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Functions

1. Define a function that computes the area of a circle with given radius r (you may use 22/7 as an
approximation to π).

Solution: let area r = 22.0/.7.0 ∗ .r ∗ .r

2. Recall the definition of curry :

# let curry f x y = f (x, y)
val curry : (′a ∗ ′b→ ′c)→ ′a→ ′b→ ′c = 〈fun〉

Define uncurry : (′a→ ′b→ ′c)→ (′a ∗ ′b→ c). Prove that

curry (uncurry f) = f

uncurry (curry f) = f

Solution: Given the type, there is only one possibility:

let uncurry f (x, y) = f x y

By extensional equality of functions, curry (uncurry f) = f is equivalent to that curry (uncurry f) x y =
f x y for all x and y. We reason:

curry (uncurry f) x y

= { definition of curry }
(uncurry f) (x, y)

= { definition of uncurry }
f x y

Similarly, uncurry (curry f) = f is equivalent to that uncurry (curry f) z = f z for all z : (a ∗ b).
All such z must be of the form (x, y) for some x : ′a and y : ′b (since we are not considering ⊥). We
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reason:

uncurry (curry f) (x, y)

= { definition of uncurry }
(curry f) x y

= { definition of curry }
f (x, y)

Playing Around With Lists

The purpose of this exercise is to familiarise one with list processing and the “combinator” style of program-
ming, in which programs are composed from smaller parts.

1. The list is traditionally an important datatype in functional languages. Start the OCaml interpreter,
type in the following expression:

# [1; 2; 3; 4]; ;
− : int list = [1; 2; 3; 4]

OCaml says that [1; 2; 3; 4] is has type int list — a list whose elements are integers. In OCaml, all
elements in a list must be of the same type.

Guess the type of the following lists, before finding out the answer in OCaml.

• [true; false; true].

• [[1; 2]; [ ]; [6; 7]].

• [(+); (−); (/)].

• [ ].

• [[ ]].

Solution: The types:

• bool list

• int list list

• (int → int → int) list

• ′a list

• ′a list list

2. Take. Download the file "Utils.ml" from the course website and save it in your current working
directory. Load the file by issueing the command

# use "Utils.ml"

We have defined some functions that might be useful later.

Try the following expressions:

• take 3 [0; 1; 2; 3; 4]
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• take 0 [0; 1; 2; 3; 4]

• take 4 [0; 1; 2]

Describe in words what the function take does.

Solution: take n xs yields the longest prefix of xs whose length is at most n.

3. Drop. Try the following expressions:

• drop 3 [0; 1; 2; 3; 4]

• drop 0 [0; 1; 2; 3; 4]

• drop 4 [0; 1; 2]

Describe in words what the function drop does.

Solution: drop n xs drops from xs its longest prefix whose length is at most n.

4. Length. The function length has type ′a list → int . Try some inputs, and describe in words what this
function does.

Solution: length xs computes the length of xs.

5. Append The operator (@) has type ′a list → ′a list → ′a list .

1. Try the following expressions:

• [0; 1; 2] @[3; 4].

• [0; 1; 0] @[1; 0].

Describe in words what the operator (@) does.

Solution: xs @ ys concatenates the two lists xs and ys.

2. Which of the following expressions are type correct? For the type-correct expressions, what do they
evalulate to?

• []@[1; 2; 3]@[4]

• [[ ]]@[1; 2; 3]

• [[ ]]@[ ]

• [ ]@[[ ]]

• [ ]@[ ]

Solution:

• − : int list = [1; 2; 3; 4].

• Type error. The first argument has type ′a list list , while the second argument has type
int list .
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• − : ′a list list = [[ ]].

• − : ′a list list = [[ ]].

• − : ′a list = [ ].

3. Can you think of a property that relates take, drop and (@)?

Solution: For all n and xs, we have take n xs @ drop n xs = xs.

6. Strings and lists of characters are different types in OCaml (unlike in Haskell). We have defined functions
explode and implode in Utils.ml that perform the version. Try

• explode "functional programming"

• implode [’f’; ’u’; ’n’; ’c’; ’t’; ’i’; ’o’; ’n’]

7. Define function rotate : int → ′a list → ′a list such that rotates n xs, when 0 ≤ n ≤ length xs, rotates xs
leftwards by n positions. For example:

• rotate 2 [0; 1; 2; 3; 4; 5] = [2; 3; 4; 5; 0; 1]

• implode (rotate 3 (explode "flolac")) = "lacflo"

Hint: use take, drop, and (@).

Solution: let rotate n xs = drop n xs @ take n xs

8. We have also defined a function fromTo : int → int → int list in Utils.ml. Knowing its type, try some
inputs, and describe in words what this function does.

Solution: fromTo m n generates the list [m;m+ 1; . . . n− 1].

