
Functional Programming

Shin-Cheng Mu

2012 Formosan Summer School on Logic, Language, and Computation
Aug 27 – Sep 7, 2012

Why Functional Programming?

� “What could be more fashionable than func-
tional programming?”

� ICFP (International Conference on Functional
Programming) is having more and more atten-
dees in recent years.

� A clean model of computation that encourages
mathematical reasoning.

� A “common language” among PL people, upon
which other models can be based.

Maximum Segment Sum

� Given a list of numbers, find the maximum sum
of a consecutive segment.

– [−1; 3; 3;−4;−1; 4; 2;−1] ⇒ 7

– [−1; 3; 1;−4;−1; 4; 2;−1] ⇒ 6

– [−1; 3; 1;−4;−1; 1; 2;−1] ⇒ 4

� Not trivial. However, there is a linear time algo-
rithm.

�

−1 3 1 −4 −1 1 2 −1
3 4 1 0 2 3 2 0 0 (up + right) ↑ 0
4 4 3 3 3 3 2 0 0 up ↑ right

A Simple Program Whose Proof is Not

� The specification: max { sum (i, j) ∣ 0 ≤ i ≤ j ≤
N }, where sum (i, j) = a[i]+a[i+1]+ . . .+a[i].

– What we want the program to do.

� The program:

s = 0; m = 0;

for (i=0; i<=N; i++) {

s = max(0, a[j]+s);

m = max(m, s);

}

– How to do it.

� They do not look like each other at all!

� Moral: programs that appear “simple” might
not be that simple after all!

Programming and Programming Languages

� Programming is more than about producing a
pile of code.

� The code has to meet the specification. And, as
the example showed, it is sometimes hard to see
even for short programs.

� A good programming languages makes it easier
for one to argue for the correctness of a program,
by making it easier to reason about programs,

� which, in my opinion, is the main achievement of
functional programming: it is relatively easy to
show that a program possess certain properties.

� We will see in this course (and in this summer
school) how programs and proofs are closely re-
lated.

This Course

� Was to be taught by Dr. Tyng-Ruey Chuang,
but eventually handed over to me.

� The functional fragment of the Program Con-
struction course is thus integrated into this
course.

� Program Construction will be mainly about
derivation of procedural programs.

1

Haskell v.s. OCaml

� OCaml (an implementation of Caml):

– Developed and maintained by INRIA since
1985.

– A strict language with some impure but
useful and practical features — references,
exceptions, threads, . . .

– A relatively mature language with excellent
tools and libraries.

– In particular, Coq.

� Haskell:

– Developed in late 80’s and early 90’s.

– Non-strict. All impure features are encap-
sulated by pure constructs (e.g. monads).

– A testbed for type theoretic experiments.

– Excellent tools for research and rapid pro-
totyping.

� To prepare for the use of Coq in this summer
school, we will be teaching OCaml this year.

Part I

Functions, Values, and
Evaluation

1 Values and Evaluation

A Quick Introduction to OCaml

� We will mostly learn some (boring) syntactical
issues, but there are some important messages
too.

� Some contents are inherited from Dr. Tyng-
Ruey Chuang’s course in the previous year. The
rest are adapted from my (Haskell) course notes,
which are in turn adapted from Richard Bird’s
textbook [?].

� More OCaml texbooks: Chailloux et. al [?] and
Cousineau et. al [?].

� Other books on FP and Haskell: Hutton [?] and
O’Sullivan et. al .

1.1 Talking to the Interpreter

Simple Expressions

� Type an expression, and the interpreter
evaulates it.

1+2*3;;

- : int = 7

let pi = 4.0 *. atan 1.0;;

val pi : float = 3.14159265358979312

pi;;

- : float = 3.14159265358979312

� int and float are different types.

1.0 * 2;;

Error: This expression has type float but an

expression was expected of type int

Defining Functions

� A function definition:

let square x = x * x;;

val square : int -> int = <fun>

square 3768;;

- : int = 14197824

Defining Functions
Another function definition:

let smaller (x,y) = if x <= y then x else y;;

val smaller : ’a * ’a -> ’a = <fun>

smaller (3,4);;

- : int = 3

1.2 Evaluation and Termination

Evaluation
One possible sequence of evaluating (simplifying,

or reducing) square (3 + 4):

square (3 + 4)
= { definition of + }

square 7
= { definition of square }

7 × 7
= { definition of × }

49

2

Another Evaluation Sequence

� Another possible reduction sequence:

square (3 + 4)
= { definition of square }

(3 + 4) × (3 + 4)
= { definition of + }

7 × (3 + 4)
= { definition of + }

7 × 7
= { definition of × }

49

� In this sequence the rule for square is applied
first. The final result stays the same.

� Do different evaluations orders always yield the
same thing?

A Non-terminating Reduction

� Consider the following program:

let three x = 3

let infinity = infinity + 1

– Notice how the second definition is different
from an assignment infinity ∶= infinity + 1.

– Note: The second definition is actually not
accepted by OCaml. Instead one has to
write

let rec infinity () = infinity () + 1

For clarity we temporarily use the current
definition.

� Try evaluating three infinity . If we simplify
infinity first:

three infinity
= { definition of infinity }

three (infinity + 1)
= three ((infinity + 1) + 1) . . .

� If we start with simplifying three:

three infinity
= { definition of three }

3

Values

� In functional programming, an expression is used
solely to describe a value.

– A value is an abstract being. An expression
is but its representation.

– The value forty-nine can be represented by
49, 7 × 7, 110001, or XLIX.

� The evaluator tries to reduce an expression to
a canonical representation. But what canonical
representation to use?

– We usually go for the normal form: the one
that cannot be reduced anymore. Thus 49
is preferred over 7 × 7.

– Some values have a reasonable canonical
representation that is not finite. E.g. π.

– Some expressions do not have a normal
form. E.g. infinity .

Evaluation Order

� There can be many other evaluation orders. As
we have seen, some terminates while some do
not.

� A corollary of the Church–Rosser theorem: an
expression has at most one normal form.

– If two evaluation sequences both terminate,
they reach the same normal form.

� Applicative order evaluation: starting with the
innermost reducible expression (a redex).

� Normal order evaluation: starting with the out-
ermost redex.

– If an expression has a normal form, nor-
mal order evaluation delivers it. Hence the
name.

� For now you can imagine that OCaml uses ap-
plicative order evaluation (while Haskell uses
normal order evaluation).

Bottom and Strictness

� Some expressions do not have a normal form.
E.g. infinity .

� Some expressions do not denote a well-defined
value: 1/0.

3

� To be able to talk about them we denote such
undefined values by the symbol �.

� A function f is strict if f � = �. Otherwise it is
non-strict.

� Functions in OCaml are strict, thus OCaml is
called a strict language.

� Haskell allows non-strict functions.

2 Functions

Mathematical Functions

� Mathematically, a function is a mapping between
arguments and results.

– A function f ∶ A→ B maps each element in
A to a unique element in B.

� In contrast, C “functions” are not mathematical
functions:

– int y = 1; int f (x:int) { return

((y++) * x); }

� Pure functional languages exclude such side-
effects: (unconstrained) assignments, IO, etc.

� Why removing these useful features? We will
talk about that later in this course.

Extensionality

� Two functions are equal if they give equal results
for equal arguments.

– f = g if and only if f x = g x for all x.

� For instance, double = double′:

let double x = x + x
let double′ x = 2 × x

– They describe different procedures for ob-
taining the same results.

– Being equal means that they can be used
interchangeably.

– Much of this course is about transformation
between functions that are equal.

2.1 Currying

Pairs

� Our first compound type: pairs.

let flolac12 = (12,”flolac”); ;
val flolac12 ∶ int ∗ string = (12,”flolac”)

� type constructor: for types a and b, the type
a∗b can be seen as the collection of stuffs putting
one a and one b together.

� constructor: pairs are built by comma (,).

� deconstructor: The two components can be ex-
tracted respectively by fst and snd :

fst flolac12 ; ;
− ∶ int = 12
snd flolac12 ; ;
− ∶ string = ”flolac”

Currying

� Consider again the function smaller :

#let smaller (x, y) = if x ≤ y then x else y; ;
val smaller ∶

′a ∗ ′a→ ′a = ⟨fun⟩

� Another way:

#let smallerc x y = if x ≤ y then x else y; ;
val smallerc ∶

′a→ ′a→ ′a = ⟨fun⟩

– It’s a function returning a function.

#smallerc 3; ;
− ∶ int → int = ⟨fun⟩

#smallerc 3 4; ;
− ∶ int = 3

� Currying: replacing structured arguments by a
sequence of simple ones.

Precedence and Association

� Syntax of some functional languages are talored
toward encouraging the use of curried function.

