Temporal Logics

& Model Checking

Farn Wang
Dept. of Electrical Engineering
National Taiwan University

Specifications, descriptions,
& verification

specification (property):
o The user’s requirement
description (implementation, model):

o The user’s description of the systems
o No strict line between description and specification.

verification:
o Does the description satisfy the specification ?

Formal specification

& automated verification

formal specificaton:

o specification with rigorous mathematical notations
automated verification:

o verification with support from computer tools.

Why formal specifications ?

to make the engineers/users understand the

system to design through rigorous mathematical
notations.

to avoid ambiguity/confusion/misunderstanding
In communication/discussion/reading.

to specify the system precisely.

to generate mathematical models for automated
analysis.

But according to Goedel’s incompleteness theorem, it
IS Impossible to come up with a complete
specification. ’

Why automated verification ?

to somehow be able to verify complexer & larger
systems

to liberate human from the labor-intensive
verification tasks
o to set free the creativity of human

to avoid the huge cost of fixing early bugs in late
cycles.

to compete with the core verification technology
of the future.

‘ Specification & Verification ?

= Specification = Complete & sound.

= Verfication
- Reducing bugs in a system.
- Making sure there are very few bugs.

Very difficult!
Competitiveness of high-tech industry!
A way to survive for the students!

A way to survive for Taiwan!

$4 billion development effort
> B0% system integration & validation cost

2,500,000+1,500,000 lines of codes (most in Ada)

400 horses
100 microprocessors

Bugs in complex software

They take effects only with special event
seqguences.

o the number of event sequences is factorial and
super astronomical

It Is Impossible to check all traces with
test/simulation.

Three technologies in verification

o Testing (real wall for real cars)
= EXxpensive
= Low coverage
= Late in development cycles

M.imulation(virtual wall for virtual cars)
= Economic

= Low coverage
= Don’t know what you haven't seen.

o Formal Verification

(virtual car checked)

= EXxpensive

= Functional completeness
+ 100% coverage

= Automated!
+ With algorithms and proofs. 10

'Sum of the 3 angles =180 ?

o Testing (check all As you see)
= EXxpensive

= Low coverage

= Late in development cycles

o Simulation (check all As you draw)

A Pg ‘ . Economic

= Low coverage
= Don’t know what you haven't seen.

o Formal Verification(we prove it.)
= EXxpensive
= Functional completeness
+ 100% coverage

= Automated!
+ With algorithms and proofs.

11

Model-checking

- a general framework for veritication

of hw/sw systems
Answer

Yes If the model
. — IS equivalent to
mOde' . the specification
1 No If not.

specification

12

‘Models & Specifications

- formalism
Whenever a baby cries, it Is hungry.

= Logics:

= Graphs:

(crying = hungry)

crying —Crying
hungry hungry

—Crying
—hungry

13

Models & Specitications

- fairness assumptions

Some properties are almost impossible to verify
without assumptions.

Example: O(start 2 < finish)
To verify that a program halts, we assume
CPU does not burn out.

OS gives the program a fair share of CPU time.
All the drivers do not stuck.

14

. F: set of fairness
Model-checking Sesumptions
v': known;

- frameworks 1n our lecture o discussed

In the lecture

=== =

traces Trees Linear Branching
F=0 0 F=¢0 =0 F=0 =0 F=J0 FJ

traces

Trees

Linear

Logics
Branc
hing

Kripke Structure

A state-transition system that captures
o What is true of a state

o What can be viewed as an atomic move
o The succession of states

Static representation that can be unrolled to a
tree of execution traces, on which temporal
properties are verified

16

‘ Kripke st

Saul Kripke

| * wrote his first essay on
DI Kripke structure at 16
* Invited to teach at Princeton

) | ' of languages
e taught a graduate logic [genstein

course at MIT since
sophomore year at Harvard.

17

‘ Knpke structurs To extend to integer

programs,
- Syntax L:SxP>N
A=(S, Sy R, L)
= S
o aset of all states ¢ ystem
" 5,2 S

o asetof iy tates
» RcS¥
0 ayansition relatipz

m ;S 2F

o a function that associates each state with set of
propositions true in that state

18

Kripke Model

- syntax
Set of states S={q,,9,,05}
Set of initial states S,={q,}

R ={(01,9,).(q2,95),
(41,93),(d3, d1),
(03.9,)}

Set of atomic propositions AP={a,b}
L(a.)={a}, L(92)={a.b}, L(q3)={b}

19

q3

Kripke structure
- semantics

Given a Kripke structure A = (S, S,, R, L),
a run is a finite or infinite sequence
SpS1Sy «++ Sy -
such that
Sy €S,
for each keN, If s, . exists,

0 S €S and
0 R(S,, Si.q) IS true.

20

Control and data variables

State = valuation of control and data vars.

