Functional Programming
Exercise 3: Inductively Defined Functions

Shin-Cheng Mu

2012 Formosan Summer School on Logic, Language, and Computation
Aug 27 — Sep 7, 2012

1. Knowing that how addition on natural numbers can be defined, how does one define multiplication?
Define a function mul : int — int — int that performes multiplication, assuming both arguments are
natural numbers. You may reuse (+).

Solution:

let mul m n = match m with
|[0—0
|1+ m = n+mul mn

2. Define your version of the function length : ‘a list that returns the length of a list (note that [] has length
0).

Solution:

let rec length = function
| []—=0
| @:xs — 1+ (length xs)

3. Prove that length distributes into (@):

length (xs @ ys) = length xs + length ys

Solution: Induction on zs. Case zs := []:

length ([] @ ys)
{ definition of (@) }
length ys
{ definition of (+) }
0 + length ys
= { definition of length }
length [] + length ys

Case s := x :: xs:

length ((x :: zs) Q ys)
= { definition of (@) }
length (x :: xs @ ys)
= { definition of length }
1+ (length (zs @ ys))
= { induction }
1+ (length zs + length ys)
= { definition of () }
(1+ length zs) + length ys
= { definition of length }
length (x :: xs) + length ys

4. Prove: sum < concat = sum < map Sum.

Solution: This is equivalent to prove that for all zss, sum (concat xzss) = sum(map sum zss). We
perform induction on xss.

Case zss := []:

sum (concat [])
= { definition of concat }

sum []

{ definition of map }

sum (map sum [])

Case 1ss := xs :: xss:

sum (concat (xs :: xss))

{ definition of concat }
sum (zs @ concat 1ss)
= { since sum (zs@ys) = sum xs + sum ys }
sum s + sum (concat xss)
= { induction }
sum xs + sum (map sum xss)
= { definition of sum }

sum (sum xs :: map sum Tss)

{ definition of map }

sum (map sum (zs :: zss))

The lemma that sum (zs@ys) = sum xs + sum ys needs to be proved separately, by another
induction on xs.

Page 2

5. Prove: take n xs @ drop n xs = zs, for all n and zs.

Solution: Induction on n.

Case n :=0:

take 0 zs @Q drop 0 zs

{ definitions of take and drop }
[l@uzs
= { defintion of (@) }

IS

Case n := I+n. We further distinguish the cases when z := []:

take (14+n) [] @ drop (14n) []

= { definitions of take and drop }
[]al]

= { defintion of (@) }

[]

and when x := x :: zs:

take (14n) (x :: xs) @ drop (14+n) (z :: xs)
{ definitions of take and drop }

x :: take n s @Q drop n s

= { induction }

xXr xS

6. Define functions inits and tails, both of type 'a list — ’a list list, such that the former returns all prefixes
of a list, while the latter returns all suffixes of a list. E.g.

o inits [1;2;3] = [[J; [1]; [1;2]; [1;2; 3]]
o tails [152;3] = [[152; 3]; [2; 3]; [3]; []

Hint: Notice that [] is a prefix (suffix) of any list. Thus both inits and tails always return a list
containing []. In particular, inits [| = tails [| = [[]].

Solution:

let rec inits = function

el

| @ ::xs — [] = map (x:2) (inits xs),

let rec tails = function

| {1 = (0]

| @ 2 xs — (x 2 x8) 2 tails xs,

Page 3

7. Define a function fan :: ‘a — ’'alist — 'a list list such that fan = zs inserts z into the Oth, Ist...nth

positions of zs, where n is the length of zs. For example:

fan 5 [1;2;3;4] = [[5; 1525 3;4); [1; 5; 2; 3;4]; [15.2; 55 3; 4]; [1; 2; 3; 5 4] [15,2; 3; 4; 5]]

Solution:

let fan x = function
| 1] = [[=]

|y :ys — (x:y:ys)map (fun zs — y == zs) (fan x ys)

8. Define perms :: 'a list — ’a list list that returns all permutations of the input list. For example:
perms [1;2;3] = [[1;2; 35 [2; 15 3]; [2; 3; 1); [1;3; 205 [3; 15 2; [3; 2; 1]]

You will need several auxiliary functions defined in the lectures and in the exercises.

Solution:

let perms = function

{1 =1{00]

| © :: s — concat (map (fan x) (perms xs))

Page 4

