ′a list

I E.g.
reverse [1; 2; 3; 4] = ((([ ] @[4]) @[3]) @[2]) @[1] = [4; 3; 2; 1].

I But how about its time complexity? Since (@) is O(n), it
takes O(n2) time to revert a list this way.

I Can we make it faster?
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Introducing an Accumulating Parameter

I Let us consider a generalisation of reverse. Define:

let revcat xs ys = reverse xs @ ys
val revcat : ′a list → ′a list → ′a list

I If we can construct a fast implementation of revcat, we can
implement reverse by:

let reverse xs = revcat xs [ ]
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Reversing a List, Base Case

Let us use our old trick. Consider the case when xs is [ ]:

revcat [ ] ys

= { definition of revcat }
reverse [ ] @ ys

= { definition of reverse }
[ ] @ ys

= { definition of (@) }
ys.
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Reversing a List, Inductive Case

Case x :: xs:

revcat (x :: xs) ys

= { definition of revcat }
reverse (x :: xs) @ ys

= { definition of reverse }
(reverse xs @[x ]) @ ys

= { since (xs @ ys) @ zs = xs @(ys @ zs) }
reverse xs @([x ] @ ys)

= { definition of revcat }
revcat xs (x :: ys).
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Linear-Time List Reversal

I We have therefore constructed an implementation of revcat
which runs in linear time!

let rec revcat xs ys = match xs with
| [ ]→ ys
| x :: xs → revcat xs (x :: ys)

I A generalisation of reverse is easier to implement than reverse
itself? How come?

I If you try to understand revcat operationally, it is not difficult
to see how it works.

I The partially reverted list is accumulated in ys.
I The initial value of ys is set by reverse xs = revcat xs [ ].
I Hmm... it is like a loop, isn’t it?
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Tracing Reverse

reverse [1; 2; 3; 4]
= revcat [1; 2; 3; 4] [ ]
= revcat [2; 3, 4] [1]
= revcat [3; 4] [2; 1]
= revcat [4] [3; 2; 1]
= revcat [ ] [4; 3; 2; 1]
= [4; 3; 2; 1]

let reverse xs = revcat xs [ ]
let rec revcat xs ys = match xs with
| [ ]→ ys
| x :: xs → revcat xs (x :: ys)

xs, ys ← XS , [ ];
while xs 6= [ ] do

xs, ys ← (tl xs), (hd xs :: ys);
return ys
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Tail Recursion

I Tail recursion: a special case of recursion in which the last
operation is the recursive call.

f x1 . . . xn = {base case}
f x1 . . . xn = f x ′

1 . . . x ′
n

I To implement general recursion, we need to keep a stack of
return addresses. For tail recursion, we do not need such a
stack.

I Tail recursive definitions are like loops. Each xi is updated to
x ′
i in the next iteration of the loop.

I The first call to f sets up the initial values of each xi .
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Accumulating Parameters

I To efficiently perform a computation (e.g. reverse xs), we
introduce a generalisation with an extra parameter, e.g.:

revcat xs ys = reverse xs @ ys.

I Try to derive an efficient implementation of the generalised
function. The extra parameter is usually used to
“accumulate” some results, hence the name.

I To make the accumulation work, we usually need some kind of
associativity.

I A technique useful for, but not limited to, constructing
tail-recursive definition of functions.
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Accumulating Parameter: Another Example

I Recall the “sum of squares” problem:

let sumsq = function
| [ ]→ 0
| x :: xs → square x + sumsq xs

I The program still takes linear space (for the stack of return
addresses). Let us construct a tail recursive auxiliary function.

I Introduce let ssp xs n =

sumsq xs + n

.

I Initialisation: let sumsq xs =

ssp xs 0

.

I Construct ssp:

ssp [ ] n = 0 + n = n
ssp (x :: xs) n = (square x + sumsq xs) + n

= sumsq xs + (square x + n)
= ssp xs (square x + n).
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Being Quicker by Doing More?

I A more generalised program can be implemented more
efficiently?

I A common phenomena! Sometimes the less general function
cannot be implemented inductively at all!

I It also often happens that a theorem needs to be generalised
to be proved. We will see that later.

I An obvious question: how do we know what generalisation to
pick?

I There is no easy answer — finding the right generalisation one
of the most difficulty act in programming!

I For the past few examples, we choose the generalisation to
exploit associativity.

I Sometimes we simply generalise by examining the form of the
formula.

133 / 150



The Unfold/Fold Transformation
Accumulating Parameters

Tupling

Fast List Reversal
Tail Recursion and Loops
Being Quicker by Doing More!
Proof by Strengthening

Combine, or Zip

I A useful function, called zip in Haskell:

let rec combine xs ys = match xs, ys with
| [ ], [ ]→ [ ]
| x :: xs, y :: ys → (x , y) :: combine xs ys

val combine : ′a list → ′b list → (′a ∗ ′b) list

I E.g. combine [1; 3; 5] [’a’; ’b’; ’c’] =
[(1, ’a’); (3, ’b’); (5; ’c’)].
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Range Generation

I Generating a range:

let fromTo m n = if m ≥ n then [ ]
else m :: fromTo (m + 1) n

I E.g. fromTo 3 6 = [3; 4; 5].

I E.g. fromTo 6 6 = [ ].
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Labelling a List

I Consider the task of labelling elements in a list with its index.

let index xs = combine (fromTo 0 (length xs)) xs
val index : ′a list → (int ∗ ′a) list

I E.g. index [’a’; ’b’; ’c’] = [(0, ’a’); (1, ’b’); (2; ’c’)].
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Labelling a List, Inductive Case

I

I To construct an inductive definition, the case for [ ] is easy.
For the x :: xs case:

index (x :: xs)
= combine (fromTo 0 (length (x :: xs))) (x :: xs)
= combine (fromTo 0 (1 + length xs)) (x :: xs)
= combine (0 :: fromTo 1 (length xs)) (x :: xs)
= (0, x) : combine (fromTo 1 (length xs)) xs

I Alas, the last line cannot be folded back to index!