� Type: a→ b→ c = a→ (b→ c), not (a→ b) → c.

� Application: f x y = (f x) y, not f (x y).

– smallerc 3 4 means (smallerc 3) 4.

– square square 3 means (square square) 3,
which results in a type error.

� Function application binds tighter than infix op-
erators. E.g. square 3+ 4 means (square 3) + 4.

4

Why Currying?

� It exposes more chances to reuse a function, since
it can be partially applied.

#let twice f x = f (f x); ;
val twice ∶ (

′a→ ′a) → ′a→ ′a = ⟨fun⟩

#let quad = twice square; ;
val quad ∶ int → int = ⟨fun⟩

� Try evaluating quad 3:

quad 3

= twice square 3

= square (square 3)

= . . .

� Had we defined:

let twice (f, x) = f (f x); ;
val twice ∶ (

′a→ ′a) ∗ ′a→ ′a = ⟨fun⟩

we would have to write

letquad x = twice (square, x)
val quad ∶ int → int = ⟨fun⟩

Currying and Uncurrying

� An uncurried function can be converted to a cur-
ried function:

let curry f x y = f (x, y)
val curry ∶ (

′a ∗ ′b→ ′c) → ′a→ ′b→ ′c = ⟨fun⟩

– We have curry smaller = smallerc.

– We will explain the meaning of those types
with “dots” later.

� Can you define uncurry?

let uncurry . . .
val uncurry ∶ (

′a→ ′b→ ′c) → (
′a ∗ ′b→ ′c)

2.2 Sectioning

Sectioning

� OCaml determines the fixty and associativity of
an operator by its first character. See Appendix
??.

� To use an infix operator in prefix position, sur-
rounded it in parentheses. For example, (+) 3 4
is equivalent to 3 + 4.

� These operators are curried too. The operator
(+) has type int → int → int .

� Infix operator can be partially applied too.

– (+)1 has type int → int and increments its
argument by one.

– (/.)1 has type float → float . We have
(/.)1 2 = 1/.2.

Function Composition

� Functions composition:

let (≪) f g x = f (g x); ;
val (≪) ∶ (

′a→ ′b) → (
′c→ ′a) → ′c→ ′b = ⟨fun⟩

� Putting (≪) in infix position, we get (f ≪ g) x =
f (g x).

� E.g. another way to write quad :

let quad = square ≪ square

� The identity function: let id x = x.

� Some important properties:

– id ≪ f = f = f ≪ id .

– (f ≪ g) ≪ h = f ≪ (g ≪ h).

Anonymous Functions

� A function is a value that can be created, passed
around, and used, like any other values.

� fun x → e is a function (without a name) that
takes an argument x and yields e.

� Instead of let square x = x ∗ x, one can also
write

let square = fun x→ x ∗ x

� Such anonymous function is a legacy of λ-
calculus, which forms the core theory of func-
tional programming and will be talked about in
another course.

5

2.3 Definitions

Recursive Definitions

� The keyword rec informs that a definition is re-
cursive. E.g.

let rec fact n =

if n = 0 then 1 else n ∗ fact (n − 1); ;
val fact ∶ int → int = ⟨fun⟩

� How can something be defined in terms of itself?
Are such definitions valid? We will talk about it
later.

� Notice the difference:

– let rec f x = ...f... recursively defines f ;

– let f x = ...f.. defines f using some other
f defined in the surrounding context.

Mutually Recursive Definitions

� A group of functions can be defined in terms of
each other:

let rec is even n =

if n = 0 then true else is odd (n − 1)
and is odd n =

if n = 0 then false else is even (n − 1); ;

val is even ∶ int → bool
val is odd ∶ int → bool

Pattern Matching

� The famous Fibonacci function:

let rec fib n = if n = 0 then 0
else if n = 1 then 1
else fib (n − 1) + fib (n − 2)

� A equivalent definition using match:

let rec fib n = match n with
∣ 0→ 0
∣ 1→ 1
∣ n→ fib (n − 1) + fib (n − 2)

� An abbreviation:

let rec fib = function
∣ 0→ 0
∣ 1→ 1
∣ n→ fib (n − 1) + fib (n − 2)

Local Definitions

� Local bindings are defined by let . . . in . . ., which
can be nested:

let f (x, y) = let a = (x + y)/2 in
let b = (x + y)/3 in
(a + 1) ∗ (b + 2)

3 Types — A Brief Start

Types

� The universe of values is partitioned into collec-
tions, called types.

� Some basic types: int , float , bool , char . . .

� Type “constructors”: functions, lists, trees . . . to
be introduced later.

� Operations on values of a certain type might
not make sense for other types. For example:
square square 3.

� See Appendix ?? for a list of frequently used
types and operations.

� Strong typing: the type of a well-formed expres-
sion can be deducted from the constituents of
the expression.

– It helps you to detect errors.

– More importantly, programmers may con-
sider the types for the values being defined
before considering the definition them-
selves, leading to clear and well-structured
programs.

Type Inference

� So far, however, we never had to explicit enter
the type of a function. Instead, when OCaml
sees a function definition it infers its type for
us.

let f g x y = g (char of int x) + y; ;
val f ∶ (char → int) → int → int → int = ⟨fun⟩

� To make inference possible, OCaml adopts a
variation of the Hindley-Milner type system — a
careful balance of expressiveness and decidabil-
ity. More on this in the lecture on types.

6

Polymorphic Types

� Consider the function

let fork f g x = (f x, g x)
fork ((+) 1) ((∗) 2) 5; ;
− ∶ int ∗ int = (6,10)

� Can it have type (int → int) → (int → int) →
int → int ∗ int?

� What about (int → char) → (int → string) →
int → char ∗ string?

� It turns out that we can assign it a most general
type: (

′a→ ′b) → (
′a→ ′c) → ′a→ ′b ∗ ′c.

� Types starting with quotes are type variables,
which can be instantiated to other types.

Polymorphic Types

� Polymorphic types could be instantiated upon
application.

fork int of char ; ;
− ∶ (char → ′ a) → char → int ∗ ′ a = ⟨fun⟩

fork char of int ; ;
− ∶ (int → ′ a) → int → char ∗ ′ a = ⟨fun⟩

Polymorphism

� Allowing values of different types to be handled
through a uniform interface.

� Christopher Strachey descriped two kinds of
polymorphism:

� Ad-hoc polymorphism: allowing potentially dif-
ferent code (e.g. printing or comparison for int
and float) to “look the same”.

– e.g. function overloading, and method over-
loading in many OO languages.

– e.g. type classes (Eq a⇒ . . .) in Haskell.

� Parametric polymorphism: allowing the same
piece of code, which does not depend on the type
of the input data, to be used on a wide range of
types.

– e.g. fork , as we have just seen.

� In this summer school we will mainly talk about
only the second kind.

Summary

� The functional programming model of computa-
tion — given an expression, reduce it to a normal
form, if any.

� Functions are essential building blocks in a func-
tional language They can be applied, composed,
passed as arguments, and returned as results.

� Function definition and pattern matching.

� Polymorphic types. Types are very important,
and we will have a separate course talking about
them.

Part II

Induction on
Datatypes

4 User-Defined Types

Variant, or Sum Types

� A simple example of a sum type:

type state = On ∣ Off ; ;

– The type state has two values

On; ;
− ∶ state = On
Off ; ;
− ∶ state = Off

– This type is isomorphic to bool . One can
(and perhaps should) imagine that bool is
actually defined this way. Alas, OCaml
gives different syntax to primitive and user-
defined types.

� Value of a sum type can be deconstructed by
matching:

let flip = function
∣ On → Off
∣ Off → On

7

Option

� A sum type that carries another type:

type int option = Nothing ∣ Just of int

� This particular type can be used for handling
“exceptions”:

let div x y = if y <> 0 then Just (x/y)
else Nothing ; ;

val div ∶ int → int → int option = ⟨fun⟩

5 Induction on Natural Num-
bers

5.1 Datatypes, Functions, and Proofs

Proof by Induction on Natural Numbers

� We’ve all learnt this principle of proof by induc-
tion. To prove that a property P holds for all
natural numbers, we show that

– P 0 holds;

– P (n + 1) holds provided that P n does.

� We can see this as a result of seeing natural num-
bers as defined by the datatype 1

type N = 0 ∣ 1+ N

– That is, any natural number is either 0, or
1+ n where n is a natural number.

– Any natural number has the form: 0, 1+ 0,
1+ (1+ 0) . . . Decimal numbers 1, 2, 3, etc.,
can be seen as abbreviations.

– The type N is the smallest set such that

1. 0 is in N;

2. if n is in N, so is 1+ n.

– Thus to show that P holds for all natural
numbers, we only need to consider these
two cases.