In our example

o pcO, pcl are control variables.

o turn is a shared data variable.

state examples: (pc0=1,pcl=2,turn=0),
(pcO0=2,pcl=2,turn=1),

To generate a finite state transition system

o Data variables must have finite types, and

o Finitely many control locations

21

Program - Kripke structure
- Data variables

Data variables often do not have finite types
integer, ...
Usually abstracted into a finite type.

An integer variable can be abstracted to {-
1O1+}
Just store the information about the sign of

the variable. (coming up with these
abstractions is a whole new problem).

22

Program - Kripke structure

- Control Locations
Isn’t the control locations of a program always
finite ?

NO, because your program may be a
concurrent program with unboundedly many
processes or threads (parameterized system).

Can employ control abstractions (such as
symmetry reduction)

23

Program - Kripke structure
- States and Transitions

Each component makes a move at every
step.

Digital circuits are most often synchronous.
o Common clock driving the system.

o Contents of flip-flops define the states.

o On every clock pulse, the content of every flip-flop
(potentially) changes.

This change Is captured by the transition
relation.

24

Program - Kripke structure
- States and Transitions

Define V={v,,...,v,}, boolean variables
representing state of flip-flops in the circuit.

Set of states represented by boolean formula
OVer V,,...,V,.

To define transitions, define a fresh set of
variables V'={v',,...,V'.} . These are the next

state variables.

The transitions are now represented by a
relation R(V,V)cVxV’

25

Kripke structure

- Transition Relation
(s,s)eR(V,V’) impliess 2
Now, R(V,V)=Uicqi . m Ri(V,V'), where
captures the changes in state variable v,
Define Ri(V,V’) =(V'.<f(V)) where f(V) Is a
boolean function defining the value of flip-flop
| IN next state.

Given a synchronous circuit, we then need to
define (V) for each I.

26

Transition relation

- A synchronous mod 8 counter
V={v,,v,,Vs}, Where v, is the least significant
bit.

The transitions can be enumerated as:
000->001->010-......

Alternatively define how each of the three bits

are changed on every clock cycle

0 Vg = =V, (the least significant bit)

a V=Vydv,

0 V',=(Voravl)®v, (the most significant bit)

27

Kripke Structure
- example

Suppose there Is a program

initially x==1 && y==1,
while (true)
X = (x+y) % 2;

where x and y range over D={0,1}

28

Kripke Structure
- example

Suppose there Is a program

initially x==1 && y==1,
while (true) N

where x and y range over D={0,1}

29

Kripke Structure
- example

Suppose there Is a program

initially x==1 && y==1,
while (true)
X = (x+y) % 2;

S=DxD ={(0,0),(0,1),(1,0),(1,1)}
So={(1,1)}
R={((1,1),(0,1)),((0,1),(1,1)),
((1,0),(1,0)),((0,0),(0,0))}
L((1,1))={x=1,y=1},
L((0,1))={x=0,y=1},
L((1,0))={x=1,y=0},
L((0,0))={x=0,y=0}

where x and y range over D={0,1}

30

Kripke Structure
- example

Suppose there Is a program

initially x==1 && y==1,
while (true)
X = (x+y) % 2;

S=DxD ={a,b,c,d}
So={a}
R={(a,b),(b,a),
(c,c),(d,d)}
L(a)={x=1,y=1},
L(b)={x=0,y=1},
L(c)={x=1,y=0},
L(d)={x=0,y=0}

where x and y range over D={0,1}

31

Workout
- Kripke Structure

Suppose there Is a program

initially x==1 && y==1,
while (true)
X = (x+y) % 3;

where x and y range over D=[0,2]

32

Kripke Structure
- an example

Initially x=0
While (true)
X:=1-Xx;

33

‘ Kripke Structure
- example

A 2-bit counter operates at bit-level.

D, by

34

Kripke Structure
- workout

Write a simple program for the Kripke
structures In the last page.