I What if we turn the varying part into. . . a variable?
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Labelling a List, Second Attempt

I Generalise index :

let idxFrom xs n =
combine (fromTo n (n + length xs)) xs

I Initialisation: let index xs =

idxFrom xs 0

.

I We reason:

idxFrom (x :: xs) n
= combine (fromTo n (n + len (x :: xs))) (x :: xs)
= combine (fromTo n (1 + n + len xs)) (x :: xs)
= combine (n :: fromTo (1 + n) (1 + n + len xs)) (x :: xs)
= (n, x) : combine (fromTo (1 + n) (len xs)) xs
= (n, x) : idxFrom xs (1 + n)
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Labelling a List, Second Attempt

let index xs = idxFrom xs 0
let idxFrom xs n = match xs with
| [ ]→ [ ]
| x :: xs → (n, x) : idxFrom xs (1 + n)
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Summing Up a List in Reverse

I Prove: sum� reverse = sum, using the definition
reverse xs = revcat xs [ ]. That is, proving
sum (revcat xs [ ]) = sum xs.

I Base case trivial. For the case x :: xs:

sum (reverse (x :: xs))
= sum (revcat (x :: xs) [ ])
= sum (revcat xs [x ])

I Then we are stuck, since we cannot use the induction
hypothesis sum (revcat xs [ ]) = sum xs.

I Again, generalise [x ] to a variable.
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Summing Up a List in Reverse, Second Attempt

I Second attempt: prove a lemma:

sum (revcat xs ys) =

sum xs + sum ys

I By letting ys = [ ] we get the previous property.

I For the case x :: xs we reason:

sum (revcat (x :: xs) ys)

= sum (revcat xs (x :: ys))
= { induction hypothesis }

sum xs + sum (x :: ys)
= sum xs + x + sum ys
= sum (x : xs) + sum ys
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Work Less by Proving More

I A stronger theorem is easier to prove! Why is that?
I By strengthening the theorem, we also have a stronger

induction hypothesis, which makes an inductive proof
possible.

I Finding the right generalisation is an art — it’s got to be
strong enough to help the proof, yet not too strong to be
provable.

I The same with programming. By generalising a function with
additional arguments, it is passed more information it may
use, thus making an inductive definition possible.

I The speeding up of revcat, in retrospect, is an accidental “side
effect” — revcat, being inductive, goes through the list only
once, and is therefore quicker.
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A Real Case

I A property I actually had to prove for a paper:

(∀n : . . . : take n x ≤d drop n x)
⇒ maximum (map ((@)z) (inits x))

= z ↑d (z @ x)
I It took me quite a while to construct the right generalisation:

(∀n : . . . : y @ take n x ≤d drop n x)
⇒ z ↑d maximum (map ((@)(z @ y)) (inits x))

= z ↑d (z @ y @ x)
I In another case I spent a week on the right generalisation.

Once the right property is found, the actual proof was done in
about 20 minutes.

I “Someone once described research as ‘finding out something
to find out, then finding it out’; the first part is often harder
than the second.”
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Remark

I The sum� reverse example is superficial — the same
property is much easier to prove using the O(n2)-time
definition of reverse.

I That’s one of the reason we defer the discussion about
efficiency — to prove properties of a function we sometimes
prefer to roll back to a slower version.
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I A steep list is a list in which every element is larger than the
sum of those to its right:

let rec steep = function
| [ ]→ true
| x :: xs → steep xs && x > sum xs

val steep : int list → bool

I The definition above, if executed directly, is an O(n2)
program. Can we do better?

I Just now we learned to construct a generalised function which
takes more input. This time, we try the dual technique: to
construct a function returning more results.
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Generalise by Returning More

I Recall that fst (a, b) = a and snd (a, b) = b.

I It is hard to quickly compute steep alone. But if we define

let steepsum xs = (steep xs, sum xs)

I and manage to synthesise a quick definition of steepsum, we
can implement steep by steep = fst � steepsum.

I We again proceed by case analysis. Trivially,

steepsum [ ] = (true, 0).
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Deriving for the Non-Empty Case

For the case for non-empty inputs:

steepsum (x :: xs)

= { definition of steepsum }
(steep (x :: xs), sum (x :: xs))

= { definitions of steep and sum }
(steep xs && x > sum xs, x + sum xs)

= { extracting sub-expressions involving xs }
match steep xs, sum xs with
| b, y → (b && x > y , x + y)

= { definition of steepsum }
match steepsum xs with
| b, y → (b && x > y , x + y)
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Synthesised Program

I We have thus come up with a O(n) time program:

let steep = fst � steepsum
let steepsum = function
| [ ]→ (true, 0)
| x :: xs → match steepsum xs with

| b, y → (b && x > y , x + y)

I Again we observe the phenomena that a more general
function is easier to implement.
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How Far Can We Go?

I We will show in an appendix the entire derivation of the
maximum segment sum problem.

I Bird and de Moor conducted a though study of optimisation
problems — when there is a greedy algorithm, when it can be
solved by dynamic programming, etc.

I Through calculations, we sometimes discover new algorithms,
or variations/improvements of existing algorithms.

I Certainly, not all problems can be solved by calculation. When
they do, we gain better understanding of their natures.

I More case studies of program calculation are still being
published in “Functional Pearl” section of ICFP and Journal
of Functional Programming.
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Summary

I A program and its correctness proof can be, and should be
developed together.

I Program calculation is one such methodology. From a
specification, we stepwise calculate an algorithm by
(in)equational reasoning.
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