Inductively Defined Functions

� Since the type N is defined by two cases, it is
natural to define functions on N following the
structure:

let rec exp b n = match n with
∣ 0→ 1
∣ 1+ n→ b ∗ exp b n

1Not a real OCaml definition.

� Even addition can be defined inductively

let rec (+) m n = match m with
∣ 0→ n
∣ 1+ m→ 1+ (m + n)

� Exercise: define (∗)?

Embedding N into int

� Most functional languages do not have a separate
type for natural numbers. Instead we have to
write:

let rec exp b n = match n with
∣ 0→ 1
∣ n→ b ∗ exp b (n − 1); ;

val exp ∶ int → int → int = ⟨fun⟩

� In this lecture we sometimes use the previous
form in proofs. Remember to translate them to
“real” programs.

Proof by Induction
To prove properties about N, we follow the struc-

ture as well. E.g. to prove that bm+n
= bm × bn.

Case m ∶= 0:

exp b (0 + n)
= { defn. of (+) }

exp b n
= { defn. of (∗) }

1 ∗ exp b n
= { defn. of exp }

exp b 0 ∗ exp b n

Proof by Induction
Case m ∶= 1+ m:

exp b ((1+ m) + n)
= { defn. of (+) }

exp b (1+ (m + n))
= { defn. of exp }

b ∗ exp b (m + n)
= { induction }

b ∗ (exp b m ∗ exp b n)
= { (∗) associative }

(b ∗ exp b m) ∗ exp b n
= { defn. of exp }

exp b (1+ m) ∗ exp b n

8

Structure Proofs by Programs

� The inductive proof could be carried out
smoothly, because both (+) and exp are defined
inductively on N.

� The structure of the proof follows the structure
of the program, which in turns follows the struc-
ture of the datatype the program is defined on.

Lists and Natural Numbers

� We have yet to prove that (×) is associative.

� The proof is quite similar to the proof for asso-
ciativity of (@), which we will talk about later.

� In fact, N and lists are closely related in struc-
ture.

� Most of us are used to think of numbers as
atomic and lists as structured data. Neither is
necessarily true.

� For the rest of the course we will demonstrate
induction using lists, while taking the properties
for N as given.

5.2 What is a Proof, Anyway?

But What is a Proof, Anyway?
Xavier Leroy, “How to prove it” http://cristal.

inria.fr/~xleroy/stuff/how-to-prove-it.

html:

Proof by example Prove the case n = 2 and sug-
gests that it contains most of the ideas of the
general proof.

Proof by intimidation ‘Trivial’.

Proof by cumbersome notation Best done with
access to at least four alphabets and special sym-
bols.

Proof by reference to inaccessible literature
a simple corollary of a theorem to be found in
a privately circulated memoir of the Slovenian
Philological Society, 1883.

Proof by personal communication ‘Eight-
dimensional colored cycle stripping is NP-
complete [Karp, personal communication] (in
the elevator).’

Proof by appeal to intuition Cloud-shaped
drawings.

A semantic proof
A map of London is place on the ground of Trafal-

gar Square. There is a point on the map that is di-
rectly above the point on the ground that it repre-
sents. [?, Figure 3.2]

Proof. The map is directly above a part of London. Thus

the entire map is directly above the part of the area which

it represents. Now, the smaller area of the map repre-

senting Central London is also above the part of the area

which it represents. Within the area representing Central

London, Trafalgar Square is marked, and this yet smaller

part of the map is directly above the part it represents.

Continuing this way, we can find smaller and smaller ar-

eas of the map each of which is directly above the part of

the area which it represents. In the limit we reduce the

area on the map to a single point.

Proof of Pythagoras’s Theorem
I B J

E

AC

L D K

a c

b

Let ABC be a triangle with B̂AC = 90o. Let the
lengths of BC, AC, AB be, respectively, a, b, and
c. We wish to prove that a2 = b2 + c2. Construct a
square IJKL, of side b + c, and a square BCDE, of
side a. Clearly, area(IJKL) = (b + c)2. But

area(IJKL) = area(BCDE)+

4 × area(ABC)

= a2 + abc.

That is, (b + c)2 = a2 + 2bc, whence b2 + c2 = a2.

Informal v.s. Formal Proofs

� To read an informal proof, we are expected to
have a good understanding of the problem do-
main, the meaning of the natural language state-
ments, and the language of mathematics.

� A formal proof shifts some of the burdens to the
“form”: the symbols, the syntax, and rules ma-
nipulating them. “Let the symbols do the work!”

9

� Our proof of the swapping program is formal:

{x = A ∧ y = B}

x ∶= x − y; y ∶= x + y; x ∶= y − x

{x = B ∧ y = A}.

Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed
in a cage. Known is that there are 5 heads and 14
legs. Find out the numbers of cranes and tortoises.

� The kindergarten approach: plain simple enu-
meration!

– Crane 0, Tortoise 5 . . . No.

– Crane 1, Tortoise 4 . . . No.

– Crane 2, Tortoise 3 . . . No.

– Crane 3, Tortoise 2 . . . Yes!

– Crane 4, Tortoise 1 . . . No.

– Crane 5, Tortoise 0 . . . No.

� Elementary school: let’s do some reasoning . . .

– If all 5 animals were cranes, there ought to
be 5 × 2 = 10 legs.

– However, there are in fact 14 legs. The ex-
tra 4 legs must belong to some tortoises.
There must be (14 − 10)/2 = 2 tortoises.

– So there must be 5 − 2 = 3 cranes.

� It generalises to larger numbers of heads and
legs.

� Given a different problem, we have to come up
with another different way to solve it.

� Junior high school: algebra!

x + y = 5

2x + 4y = 14.

� It’s a general approach applicable to many other
problems . . .

� . . . and perhaps easier.

� However, it takes efforts to learn!

Formal Proof
Recall our proof

exp b ((1+ m) + n)
= { defn. of (+) }

exp b (1 + (m + n))
= { defn. of exp }

b × exp b (m + n)
= { induction }

b × (exp b m × exp b n)
= { (×) associative }

(b × exp b m) × exp b n
= { defn. of exp }

exp b (m + 1) × exp b n

It has a rather formal taste.

6 Induction on Lists

Lists in OCaml

� Traditionally an important datatype in func-
tional languages.

� In OCaml, all elements in a list must be of the
same type.

[1; 2; 3; 4]; ;
− ∶ int list = [1; 2; 3; 4]

� [true; false; true] has type bool list .

� [[1; 2]; []; [6; 7]] has type int list list .

� [(+); (−); (/)] has type (int → int → int) list .

� [], the empty list, has type ′a list .

List as a Datatype

� [] is the empty list whose element type is not
determined.

� If a list is non-empty, the leftmost element is
called its head and the rest its tail.

� The constructor (∶∶) ∶∶
′a→ ′a list → ′a list builds

a list. E.g. in x ∶∶ xs, x is the head and xs the
tail of the new list.

� You can think of a list as being defined by

type ′a list = [] ∣
′a ∶∶ ′a list

� [1; 2; 3] is an abbreviation of 1 ∶∶ (2 ∶∶ (3 ∶∶ [])).

10

Head and Tail

� The following functions are in module List. You
have to issue a command

� hd ∶
′a list → ′a. e.g. hd [1; 2; 3] = 1.

� tl ∶ ′a list → ′a list . e.g. tl [1; 2; 3] = [2; 3].

� They are both partial functions on non-empty
lists (exceptions are raised when applied to
empty lists).

� length ∶
′a list → int returns the length of a list.

Finite Lists are Inducitvely Defined

� Recall that a (finite) list can be seen as a
datatype defined by: 2

type ′a list = [] ∣
′a ∶∶ ′a list

� Every list is built from the base case [], with
elements added by (∶∶) one by one: [1; 2; 3] = 1 ∶∶
(2 ∶∶ (3 ∶∶ [])).

� The type ′a list is the smallest set such that

1. [] is in ′a list ;

2. if xs is in ′a list and x is in a, x ∶∶ xs is in
′a list as well.

� Compare with the definition of N!

� But what about infinite lists?

– For now let’s consider finite lists only, as
having infinite lists make the semantics
much more complicated.

Inductively Defined Functions on Lists

� Many functions on lists can be defined according
to how a list is defined. Eg. summation:

let rec sum = function
∣ [] → 0
∣ x ∶∶ xs → x + sum xs; ;

val sum ∶ int list → int = ⟨fun⟩

– sum [1; 2; 3; 4; 5] = 15

2Not a real OCaml definition.