35

Automata & Kripke structure

Concurrent programs

A set programs running independently,
communicating from time to time, thereby
performing a common task.

Flavors of Concurrency
o Synchronous execution

o Asynchronous / interleaved execution
Communication via shared variables
Message passing communication

38

Kripke Structure
- for a concurrent system

Programs (as opposed to circuits) are
typically considered asynchronous.

An asynchronous concurrent system is a
collection of sequential programs P...P,
running in parallel with only one pgm. making
a move at every time step.

o How do the sequential programs communicate ?

o What are the behaviors of the concurrent system ?

39

Kripke Structure

- for a concurrent system
Behaviors of each sequential program P
captured by Its operational semantic.
The programs F, need not be terminating.

Behaviors (Traces) of P,....P, formed by
Interleaving the transitions of the programs.

Consider two non-communicating programs.

40

‘ Concurrent systems
- Interleaving semantics

Semantics as Kripke structure

state-transition graphs

S1={x=0,x=1} S2={y=0,y=1}
a@(1),b@(2),

\T&H/\J

41

Kripke Structures

- composition for a concurrent system

Given A=(S;, S, R;, L), I<i<n

Cartesian Product of A;, A,, ..., A

A=(S, S,, R, L)

SIS xS, x... xS,

SpiS1pXSyp%.. XS

R([S1,:++Sj-15 S Sjeare-s Spli[S1s++Sj15 S5 Sjere-s Spl)
0 (S;:S;)ER

o According to the interleaving semantics, one
process transition at a moment

L(s1, 520 v Sal)= Li(S1) U LA(S,) U UL (sp)

n?

42

‘Kripke Structures
- Cartesian product method

1.

Construct all the vectors of component process
states

Eliminate all those inconsistent vectors according
to invariance condition

Draw arcs from vectors to vectors according to
process transitons

Very often creates many unreachable
states

43

Kripke structure
- Practical algorithm for construction
Given A=(S, S,, R, L)

Usually only S,, R, L are given.

We may want to construct S.
Usually S is too big to construct.

44

‘Kripke Structures
- on-the-tly method

1.

Starting from the initial states (or goal states
In backward analysis)

Step by step, add states that is reachable
from those already reached, until no more
new reachable states are generated.

Tedious but may result in much smaller
reachable state-space reprsentation.

45

History of Temporal Logic

Designed by philosophers to study the way that time
IS used in natural language arguments

Reviewed by Prior [PR57, PR67]

Brought to Computer Science by Pnueli [PN77]

Has proved to be useful for specification of
concurrent systems

46

Framework

Temporal Logic is a class of Modal Logic

Allows qualitatively describing and reasoning about
changes of the truth values over time

Usually implicit time representation

Provides variety of temporal operators (sometimes,
always)

Different views of time (branching vs. linear, discrete
VS. continuous, past vs. future, etc.)

47

Outline

Linear

o LPTL (Linear time Propositional Temporal
Logics)

Branching

o CTL (Computation Tree Logics)

o CTL* (the full branching temporal logics)

48

BNF, syntax definitions

Note!

Be sure how to read BNF !
used for define syntax of context-free language

iImportant for the definition of
o automata predicates and
o temporal logics

Used throughout the lectures!
In exam: violate the syntax rules =» no credit.

Az=c x| (M)A +A; | A-A,
M:= c|x]|(A)| MM, | M,/M,
C IS an integer
X IS a variable name.

49

'BNF, syntax definitions

Az=c x| (M) [ATA; [A-A,
M= c|x]|(A)| MM, | M,/M,
C IS an integer

X IS a variable name.

50

'BNF, syntax definitions

- derivation trees (from top down)
Az=c x| (M) [ATA; [A-A,

M= c|x]|(A)| MM, | M,/M,

C Is an integer

X IS a variable name.

used Iin string
generation.

51

'BNF, syntax definitions

- parsing trees (from bottom up)
Az=c x| (M) [ATA; [A-A,

M= c|x]|(A)| MM, | M,/M,

C Is an integer

X Is a variable name.

used in compiler.

