
Functional Programming

Exercise 2: Caesar Cipher

Shin-Cheng Mu

2012 Formosan Summer School on Logic, Language, and Computation
Aug 27 – Sep 7, 2012

The purpose of this exercise is to familiarise one with list processing and a programming style nicknamed
“wholemeal programming”, in which an aggregate data structure is treated as a whole. This exercise is
adapted from Hutton [Hut07].

Many functions mentioned in the class or defined in previous exercises will be useful.
Download the file Caesar.ml from the course website and load it into the OCaml toplevel by the command

#use "Caesar.ml".

1. Complete the definition of shift . For some examples:

• shift 2 ’b’ = ’d’

• shift 8 ’3’ = ’3’, shift 8 ’A’ = ’A’ — shift operates only on lowercase leters.

• shift 2 ’y’ = ’b’

• shift (−1) ’a’ = ’z’

Note the pecular (in my opinion, wrong) behaviour of the mod operator of OCaml: (−2) mod 26 = −2,
not 24.

2. Define

encode : int → char list → char list
encode str : int → string → string

that perform Ceaser ciphering.

3. Complete the definitions of functions

count eq : ′a→ ′a list → int
count lower : char list → int

where count eq x xs yields the number of occurrences of x in xs, while count lower xs yields the number
of lowercase letters in xs.

You may find their definitions very similar — both are instances of a function

count : (′a→ bool)→ ′a list → int

such that count p xs counts the number of elements in xs that satisfies predicate p.

4. Define

histo : char list → float list

1



that computes the percentage of each lowercase character in the input list. The result is a list of 26
floating point numbers, one for each alphabet. For example,

histo (explode "aabc"); ;

evaluates to

[50.; 25.; 25.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.; 0.]

because 50% of the characters in "aabc" are ’a’, 25% are ’b’, etc.

Note that the denominator should be the number of lowercase letters, rather than the length of the
entire string. For example, histo (explode "aabcA, A") yields the same result.

5. Define

crack : char list → int

that takes an supposedly encoded string and compute the most possible offset. You will need plenty of
helper functions and values including table (the average histogram of English alphabets), rotate, index ,
map, filter , etc. You may also find the following predefined functions useful:

• minimum : ′a list → ′a, that returns the minimum element of a given list;

• hd : ′a list → ′a, that returns the first (left-most) element of a list;

• chisqr : float list → float list → float , such that chisqr es os computes the similarity between es
and os. The smaller the outcome, the more similar os is to es. Note: the order matters: es is the
“model”, while os is a particular table to compare against es.

One possible way to compute crack xs is to

• compute the histogram of the input list. Call the result freqs.

• Compute all the 26 rotations of freqs.

• Find, among all the rotations of freqs, the position of the element that is the most similar to table.

Hint: how do we find the position of the minimum element in a list, say, ys? Of course, it is the position
of the left-most element that equals minimum ys.

6. Define

decode : char list → char list
decode str : string → string

that deciphers an encoded string by calling crack .

References

[Hut07] Graham Hutton. Programming in Haskell. Cambridge University Press, 2007.

Page 2