� E.g. “mapping” over a list:

let rec map f = function
∣ [] → []

∣ x ∶∶ xs → f x ∶∶ map f xs; ;
val map ∶ (

′a→ ′b) → ′a list → ′b list

– map ((+) 1) [1; 2; 3; 4] = [2; 3; 4; 5]

– map (fun x→ x ∗ 2) [1; 2; 3; 4] = [2; 4; 6; 8]

6.1 Append, and Some of Its Proper-
ties

List Append

� The function (@) appends two lists into one 3

let rec (@) xs ys = match xs with
∣ [] → ys
∣ x ∶∶ xs → x ∶∶ (xs @ ys)

val (@) ∶
′a list → ′a list → ′a list

� Compare the definition with that of (+)!

Proof by Structural Induction on Lists

� Recall that every finite list is built from the base
case [], with elements added by (∶∶) one by one.

� The type ′a list is the smallest set such that

1. [] is in ′a list ;

2. if xs is in ′a list and x is in a, x ∶∶ xs is in
′a list as well.

� To prove that some property P holds for all finite
lists, we show that

1. P [] holds;

2. P (x ∶∶ xs) holds, provided that P xs holds.

Appending is Associative
To prove that xs @(ys @ zs) = (xs @ ys)@ zs. Case

xs ∶= []:

[]@(ys @ zs)
= { defn. of (@) }

ys @ zs
= { defn. of (@) }

([]@ ys)@ zs

3This function has an alias: append .

11

Appending is Associative
Case xs ∶= x ∶∶ xs:

(x ∶∶ xs)@(ys @ zs)
= { defn. of (@) }

x ∶∶ (xs @(ys @ zs))
= { induction }

x ∶∶ ((xs @ ys)@ zs)
= { defn. of (@) }

(x ∶∶ (xs @ ys))@ zs
= { defn. of (@) }

((x ∶∶ xs)@ ys)@ zs

Length

� The function length can be defined inductively:

let rec length = function
∣ [] → 0
∣ x ∶∶ xs → 1 + length xs

val length ∶
′a list → int

� Exercise: prove that length distributes into (@):

length (xs @ ys) = length xs + length ys

Concatenation

� While (@) repeatedly applies (∶∶), the function
concat repeatedly calls (@):

let rec concat = function
∣ [] → []

∣ xs ∶∶ xss → xs @ concat xss
val concat ∶ ′a list list → ′a list

� Compare with sum.

� Exercise: prove sum ≪ concat = sum ≪

map sum.

Why Functional Programming?

� Back to the question: why functional program-
ming? Why removing useful features (assign-
ment, concurrency, IO. . .)?

� By doing so, the functions possess richer mathe-
matical properties we can exploit.

– Contrast: in C we cannot even be sure that
f(1) + f(1) = 2 ∗ f(1).

� We can prove properties about functions. The
properties can be used to optimise programs.

� These properties even help to construct pro-
grams, which will be the subject of another
course.

6.2 More Inductively Defined Func-
tions

Definition by Induction/Recursion

� Rather than giving commands, in functional pro-
gramming we specify values; instead of perform-
ing repeated actions, we define values on induc-
tively defined structures.

� Thus induction (or in general, recursion) is the
only “control structure” we have. (We do iden-
tify and abstract over plenty of patterns of re-
cursion, though.)

� Note Terminology: an inductive definition, as
we have seen, define “bigger” things in terms of
“smaller” things. Recursion, on the other hand,
is a more general term, meaning “to define one
entity in terms of itself.”

� To inductively define a function f on lists, we
specify a value for the base case (f []) and, as-
suming that f xs has been computed, consider
how to construct f (x ∶∶ xs) out of f xs.

Filter

� filter p xs keeps only those elements in xs that
satisfy p.

let rec filter p = function
∣ [] → []

∣ x ∶∶ xs → if px then x ∶∶ filter p xs
else filter p xs

val filter ∶ (
′a→ bool) → ′a list → ′a list

Take and Drop

� Recall take and drop, which we used in the pre-
vious exercise.

let rec take n xs = match n, xs with
∣ 0, → []

∣ (1+ n), [] → []

∣ (1+ n), (x ∶∶ xs) → x ∶∶ take n xs
val take ∶ int → ′a list → ′a list

12

let rec drop n xs = match n, xs with
∣ 0, xs → xs
∣ (1+ n), [] → []

∣ (1+ n), (x ∶∶ xs) → drop n xs
val drop ∶ int → ′a list → ′a list

� Prove: take n xs @ drop n xs = xs, for all n and
xs.

TakeWhile and DropWhile

� takeWhile p xs yields the longest prefix of xs such
that p holds for each element.

let rec takeWhile p = function
∣ [] → []

∣ x ∶∶ xs → if p x then x ∶∶ takeWhile p xs
else []; ;

val takeWhile ∶ (
′a→ bool) → ′a list → ′a list

� dropWhile p xs drops the prefix from xs.

let rec dropWhile p = function
∣ [] → []

∣ x ∶∶ xs → if p x then dropWhile p xs
else x ∶∶ xs; ;

val dropWhile ∶ (
′a→ bool) → ′a list → ′a list

� Prove: takeWhile p xs @ dropWhile p xs = xs.

List Reversal

� reverse [1; 2; 3; 4] = [4; 3; 2; 1].

let rec reverse = function
∣ [] → []

∣ x ∶∶ xs → reverse xs @[x]; ;
val reverse ∶

′a list → ′a list

All Prefixes and Suffixes

� Can you define these functions? Both inits and
tails have type ′a list → ′a list list .

� inits [1; 2; 3] = [[]; [1]; [1; 2]; [1; 2; 3]]

� tails [1; 2; 3] = [[1; 2; 3]; [2; 3]; [3]; []]

Totality

� Structure of our definitions so far:

let rec f = function
∣ [] → . . .
∣ x ∶∶ xs → . . . f xs . . .

– Both the empty and the non-empty cases
are covered, guaranteeing there is a match-
ing clause for all inputs.

– The recursive call is made on a “smaller”
argument, guranteeing termination.

� Together they guarantee that every input is
mapped to some output. Thus they define to-
tal functions on lists.

6.3 Other Patterns of Induction

Variations with the Base Case

� Some functions discriminate between several
base cases. E.g.

let rec fib = function
∣ 0→ 0
∣ 1→ 1
∣ n→ fib (n − 1) + fib (n − 2)

� Some functions make more sense when it is de-
fined only on non-empty lists:

let rec f = function
∣ [x] → . . . x . . .
∣ x ∶∶ xs → . . . f xs . . .

� What about totality?

– They can be seen as functions defined on a
different datatype:

type ′a list+ = [a] ∣ a ∶∶ ′a list+

– We do not want to define map, filter again
for ′a list+. Thus we reuse ′a list and pre-
tend that we were talking about ′a list+.

– It’s the same with N. We embedded N into
Int .

– Ideally we’d like to have some form of sub-
typing. But that makes the type system
more complex.

13

Lexicographic Induction

� It also occurs often that we perform lexicographic
induction on multiple arguments: some argu-
ments decrease in size, while others stay the
same.

� E.g. the function merge merges two sorted lists
into one sorted list:

let rec merge xs ys = match xs, ys with
∣ [], [] → []

∣ [], y ∶∶ ys → y ∶∶ ys
∣ x ∶∶ xs, [] → x ∶∶ xs
∣ x ∶∶ xs, y ∶∶ ys → if x ≤ y

then x ∶∶ merge xs (y ∶∶ ys)
else y ∶∶ merge (x ∶∶ xs) ys

Non-Structural Induction

� In most of the programs we’ve seen so far, the
recursive call are made on direct sub-components
of the input (e.g. f (x ∶∶ xs) = ..f xs..). This is
called structural induction.

– It is relatively easy for compilers to recog-
nise structural induction and determine
that a program terminates.

� In fact, we can be sure that a program terminates
if the arguments get “smaller” under some (well-
founded) ordering.

Mergesort

� In the implemenation of mergesort below, for ex-
ample, the arguments always get smaller in size.

let rec msort = function
[] → []

[x] → [x]
xs → let n = length xs / 2 in

let ys = take n xs in
let zs = drop n xs in
merge (msort ys) (msort zs)

– What if we omit the case for [x]?

� If all cases are covered, and all recursive calls
are applied to smaller arguments, the program
defines a total function.

A Non-Terminating Definition

� Example of a function, where the argument to
the recursive does not reduce in size:

let rec f = function
∣ 0→ 0
∣ n→ f n

� Certainly f is not a total function. Do such def-
initions “mean” something? We will talk about
these later.

Summary

� Types may guide you through the design of a
program.

– Define a datatype inductively.

– Define functions by following the structure
of the type being processed

– Construct proofs by following the structure
of the functions whose properties we are
concerned with.

� Equational reasoning: let the symbols do the
work!

Part III

Simple Functional
Data Structures

7 On Efficiency of Operations
on Lists

Constant-Time v.s. Linear-Time Operations

� So far we have (surprisingly) been talking about
mathematics without much concern regarding ef-
ficiency. Time for a change.