52

Temporal Logics : Catalog

propositional <«
global <
branching <«
points «©

first-order
compositional
linear-time
Intervals

discrete <« continuous
past <« future

53

Temporal Logics

Linear
o LPTL (Linear time Propositional Temporal
Logics)
LTL, PTL, PLTL
Branching
o CTL (Computation Tree Logics)
o CTL* (the full branching temporal logics)

54

‘ Amir Pnueli
1941

Professor, Welzmann
nstitute

Professor, NYU

= Turing Award, 1996

LPTL (PTL, LTL)

Linear-Time Propositional Temporal Logic

Conventional notation :
propositions : p, q, I, ...
sets: A, B,C, D, ...
states : s
state sequences : S
formulas : @,
Set of natural number : N ={0, 1, 2, 3, ...}
Set of real number : R

56

LPTL

Given P : a set of propositions,

a Linear-time structure : state seguence
S=57515S,5S3S,.-- Si------

S, Is a function of P where P|->{true,false}

ors, €2F

example: P={a,b}

taha,bhahalib}...

57

Syntax definitions
Note!

Be sure how to read BNF !
used for define syntax of context-free language

iImportant for the definition of
o automata predicates and
o temporal logics

Used throughout the lectures!
In exam: violate the syntax rules = no credit.

A= (M) | Al + A2 | Al — A2
M = (A) | M1 * M2 | M1/ M2

58

ILPTL syntax definition

iIn BNF

- syntax /

Y =true|p | -y |p,vy, | Oy |y, Uy,

abbreviation
false = — frue
L ARA\ . = = (=@)V (Hy>))
Y >y, = (—|l|11)vt|12
Oy = true Uy
Y = —I<>—|l|1

59

LPTL

- syntax
Exam. Symbol
in CMU
Op Xp p iS true on next state
pUq pUq From now on, p is always
true until g is true
<Op Fp From now on, there will be a

state where p is eventually
(sometimes) true

P Gp From now on, p is always true

60

? - don’t care

61

LPTL

- syntax

pUq

pUq

From now on, p Is always
true until g is true

From now on, there will be a
state where p is eventually
(sometimes) true

63

LPTL

- syntax

Two operators for Fairness

= O°p = Op ; p will happen infinitely
many times
Infinitely often

«Op= <OOp 5 pwill be always true
after some time in the
future

almost everywhere

64

12011/06/30 stopped here.

LPTL

- semantics
suffix path :

66

LPTL

- semantics
Given a state sequence

S=57S1S5S3S,--- Si-----
We define SEy (S satisfies y) inductively as :
SF true
SEp < sy(p)=true, or equivalently p € s,
SF -y < SEyis false
SFY vy, & SFEY,or SFE Y,
SEQu o SOEy
S F y,Uy, < Fk>0(S® Ey, AVO<j<k(SY Ey,))

67

LTL

- examples
(start > <> finish) * %“’i‘f@ﬂﬁf}?j%‘
> comet-hit-earth
(Oearth) > O<>comet-hit-earth
(< buy-lottery-ticket)=2> <> win-lottery
(power-on—-> > boot-success)
(4 power-on)=2><> boot-success
(O power-on)=><> boot-success)
(O power-on)&& < boot-CPU)
- <> boot-success)

69

Branching Temporal Logics

Basic assumption of tree-like structure

*Every node Is a function
of P—{true,false}

*Every state may have many
SUCCessors

70

Branching Temporal Logics

Basic assumption of tree-like structure

*Every path is isomorphic as N
«Correspond to a state sequence

71

Branching Temporal Logic

It can accommodate infinite and dense state
successors

In CTL and CTL*, it can’t tell

o Finite and infinite
Is there infinite transitions ¢

o Dense and discrete
|s there countable (®) transitions

72

Branching Temporal Logic

Get by flattening a finite state machine

73

CTL(Computation Tree Logic)

Edmund M. Clarke
Professor, CS & ECE
Carnegie Mellon University

E. Allen Emerson
Professor, CS
The University of Texas at Austin

Chin-Laung Lel
Professor, EE
" National Taiwan University

74

CTL(Computation Tree Logic)

- syntax

g:=true |p|—@ | o,vp, | IO | VOO
| 3@, U, | V.U,

abbreviation :

false

IR
P1—>0;

3O

\v,

¢

VO

-

¢

— true

= ((=@)V (=0,))
(=P)V,

dtrue U@
—3—0

Virue U@
—V—0

75

CTL

- semantics
example symbol
in CMU
10p EXp there exists a path where p is
true on next state
dpl q PEUQ from now on. there is a
ath wh g is always
rue unti q iS true
vOp AXp for all path where p is true on
next state
vpl q PAUQ from now on, for all path where

p Is always true until q is true

76

CTL

- semantics

A0p EXp there exists a path where p
IS true on next state

?

