
Functional Programming

Exercise 3: Inductively Defined Functions

Shin-Cheng Mu

2012 Formosan Summer School on Logic, Language, and Computation
Aug 27 – Sep 7, 2012

1. Knowing that how addition on natural numbers can be defined, how does one define multiplication?
Define a function mul : int → int → int that performes multiplication, assuming both arguments are
natural numbers. You may reuse (+).

2. Define your version of the function length : ′a list that returns the length of a list (note that [] has length
0).

3. Prove that length distributes into (@):

length (xs @ ys) = length xs + length ys

4. Prove: sum � concat = sum � map sum.

5. Prove: take n xs @ drop n xs = xs, for all n and xs.

6. Define functions inits and tails, both of type ′a list → ′a list list , such that the former returns all prefixes
of a list, while the latter returns all suffixes of a list. E.g.

• inits [1; 2; 3] = [[]; [1]; [1; 2]; [1; 2; 3]]

• tails [1; 2; 3] = [[1; 2; 3]; [2; 3]; [3]; []]

Hint: Notice that [] is a prefix (suffix) of any list. Thus both inits and tails always return a list
containing []. In particular, inits [] = tails [] = [[]].

7. Define a function fan :: ′a → ′a list → ′a list list such that fan x xs inserts x into the 0th, 1st. . .nth
positions of xs, where n is the length of xs. For example:

fan 5 [1; 2; 3; 4] = [[5; 1; 2; 3; 4]; [1; 5; 2; 3; 4]; [1; 2; 5; 3; 4]; [1; 2; 3; 5; 4]; [1; 2; 3; 4; 5]]

8. Define perms :: ′a list → ′a list list that returns all permutations of the input list. For example:

perms [1; 2; 3] = [[1; 2; 3]; [2; 1; 3]; [2; 3; 1]; [1; 3; 2]; [3; 1; 2]; [3; 2; 1]]

You will need several auxiliary functions defined in the lectures and in the exercises.

1