� Our representation of lists is biased: (∶∶), hd , and
tl are constant-time operations, while init and
last takes linear-time.

let rec init = function
∣ [x] → []

∣ x ∶∶ xs → x ∶∶ init xs

14

� Consider init [1; 2; 3; 4]:

init (1 ∶∶ 2 ∶∶ 3 ∶∶ 4 ∶∶ [])
= 1 ∶∶ init (2 ∶∶ 3 ∶∶ 4 ∶∶ [])
= 1 ∶∶ 2 ∶∶ init (3 ∶∶ 4 ∶∶ [])
= 1 ∶∶ 2 ∶∶ 3 ∶∶ init (4 ∶∶ [])
= 1 ∶∶ 2 ∶∶ 3 ∶∶ []

List Concatenation Takes Linear Time

� Recall (@):

let rec (@) xs ys = match xs with
∣ [] → ys
∣ x ∶∶ xs → x ∶∶ (xs @ ys)

val (@) ∶
′a list → ′a list → ′a list

� Consider [1; 2; 3]@[4; 5]:

(1 ∶∶ 2 ∶∶ 3 ∶∶ [])@(4 ∶∶ 5 ∶∶ [])
= 1 ∶∶ ((2 ∶∶ 3 ∶∶ [])@(4 ∶∶ 5 ∶∶ []))
= 1 ∶∶ 2 ∶∶ ((3 ∶∶ [])@(4 ∶∶ 5 ∶∶ []))
= 1 ∶∶ 2 ∶∶ 3 ∶∶ ([]@(4 ∶∶ 5 ∶∶ []))
= 1 ∶∶ 2 ∶∶ 3 ∶∶ 4 ∶∶ 5 ∶∶ []

� (@) runs in time proportional to the length of
its left argument.

Sum, Map, etc

� Functions like sum, maximum, etc. needs to tra-
verse through the list once to produce a result.
So their running time is definitely at least O(n),
where n is the length of the list.

� If f takes time O(t), map f takes time O(n × t)
to complete. Similarly with filter p.

– In a lazy setting, map f produces its first
result in O(t) time. We won’t talk about
lazy features for now, however.

Reversing a List

� The function reverse was defined by:

let rec reverse = function
∣ [] → []

∣ x ∶∶ xs → reverse xs @[x]; ;
val reverse ∶

′a list → ′a list

� E.g. reverse [1; 2; 3; 4] =

((([]@[4])@[3])@[2])@[1] = [4; 3; 2; 1].

� But how about its time complexity? Since (@)

is O(n), it takes O(n2) time to revert a list this
way.

� Can we make it faster? Yes, there is a linear
time implementation of reverse, which will be
the subject of the next part. For now, assume
that reverse is linear.

8 Batched Queue

Persistency

� In the world of a functional language, like that of
mathematics, values are persistent — you have
access to all “previous versions” of a value.

let x = [1; 2; 3; 4] in
let x′ = reverse x in
let x′′ = tl x′ . . .

Persistency v.s. Efficiency

� Arrays, when implemented as a consecutive
chunk of memory, allows constant time access
to an arbitrary element.

� Such implementation is costly in a world with
persistent values:

let x = [1; 2; 3; 4] in
let x′ = set x 0 2 in
let x′′ = set x 0 3 . . .

– After each assignment do we have to copy
the entire array?

� We thus need some smarter implementations of
arrays — and other aggregate data.

� Still, we often end up having to pay a O(logn)
penalty for persistency.

� Nevertheless, people have developed some smart
data structures for more specific usages.

FILO Queues

� How do you implement a first-in-last-out queue?

� If we represent a queue by a list:

type ′a queue =
′a list

let head xs = hd xs
let tail xs = tl xs
let snoc xs y = xs @[y]

� The operation snoc takes O(n) time.

15

Representing a Queue by Two Lists

� Idea: let ([1; 2], [5; 4; 3]) represent the queue
[1; 2; 3; 4; 5].

� Invariant: the left list is never empty, unless both
lists are.

([1; 2], [5; 4; 3])
Ð→ { remove 1 }

([2], [5; 4; 3])
Ð→ { add 6 }

([2], [6; 5; 4; 3])
Ð→ { remove 2 }

([], [6; 5; 4; 3])
Ð→ { shifting elements }

([3; 4; 5; 6], [])
Ð→ { remove 3 }

([4; 5; 6], [])

Amortized Constant Time

� Removal and addition are constant time opera-
tions.

� Shifting is linear in the worst case, but it cannot
happen all the time!

� Each element can be shifted from right to left at
most once. Thus the linear cost of one shift can
be distributed to each addition.

� We say that shift is an amortized-constant time
operation.

FILO Queue: Methods

� Define type ′a queue =
′a list ∗ ′a list .

� Goal: define the following methods:

– empty ∶
′a queue

– is empty ∶
′a queue → bool

– head ∶
′a queue → ′a

– tail ∶
′a queue → ′a queue

– snoc ∶
′a queue → ′a→ ′a queue

Empty Queue

type ′a queue =
′a list ∗ ′a list

let empty = ([], [])

let is empty = function
∣ [], → true
∣ → false

Extracting Elements

let head = function
∣ x ∶∶ xs, ys → x

let tail = function
∣ x ∶∶ xs, ys → shift (xs, ys)

Shifting and Adding Elements

let shift = function
∣ [], ys → (rev ys, [])
∣ q → q

let snoc (xs, ys) y = shift (xs, y ∶∶ ys)

9 Binary Search Tree

Binary Tree

� There are many variations of binary trees — in-
ternally labelled, externally labelled . . .

� Here we will talk about one particular instance:

type ′a tree = Empty
∣ Node of ′a tree ∗ ′a ∗ ′a tree

� Example:

Node (Node (Empty ,1,Empty),
2,
Node (Node (Empty ,3,Empty),

4,
Empty))

16

Inductively Defined Functions on Trees

� Height of a tree:

let rec height = function
∣ Empty → 0
∣ Node (t, , u) →

1 +max (height t) (height u)

� Size of a tree:

let rec size = function
∣ Empty → 0
∣ Node (t, , u) → 1 + size t + size u

Inductively Defined Functions on Trees

� Elements of a tree:

let rec flatten = function
∣ Empty → []

∣ Node (t, x, u) →
flatten t@[x]@ flatten u

� It’s inorder traversal. Can you define preorder
and postorder traversals?

� All these functions look similar. Is there a more
general definition that covers them all?

Binary Search Tree

� A binary tree with the invariant: in every
Node (t, x, u), all elements in t are smaller than
x, and all elements in u are greater than x.

� Define the following methods:

– member ∶ ′a→ ′a tree → bool

– insert ∶ ′a→ ′a tree → ′a tree

Membership

let rec member x = function
∣ Empty → false
∣ Node (t, y, u) →

if x < y then member x t
else if y < x then member x u
else true

Insertion

� Inserting an element into a tree:

let rec insert x = function
∣ Empty → Node (Empty , x,Empty)
∣ Node (t, y, u) as s→

if x < y then Node (insert x t, y, u)
else if y > x then Node (t, y, insert x u)
else s

� The inserted tree is not balanced. Thus member
and insert are both O(n) in the worst case.

� One could go for more advanced tree-like data
structure for better complexity. There are plenty
of them: red-black trees, 2-3 trees . . .

� There has been a whole book about functional
data structures! [?]

Summary

� Values in functional languages are persistent.
For that we lose some efficiency.

� In most cases, we still gain reasonable efficiency
by carefully designed data structures.

� Data structure works under assumptions that
certain invariants hold. These invariants are usu-
ally implicit in their definitions, and need to be
proved separately.

Part IV

Program Calculation
Verification v.s. Derivation

� Verification: given a program, prove that it is
correct with respect to some specification.

� Derivation: start from the specification, and at-
tempt to construct only correct programs!

Dijkstra: “to prove the correctness of a
given program, was in a sense putting the
cart before the horse. A much more promis-
ing approach turned out to be letting cor-
rectness proof and program grow hand in
hand: with the choice of the structure of
the correctness proof one designs a program
for which this proof is applicable.”[?]

17

“The only effective way to raise the con-
fidence level of a program significantly is
to give a convincing proof of its correct-
ness. But one should not first make the
program and then prove its correctness, be-
cause then the requirement of providing the
proof would only increase the poor program-
mer’s burden. On the contrary: the pro-
grammer should let correctness proof and
program grow hand in hand.” [?]

� What happened so far is that theoretical devel-
opment of one side benefits the other.

� We focus on verification today, and talk about
derivation tomorrow.

Program Derivation

� Wikipedia: program derivation is the derivation
of a program from its specification, by mathe-
matical means.