9. In the OCaml toplevel, issue the coomand open List, to gain access to some more functions on lists.
The function combine has type ′a list → ′b list → ′a ∗ ′b list . Try

• combine [0; 1; 2; 3] (explode "abcd")

• combine [0; 1; 2] (explode "abcd")

and describe in words what this function does.

10. Now we will take a look at some higher-order functions — functions that takes functions as inputs or
returns functions. The first candidate is filter , having type (′a→ bool)→ ′a list → ′a list . Try

• filter is even [0; 1; 2; 3; 4]

• filter (funx→ x mod 3 = 0) [0; 1; 2; 3; 4]

Describe in words what filter does.

11. Try the function map:

• map not [true; true; false]
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• map (funx→ x mod 4) (fromTo (−10) 10)

Answer the questions:

• What should the type of map be?

• Describe in words what map does.

Solution:

• (′a→ ′b)→ ′a list → ′b list

• map f xs applies f to each element of xs.

12. Define count : (′a → bool) → ′a list → int such that count p xs returns the number of elements in xs
that satisfies p.

Solution: let count p = length � filter p

13. Define index : ′a list → (int ∗ ′a) list such that index xs labels each element in xs with its index. For
example,

index (explode "flolac") = [(0,′ f ′); (1,′ l′); (2,′ o′); (3,′ l′); (4,′ a′); (5,′ c′)]

Solution: let index xs = combine (fromTo 0 (length xs)) xs

14. Define positions : (′a → bool) → ′a list → int list such that positions p xs returns the indexes of
elements in xs that satisfies p. For example

positions is even [2; 4; 5; 3; 6] = [0; 1; 4]

Solution: let positions x xs = map fst (filter (fun ( , y)→ y == x) (index xs)).

Equivalently, let positions x xs = map fst (filter (((==)x)� snd) (index xs)).

Types

1. Suppose f and g have the following types:

f : int → int

g : int → int → int

Let h be defined by

h x y = f (g x y)

1. What is the type of h?
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Solution: int → int → int

2. Which, if any, of the following statements is true?

h = f � g
h x = f � (g x)
h x y = (f � g) x y

Solution:

• h = f � g: not true. This is equvalent to h x y = (f � g) x y = ((f � g) x) y =
(f (g x)) y.

• h x = f � (g x): true. We reason:

h x y

= { definition of h }
f (g x y)

= { application associates to the left }
f ((g x) y)

= { definition of � }
(f � g x) y

Thus the definition of h is equivalent to h x = f � g x.

• h x y = (f � g) x y: not true. This is equivalent to h = f � g.

2. Give suitable polymorphic type assignments for the following functions:

let const x y = x
let subst f g x = f x (g x)
let apply f x = f x
let flip f x y = f y x

Solution:

const : ′a→ ′b→ ′a
subst : (′a→ ′b→ ′c)→ (′a→ ′b)→ ′a→ ′c
apply : (′a→ b)→ ′a→ ′b
flip : (′a→ b→ ′c)→ ′b→ ′a→ ′c

3. Define a function swap such that:

flip (curry f) = curry (f � swap)

for all f : ′a ∗ ′b→ ′c.
Hint: there are at least two ways to construct swap:
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1. use equational reasoning, construct a definition of swap such that both sides simply to the same
expression, or

2. deduce its type, guess a definition using the type, and prove the equality above.

Solution: We will try constructing swap by equational reasoning. The definition of flip was given
in the previous exercise:

let flip f x y = f y x

We start with simplifying the left-hand side:

flip (curry f) x y

= { definition of flip }
(curry f) y x

= f (y, x)

And then the right-hand side:

curry (f · swap) x y

= { definition of curry }
(f · swap) (x, y)

= { definition of (�) }
f (swap (x, y))

The goal is to have f (y, x) = f (swap (x, y)):

f (y, x) = f (swap (x, y))

⇐ { Leibniz }
(y, x) = swap (x, y)

Thus we pick swap (x, y) = (y, x). The rule “Leibniz” states that f m = fn if m = n.

You may also try to guess what swap could be from its type. We haven’t properly talked about type
inference. However, assuming that f :: (a, b)→ c, the left-hand side has type

flip (curry f) : ′b→ ′a→ ′c

and swap must have type

swap :: (′b ∗ ′a)→ (′a ∗ ′b)

You may then guess that swap (x, y) = (y, x).

However, this does not consitute a proof. To prove that flip (curry f) = curry (f · swap) you still
have to go through the equational reasoning above.

4. Can you find polymorphic type assignments for the following functions?

let strange f g = g (f g)
let stranger f = f f
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Solution: strange : ((′a→ ′b)→ ′a)→ (′a→ ′b)→ ′b

stranger cannot be typed in the Hindly-Milner system.

Page 8


