
Functional Programming

Exercise 1: Functions, Values, and Types

Shin-Cheng Mu

2012 Formosan Summer School on Logic, Language, and Computation
Aug 27 – Sep 7, 2012

Functions

1. Define a function that computes the area of a circle with given radius r (you may use 22/7 as an
approximation to π).

2. Recall the definition of curry :

let curry f x y = f (x, y)
val curry : (′a ∗ ′b→ ′c)→ ′a→ ′b→ ′c = 〈fun〉

Define uncurry : (′a→ ′b→ ′c)→ (′a ∗ ′b→ c). Prove that

curry (uncurry f) = f

uncurry (curry f) = f

Playing Around With Lists

The purpose of this exercise is to familiarise one with list processing and the “combinator” style of program-
ming, in which programs are composed from smaller parts.

1. The list is traditionally an important datatype in functional languages. Start the OCaml interpreter,
type in the following expression:

[1; 2; 3; 4]; ;
− : int list = [1; 2; 3; 4]

OCaml says that [1; 2; 3; 4] is has type int list — a list whose elements are integers. In OCaml, all
elements in a list must be of the same type.

Guess the type of the following lists, before finding out the answer in OCaml.

• [true; false; true].

• [[1; 2]; []; [6; 7]].

• [(+); (−); (/)].

• [].

• [[]].

2. Take. Download the file "Utils.ml" from the course website and save it in your current working
directory. Load the file by issueing the command

use "Utils.ml"

We have defined some functions that might be useful later.

Try the following expressions:

1

• take 3 [0; 1; 2; 3; 4]

• take 0 [0; 1; 2; 3; 4]

• take 4 [0; 1; 2]

Describe in words what the function take does.

3. Drop. Try the following expressions:

• drop 3 [0; 1; 2; 3; 4]

• drop 0 [0; 1; 2; 3; 4]

• drop 4 [0; 1; 2]

Describe in words what the function drop does.

4. Length. The function length has type ′a list → int . Try some inputs, and describe in words what this
function does.

5. Append The operator (@) has type ′a list → ′a list → ′a list .

1. Try the following expressions:

• [0; 1; 2]@[3; 4].

• [0; 1; 0]@[1; 0].

Describe in words what the operator (@) does.

2. Which of the following expressions are type correct? For the type-correct expressions, what do they
evalulate to?

• []@[1; 2; 3]@[4]

• [[]]@[1; 2; 3]

• [[]]@[]

• []@[[]]

• []@[]

3. Can you think of a property that relates take, drop and (@)?

6. Strings and lists of characters are different types in OCaml (unlike in Haskell). We have defined functions
explode and implode in Utils.ml that perform the version. Try

• explode "functional programming"

• implode [’f’; ’u’; ’n’; ’c’; ’t’; ’i’; ’o’; ’n’]

7. Define function rotate : int → ′a list → ′a list such that rotates n xs, when 0 ≤ n ≤ length xs, rotates xs
leftwards by n positions. For example:

• rotate 2 [0; 1; 2; 3; 4; 5] = [2; 3; 4; 5; 0; 1]

• implode (rotate 3 (explode "flolac")) = "lacflo"

Hint: use take, drop, and (@).

8. We have also defined a function fromTo : int → int → int list in Utils.ml. Knowing its type, try some
inputs, and describe in words what this function does.

9. In the OCaml toplevel, issue the coomand open List, to gain access to some more functions on lists.
The function combine has type ′a list → ′b list → ′a ∗ ′b list . Try

• combine [0; 1; 2; 3] (explode "abcd")

• combine [0; 1; 2] (explode "abcd")

Page 2

and describe in words what this function does.

10. Now we will take a look at some higher-order functions — functions that takes functions as inputs or
returns functions. The first candidate is filter , having type (′a→ bool)→ ′a list → ′a list . Try

• filter is even [0; 1; 2; 3; 4]

• filter (funx→ x mod 3 = 0) [0; 1; 2; 3; 4]

Describe in words what filter does.

11. Try the function map:

• map not [true; true; false]

• map (funx→ x mod 4) (fromTo (−10) 10)

Answer the questions:

• What should the type of map be?

• Describe in words what map does.

12. Define count : (′a → bool) → ′a list → int such that count p xs returns the number of elements in xs
that satisfies p.

13. Define index : ′a list → (int ∗ ′a) list such that index xs labels each element in xs with its index. For
example,

index (explode "flolac") = [(0,′ f ′); (1,′ l′); (2,′ o′); (3,′ l′); (4,′ a′); (5,′ c′)]

14. Define positions : (′a → bool) → ′a list → int list such that positions p xs returns the indexes of
elements in xs that satisfies p. For example

positions is even [2; 4; 5; 3; 6] = [0; 1; 4]

Types

1. Suppose f and g have the following types:

f : int → int

g : int → int → int

Let h be defined by

h x y = f (g x y)

1. What is the type of h?

2. Which, if any, of the following statements is true?

h = f � g
h x = f � (g x)
h x y = (f � g) x y

2. Give suitable polymorphic type assignments for the following functions:

let const x y = x
let subst f g x = f x (g x)
let apply f x = f x
let flip f x y = f y x

Page 3

3. Define a function swap such that:

flip (curry f) = curry (f � swap)

for all f : ′a ∗ ′b→ ′c.
Hint: there are at least two ways to construct swap:

1. use equational reasoning, construct a definition of swap such that both sides simply to the same
expression, or

2. deduce its type, guess a definition using the type, and prove the equality above.

4. Can you find polymorphic type assignments for the following functions?

let strange f g = g (f g)
let stranger f = f f

Page 4