� To write a formal specification (which could be
non-executable), and then apply mathematically
correct rules in order to obtain an executable
program.

� The program thus obtained is correct by con-
struction.

A Typical Functional Program Derivation

max { sum (i, j) ∣ 0 ≤ i ≤ j ≤ N }

= { Premise 1 }
max ≪ map sum ≪ concat ≪ map inits ≪ tails

= { Premise 2 }
. . .

= { . . . }
The final program!

10 The Unfold/Fold Transfor-
mation

Sum and Map

� Recall: the function sum adds up the numbers
in a list:

let rec sum = function
∣ [] → 0
∣ x ∶∶ xs → x + sum xs; ;

– E.g. sum [7; 9; 11] = 27.

� The function map f takes a list and builds a new
list by applying f to every item in the input:

let rec map f = function
∣ [] → []

∣ x ∶∶ xs → f x ∶∶ map f xs; ;
val map ∶ (

′a→ ′b) → ′a list → ′b list

– E.g. map square [3; 4; 6] = [9; 16; 36].

10.1 Example: Sum of Squares

Sum of Squares

� Given a sequence a1,a2,. . . ,an, compute a21+a
2
2+

. . . + a2n. Specification: let sumsq = sum ≪

map square.

� The spec. builds an intermediate list. Can we
eliminate it?

� The input is either empty or not. When it is
empty:

sumsq []

= { definition of sumsq }
(sum≪map square) []

= { function composition }
sum (map square [])

= { definition of map }
sum []

= { definition of sum }
0

Sum of Squares, the Inductive Case

� Consider the case when the input is not empty:

sumsq (x ∶∶ xs)
= { definition of sumsq }
sum (map square (x ∶∶ xs))

= { definition of map }
sum (square x ∶∶map square xs)

= { definition of sum }
square x + sum (map square xs)

= { definition of sumsq }
square x + sumsq xs

18

An Alternative Definition for sumsq

� From sumsq = sum ≪ map square, we have
proved that

let sumsq = function
∣ [] → 0
∣ x ∶∶ xs → square x + sumsq xs

� Equivalently, we have shown that sum ≪

map square is a solution of

f [] = 0
f (x ∶∶ xs) = square x + f xs

� However, the solution of the equations above is
unique.

� Thus we can take it as another definition of
sumsq . Denotationally it is the same function;
operationally, it is (slightly) quicker.

Unfold/Fold Transformation

� Perhaps the most intuitive, yet still handy, style
of functional program derivation.

� Keep unfolding the definition of functions, ap-
ply necessary rules, and finally fold the definition
back.

� It works under the assumption that a function
satisfying the derived equations is the function
defined by the equations.

� Do not confuse “fold” and “unfold” with foldr
and unfoldr , which are important operations on
datatypes and unfortunately cannot be covered
in this course.

11 Accumulating Parameters

Reversing a List

� The function reverse was defined by:

let rec reverse = function
∣ [] → []

∣ x ∶∶ xs → reverse xs @[x]; ;
val reverse ∶

′a list → ′a list

� E.g. reverse [1; 2; 3; 4] =

((([]@[4])@[3])@[2])@[1] = [4; 3; 2; 1].

� But how about its time complexity? Since (@)

is O(n), it takes O(n2) time to revert a list this
way.

� Can we make it faster?

11.1 Fast List Reversal

Introducing an Accumulating Parameter

� Let us consider a generalisation of reverse. De-
fine:

let revcat xs ys = reverse xs @ ys
val revcat ∶

′a list → ′a list → ′a list

� If we can construct a fast implementation of
revcat , we can implement reverse by:

let reverse xs = revcat xs []

Reversing a List, Base Case
Let us use our old trick. Consider the case when

xs is []:

revcat [] ys
= { definition of revcat }

reverse []@ ys
= { definition of reverse }

[]@ ys
= { definition of (@) }

ys.

Reversing a List, Inductive Case
Case x ∶∶ xs:

revcat (x ∶∶ xs) ys
= { definition of revcat }

reverse (x ∶∶ xs)@ ys
= { definition of reverse }

(reverse xs @[x])@ ys
= { since (xs @ ys)@ zs = xs @(ys @ zs) }

reverse xs @([x]@ ys)
= { definition of revcat }

revcat xs (x ∶∶ ys).

Linear-Time List Reversal

� We have therefore constructed an implementa-
tion of revcat which runs in linear time!

let rec revcat xs ys = match xs with
∣ [] → ys
∣ x ∶∶ xs → revcat xs (x ∶∶ ys)

19

� A generalisation of reverse is easier to implement
than reverse itself? How come?

� If you try to understand revcat operationally, it
is not difficult to see how it works.

– The partially reverted list is accumulated in
ys.

– The initial value of ys is set by reverse xs =
revcat xs [].

– Hmm... it is like a loop, isn’t it?

11.2 Tail Recursion and Loops

Tracing Reverse

reverse [1; 2; 3; 4]
= revcat [1; 2; 3; 4] []

= revcat [2; 3,4] [1]
= revcat [3; 4] [2; 1]
= revcat [4] [3; 2; 1]
= revcat [] [4; 3; 2; 1]
= [4; 3; 2; 1]

let reverse xs = revcat xs []

let rec revcat xs ys = match xs with
∣ [] → ys
∣ x ∶∶ xs → revcat xs (x ∶∶ ys)

xs, ys ← XS , [];
while xs /= [] do

xs, ys ← (tl xs), (hd xs ∶∶ ys);
return ys

Tail Recursion

� Tail recursion: a special case of recursion in
which the last operation is the recursive call.

f x1 . . . xn = {base case}
f x1 . . . xn = f x′1 . . . x′n

� To implement general recursion, we need to keep
a stack of return addresses. For tail recursion, we
do not need such a stack.

� Tail recursive definitions are like loops. Each xi
is updated to x′i in the next iteration of the loop.

� The first call to f sets up the initial values of
each xi.

Accumulating Parameters

� To efficiently perform a computation (e.g.
reverse xs), we introduce a generalisation with
an extra parameter, e.g.:

revcat xs ys = reverse xs @ ys.

� Try to derive an efficient implementation of the
generalised function. The extra parameter is
usually used to “accumulate” some results, hence
the name.

– To make the accumulation work, we usually
need some kind of associativity.

� A technique useful for, but not limited to, con-
structing tail-recursive definition of functions.

Accumulating Parameter: Another Exam-
ple

� Recall the “sum of squares” problem:

let sumsq = function
∣ [] → 0
∣ x ∶∶ xs → square x + sumsq xs

� The program still takes linear space (for the
stack of return addresses). Let us construct a
tail recursive auxiliary function.

� Introduce let ssp xs n = sumsq xs + n.

� Initialisation: let sumsq xs = ssp xs 0.

� Construct ssp:

ssp [] n = 0 + n = n
ssp (x ∶∶ xs) n = (square x + sumsq xs) + n

= sumsq xs + (square x + n)
= ssp xs (square x + n).

11.3 Being Quicker by Doing More!

Being Quicker by Doing More?

� A more generalised program can be implemented
more efficiently?

– A common phenomena! Sometimes the less
general function cannot be implemented in-
ductively at all!

– It also often happens that a theorem needs
to be generalised to be proved. We will see
that later.

20

� An obvious question: how do we know what gen-
eralisation to pick?

� There is no easy answer — finding the right gen-
eralisation one of the most difficulty act in pro-
gramming!

� For the past few examples, we choose the gener-
alisation to exploit associativity.

� Sometimes we simply generalise by examining
the form of the formula.

Combine, or Zip

� A useful function, called zip in Haskell:

let rec combine xs ys = match xs, ys with
∣ [], [] → []

∣ x ∶∶ xs, y ∶∶ ys → (x, y) ∶∶ combine xs ys
val combine ∶

′a list → ′b list → (
′a ∗ ′b) list

� E.g. combine [1; 3; 5] [’a’;’b’;’c’] =

[(1,’a’); (3,’b’); (5;’c’)].

Range Generation

� Generating a range:

let fromTo m n = if m ≥ n then []

else m ∶∶ fromTo (m + 1) n

� E.g. fromTo 3 6 = [3; 4; 5].

� E.g. fromTo 6 6 = [].

Labelling a List

� Consider the task of labelling elements in a list
with its index.

let index xs = combine (fromTo 0 (length xs)) xs
val index ∶

′a list → (int ∗ ′a) list

� E.g. index [’a’;’b’;’c’] =

[(0,’a’); (1,’b’); (2;’c’)].

Labelling a List, Inductive Case

�

� To construct an inductive definition, the case for
[] is easy. For the x ∶∶ xs case:

index (x ∶∶ xs)
= combine (fromTo 0 (length (x ∶∶ xs))) (x ∶∶ xs)
= combine (fromTo 0 (1 + length xs)) (x ∶∶ xs)
= combine (0 ∶∶ fromTo 1 (length xs)) (x ∶∶ xs)
= (0, x) ∶ combine (fromTo 1 (length xs)) xs

� Alas, the last line cannot be folded back to index !

� What if we turn the varying part into. . . a vari-
able?

Labelling a List, Second Attempt

� Generalise index :

let idxFrom xs n =

combine (fromTo n (n + length xs)) xs

� Initialisation: let index xs = idxFrom xs 0.

� We reason:

idxFrom (x ∶∶ xs) n
= combine (fromTo n (n + len (x ∶∶ xs))) (x ∶∶ xs)
= combine (fromTo n (1 + n + len xs)) (x ∶∶ xs)
= combine (n ∶∶ fromTo (1 + n) (1 + n + len xs)) (x ∶∶ xs)
= (n,x) ∶ combine (fromTo (1 + n) (len xs)) xs
= (n,x) ∶ idxFrom xs (1 + n)

Labelling a List, Second Attempt

let index xs = idxFrom xs 0

let idxFrom xs n = match xs with
∣ [] → []

∣ x ∶∶ xs → (n,x) ∶ idxFrom xs (1 + n)

11.4 Proof by Strengthening

Summing Up a List in Reverse

� Prove: sum ≪ reverse = sum, using the defini-
tion reverse xs = revcat xs []. That is, proving
sum (revcat xs []) = sum xs.

� Base case trivial. For the case x ∶∶ xs:

sum (reverse (x ∶∶ xs))
= sum (revcat (x ∶∶ xs) [])

= sum (revcat xs [x])

� Then we are stuck, since we cannot use the in-
duction hypothesis sum (revcat xs []) = sum xs.

� Again, generalise [x] to a variable.

21

Summing Up a List in Reverse, Second At-
tempt

� Second attempt: prove a lemma:

sum (revcat xs ys) = sum xs + sum ys

� By letting ys = [] we get the previous property.

� For the case x ∶∶ xs we reason:

sum (revcat (x ∶∶ xs) ys)
= sum (revcat xs (x ∶∶ ys))
= { induction hypothesis }

sum xs + sum (x ∶∶ ys)
= sum xs + x + sum ys
= sum (x ∶ xs) + sum ys

Work Less by Proving More

� A stronger theorem is easier to prove! Why is
that?

� By strengthening the theorem, we also have a
stronger induction hypothesis, which makes an
inductive proof possible.

– Finding the right generalisation is an art
— it’s got to be strong enough to help the
proof, yet not too strong to be provable.

� The same with programming. By generalising a
function with additional arguments, it is passed
more information it may use, thus making an
inductive definition possible.

– The speeding up of revcat , in retrospect, is
an accidental “side effect” — revcat , being
inductive, goes through the list only once,
and is therefore quicker.

A Real Case

� A property I actually had to prove for a paper:

(∀n ∶ . . . ∶ take nx ≤d drop nx)
⇒ maximum (map ((@)z) (inits x))

= z ↑d (z@x)

� It took me quite a while to construct the right
generalisation:

(∀n ∶ . . . ∶ y@ take nx ≤d drop nx)
⇒ z ↑d maximum (map ((@)(z@ y)) (inits x))

= z ↑d (z@ y@x)

� In another case I spent a week on the right gen-
eralisation. Once the right property is found, the
actual proof was done in about 20 minutes.

� “Someone once described research as ‘finding out
something to find out, then finding it out’; the
first part is often harder than the second.”

Remark

� The sum ≪ reverse example is superficial — the
same property is much easier to prove using the
O(n2)-time definition of reverse.

� That’s one of the reason we defer the discussion
about efficiency — to prove properties of a func-
tion we sometimes prefer to roll back to a slower
version.

12 Tupling

Steep Lists

� A steep list is a list in which every element is
larger than the sum of those to its right:

let rec steep = function
∣ [] → true
∣ x ∶∶ xs → steep xs && x > sum xs

val steep ∶ int list → bool

� The definition above, if executed directly, is an
O(n2) program. Can we do better?

� Just now we learned to construct a generalised
function which takes more input. This time, we
try the dual technique: to construct a function
returning more results.

Generalise by Returning More

� Recall that fst (a, b) = a and snd (a, b) = b.

� It is hard to quickly compute steep alone. But if
we define

let steepsum xs = (steep xs, sum xs)

� and manage to synthesise a quick definition of
steepsum, we can implement steep by steep =

fst ≪ steepsum.

� We again proceed by case analysis. Trivially,

steepsum [] = (true,0).

22

Deriving for the Non-Empty Case

For the case for non-empty inputs:

steepsum (x ∶∶ xs)
= { definition of steepsum }

(steep (x ∶∶ xs), sum (x ∶∶ xs))
= { definitions of steep and sum }

(steep xs && x > sum xs, x + sum xs)
= { extracting sub-expressions involving xs }

match steep xs, sum xs with
∣ b, y → (b&& x > y, x + y)

= { definition of steepsum }
match steepsum xs with

∣ b, y → (b&& x > y, x + y)

Synthesised Program

� We have thus come up with a O(n) time pro-
gram:

let steep = fst ≪ steepsum
let steepsum = function

∣ [] → (true,0)
∣ x ∶∶ xs →match steepsum xs with

∣ b, y → (b&& x > y, x + y)

� Again we observe the phenomena that a more
general function is easier to implement.

How Far Can We Go?

� We will show in Appendix ?? the entire deriva-
tion of the maximum segment sum problem.

� Bird and de Moor [?] conducted a though study
of optimisation problems — when there is a
greedy algorithm, when it can be solved by dy-
namic programming, etc.

� Through calculations, we sometimes discover
new algorithms, or variations/improvements of
existing algorithms.

� Certainly, not all problems can be solved by cal-
culation. When they do, we gain better under-
standing of their natures.

� More case studies of program calculation are still
being published in “Functional Pearl” section of
ICFP and Journal of Functional Programming.

Summary

� A program and its correctness proof can be, and
should be developed together.

� Program calculation is one such methodology.
From a specification, we stepwise calculate an
algorithm by (in)equational reasoning.

References

[Bac03] Roland C. Backhouse. Program Construc-
tion: Calculating Implementations from
Specifications. John Wiley & Sons, Ltd.,
2003.

[BdM97] Richard S. Bird and Oege de Moor. Alge-
bra of Programming. International Series
in Computer Science. Prentice Hall, 1997.

[Bir98] Richard S. Bird. Introduction to Functional
Programming using Haskell. Prentice Hall,
1998.

[CM98] Guy Cousineau and Michel Mauny. The
Functional Approach to Programming.
Cambridge University Press, 1998.

[CMP05] Emmanuel Chailloux, Pascal Manoury, and
Bruno Pagano. Developing Applications
with Objective Caml. O’Reilly, 2005.

[Dij72] Edsger W. Dijkstra. The humble pro-
grammer. Communications of the ACM,
15(10):859–866, 1972. EWD 340, Turing
Award lecture.

[Dij74] Edsger W. Dijkstra. Programming as a
discipline of mathematical nature. Ameri-
can Mathematical Monthly, 81(6):608–612,
May 1974. EWD 361.

[Hut07] Graham Hutton. Programming in Haskell.
Cambridge University Press, 2007.

[Oka99] Chris Okasaki. Purely Functional Data
Structures. Cambridge University Press,
1999.

[OSG98] Bryan O’Sullivan, Don Stewart, and John
Goerzen. Real World Haskell. O’Reilly,
1998.

23

A Fixty, Associativity, and
Precedences

In OCaml, whether an operator is infix or prefix, in-
fix operator associativity (left or right) and opera-
tor precedences (which of + and ∗ is stronger?) are
syntactically determined by the first character of the
operator.

! ∼ ? prefix
= < > ∣ & $ infix0, left
@ ∧ infix1, right
+ − infix2, left
∗ / infix3, left

The operator ∗∗ is exceptional. It is right associative
and has power 4.

B Maximum Segment Sum

In this appendix we will denote ≪ by (⋅), as is
more common in this community. We also abbre-
viate fun xs → x ∶∶ xs to (x ∶∶).4 To save space, the
maximum of OCaml is written max , while OCaml’s
max is written ↑ infixed.

The maximum segment sum problem (mss) can be
specified by

let mss = max ⋅map sum ⋅ segments,

where segments = concat ⋅ map inits ⋅ tails. That is,
the specification enumerates all segments of the input
list, computes the sum of each of the segment, and
pick the maximum. Also recall the definitions of inits
and tails (not init and tail !):

let rec inits = function
∣ [] → [[]]

∣ x ∶∶ xs → [] ∶∶ map (x ∶∶) (inits xs),

let rec tails = function
∣ [] → [[]]

∣ x ∶∶ xs → (x ∶∶ xs) ∶∶ tails xs,

and let max be defined on non-empty lists:

let rec max = function
∣ [x] → x
∣ x ∶∶ xs → x ↑ max xs,

where ↑ returns the larger of its two arguments.

4Thus makes the notation more like Haskell.

We start with considering a simpler problem: given
a list, compute the maximum sum among its prefixes.
Denote this problem by mps (maximum prefix sum):

mps = max ⋅map sum ⋅ inits.

Can we come up with an inductive definition of mps?
Yes, you can already do that using what you have
learned. The base case for [] is easy. For the induc-
tive case:

mps (x ∶∶ xs)
= max (map sum (inits (x ∶∶ xs)))
= max (map sum ([] ∶∶ map (x ∶∶) (inits xs)))
= max (0 ∶∶ map sum (map (x ∶∶) (inits xs)))
= { map f ⋅map g = map (f ⋅ g) }

max (0 ∶∶ map (sum ⋅ (x ∶∶)) (inits xs))
= { sum (x ∶ ys) = x + sum ys }

max (0 ∶∶ map ((x+) ⋅ sum) (inits xs))
= { defn. of max }

0 ↑ max (map ((x+) ⋅ sum) (inits xs))
= { max (map (x+) ys) = x +max ys }

0 ↑ (x +max (map sum (inits xs)))
= 0 ↑ (x +mps xs)

Thus we have an inductive definition for mps:

let rec mps = function
∣ [] → 0
∣ x ∶∶ xs → 0 ↑ (x +mps xs),

which runs in linear time. The key step is the one us-
ing the lemma that max (map (x+) ys) = x+max ys.
It needs a separate proof using the fact:

(x + y) ↑ (x + z) = x + (y ↑ z),

that is, addition distributes over maximum. This is
the key property that makes an efficient implementa-
tion of mps (and thus mss) possible.

How is mps related to mss? In fact, solutions
of many segment problems start with factoring the
problem into the form computing “optimal prefix for
each suffix”. Here is how it works for mss:

max ⋅map sum ⋅ segments
= max ⋅map sum ⋅ concat ⋅map inits ⋅ tails
= { map sum ⋅ concat = concat ⋅map (map sum) }

max ⋅ concat ⋅map (map sum) ⋅map inits ⋅ tails
= { max ⋅ concat = max ⋅map max }

max ⋅map max ⋅
map (map sum) ⋅map inits ⋅ tails

= { map f ⋅map g = map (f ⋅ g) }
max ⋅map (max ⋅map sum ⋅ inits) ⋅ tails.

24

Thus we have

mss = max ⋅map mps ⋅ tails.

To compute the best segment-sum, we compute the
best prefix-sum for each suffix.

Since mps runs in linear time, the definition of mss
above still runs in O(n2) time. However, there is a
useful “scan lemma” saying that map f ⋅ tails can be
compute efficiently, if f has the form:

let rec f = function
∣ [] → e
∣ x ∶∶ xs → g x (f xs)

(that is, if f is an instance of a foldr right , an im-
portant concept we unfortunately cannot cover yet).
The function mps fits the pattern if we let e = 0 and
g x y = 0 ↑ (x + y).

Let scan = map f ⋅ tails. To derive the scan lemma
we will need a property that

hd (tails xs) = xs,

whose proof is easy. We try to construct an inductive
definition of scan. The base case scan [] = [e] is easy.
For the inductive case:

scan (x ∶∶ xs)
= map f (tails (x ∶∶ xs)
= map f ((x ∶∶ xs) ∶∶ tails xs)
= f (x ∶ xs) ∶∶ map f (tails xs)
= g x (f xs) ∶∶ map f (tails xs)
= { xs = hd (tails xs), thus

f xs = hd (map f (tails xs)) }

let ys = map f (tails xs)
in g x (hd ys) ∶∶ ys

= let ys = scan xs
in g x (hd ys) ∶∶ ys.

Thus we have shown that

mss = max ⋅ scan,

where scan is given by

let rec scan = function
∣ [] → [0]
∣ x ∶∶ xs → let ys = scan xs in

0 ↑ (x + hd ys) ∶ ys.

You may compare that with the imperative algorithm
you may know.

25

C OCaml Cheatsheet

Adapted from David Matuszek, A Concise Introduction to Objective Caml.
http://www.csc.villanova.edu/~dmatusze/resources/ocaml/ocaml.html

Primitive types

There are several primitive types in OCaml; the following table gives the most important ones.

Primitive type Examples Notes
int 42, -17, 0x00FF, 0o77, 0b1101 - is used for unary minus; there is no unary +.

0x or 0X starts a hexadecimal number; 0o or
0O starts an octal number; and 0b or 0B starts
a binary number

float 0.0, -5.3, 1.7e14, 1.7e+14, 1e-10 Can’t start with a decimal point
bool true, false These are the only bool values.
string "", "One\nTwo" "\n" is newline, "\t" is tab, "\\" is

backslash

char ’a’, ’\n’ Single quotes for chars, double quotes for
strings.

unit () This is a value. It is the only value of its type,
and is often used when the value isn’t impor-
tant (much like void in C).

There are three families of constructed types in OCaml: lists, tuples, and functions.

Standard bool operators

Function Examples Notes
not : bool -> bool �not true, not (i = j) (Prefix) Unary negation.
&& : bool * bool -> bool (i = j) && (j = k) (Infix, left associative) Conjunc-

tion, with short-circuit evalua-
tion.

|| : bool * bool -> bool (i = j) || (j = k) (Infix, left associative) Disjunc-
tion, with short-circuit evalua-
tion.

Standard arithmetic operators on integers

Function Examples Notes
- : int -> int -5, -limit (Prefix) Unary negation.
* : int * int -> int 2 * limit (Infix, left associative) Multiplication;

operands and result are all ints.
/ : int * int -> int 7 / 3, score / average (Infix, left associative) Division; trun-

cates fractional part.
mod : int * int -> int limit mod 2 (Infix, left associative) Modulus; result

has sign of first operand.
+ : int * int -> int 2 + 2, limit + 1 (Infix, left associative) Addition.
- : int * int -> int 2 - 2, limit - 1 (Infix, left associative) Subtraction.
abs : int -> int abs (-5) (Prefix) Absolute value.

26

Standard arithmetic operators on real numbers

Function Examples Notes
-. : float -> float -1e10, -average (Prefix) Unary negation.
*. : float *. float -> float 3.1416 *. r *. r (Infix, left associative) Multiplication;

operands and result are all real num-
bers.

/. : float * float -> float 7.0 /. 3.5 (Infix, left associative) Division of real
numbers.

+. : float * float -> float score +. 1.0 (Infix, left associative) Addition of real
numbers.

-. : float * float -> float score -. 1.0 (Infix, left associative) Subtraction of
real numbers.

** : float *. float -> float 15.5 ** 2.0 (Infix, right associative) Exponentia-
tion.

sqrt : float -> float sqrt 8.0 (Prefix) Square root.
ceil : float -> float ceil 9.5 Round up to nearest integer (but result

is still a real number).
floor : float -> float floor 9.5 Round down to nearest integer (but re-

sult is still a real number).
Besides, we have the usual transcendental functions: exp, log, log10, cos, sin, tan, acos, of type
float -> float.

Coercions

Function Notes
float : int -> float Convert integer to real.
truncate : float -> int Fractional part is discarded.
int of char : char -> int ASCII value of character.
char of int : int -> char Character corresponding to ASCII value; argument

must be in range 0..255.
int of string : string -> int Convert string to integer.
string of int : int -> string Convert integer to string.
float of string : string -> float Convert string to float.
string of float : float -> string Convert float to string.
bool of string : string -> bool Convert string to bool.
string of bool : bool -> string Convert bool to string.

Comparisons

Function Notes
< : ’a * ’a -> bool Less than. a’ can be int, float, char, or string.
<= : ’a * ’a -> bool Less than or equal to. a’ can be int, float, char, or string.
= : ’a * ’a -> bool Equals. a’ can be int, char, or string, but not float.
<> : ’a * ’a -> bool Not equal. a’ can be int, char, or string, but not float.
>= : ’a * ’a -> bool Greater than or equal to. a’ can be int, float, char, or string.
> : ’a * ’a -> bool Greater than. a’ can be int, float, char, or string.
== : ’a -> ’a -> bool Physical equality; meaning is somewhat implementation-

dependent.
!= : ’a -> ’a -> bool Physical inequality; meaning is somewhat implementation-

dependent.
max : ’a -> ’a -> ’a Returns the larger of the two arguments.
min : ’a -> ’a -> ’a Returns the smaller of the two arguments.

27