77

CTL

- semantics

dpU @ PEUQ from now on, there is a path where p
Is always true until g is true

78

CTL

- semantics

vOp AXp for all path where p is true on
next state

79

CTL

- semantics

VpU @ PAUCQ

from now on, for all path
where p is always true until g
IS true

80

CTL

- semantic

Assume there are
a tree stucture M,
one state s in M, and

a CTL fomula ¢
M,sFE¢ means s in M satisfy ¢

81

CTL

- semantics

s-path : a path in M
which stats from s

S, -path:

s, -path:
S, -path:

S,5-path:

82

CTL

- semantics
M,s F true
MSEp < p es
M,s E —¢p < Itis false that M,s F @
M,s F @,vp, < M,skE @, 0or M,skF o,
M,s F 30¢ < 3 s-path=s; s, (M,s; F @)
M,skF VO < Vs-path=5;5S; (M,s; F @)
M,s F Jdp,Up, < I s-path=5s;s; , 3k=0

(M,s = @, AVOSI<k(M,s; F @,)

M,s F Vo,Up, < Vs-path =s;s; , 3k=0

(M,s = @, AVOSJ<k(M,s; F @,)

83

CTL
- examples (I)

0-(Po:=0 | Pg:=PeVvP1VP,)
1:(P1:=0 | P1:=PoVPy)
2. (P2:=0 | pyr:=p1VvP,)

If P, IS true, it Is possible

that P, can be true P,
var: p(J«

after the next two cycles.
VLI(py = 30O 30O py)

84

CTL
- examples (II)

1. If there are dark clouds, it will rain.
v[(dark-clouds— vV <rain)

2. If a buttefly flaps its wings, the New York stock could
plunder.

Vv O(buttefly-flap-wings =-3< NY-stock-plunder)
3. If I win the lottery, | will be happy forever.
vLI(win-lottery — VLI happy)

4. In an execution state, If an interrupt occurs in the next
cycle, the interrupt handler will execute at the 2nd next
cycle.

vVL(exec—VO(intrpt—VO(intrpt-handler)))

85

CTL
- examples ()

In an execution state, If an interrupt occurs in the next
cycle, the interrupt handler will execute at the 2nd
next cycle.

VL](exec— VO (intrpt— VO (intrpt-handler)))

Some possible mistakes:
VL(exec—>((VO intrpt)—>VOintrpt-handler))
VLl(exec —» (VO intrpt) >VvOVQ) intrpt-handler))

86

CTL
- examples (I1Ia)

Please draw a Kripke structure that tells
VvV O(intrpt— VY O(intrpt-handler))
from
(VO intrpt)> VvV Ointrpt-handler
and
(VO intrpt) >VOVOQ intrpt-handler

87

CTL

- important classes
V[LIn : safety properties
0 m Is always true in all computations from now.

3<n: reachability properties

0 m IS eventually true in some computation from
now.

a VDT] = —|3<>—|T]
vV <On: inevitabilities
o m Is eventually true in all computations from now.

dln
| V<>n = —E|D—|T|

88

CTL*
- syntax
CTL* fomula (state-fomula)

g:=true | p|—@. | ¢V, [TW [V
path-fomula
= | =w, lw,vw, | Ow, | w,U

CTL* Is the set of all state-fomulas!

89

CTL*

- examples (1/4)

In a fair concurrent environment, jobs will
eventually finish.

v(((

or

Oexecute,) A(

Oexecute,)) —» <Ofinish)

V(((O®execute,) A(O®execute,)) - <Ofinish)

90

- semantics

suffix path :

S=
S0)=
S(1)=
S(2)=
SB)=
S(4)=

91

CTL*

- semantics

state-fomula
pu=true | p| =@ | @ve, | TW [V

M,S
M,S
M,S
M,S
M,S
M,S

= true

=p < pes

= @ < M,s E ¢ flfalse

= Q,vp, & M,sE @, orM,s = o,
= Ju < Jds-path=S (S F)

=V < Vs-path=S (SFE)

92

CTL*

- semantics
path-fomula
=@ Ay [wovw, [Oy | w,l
If S=5;5,S,53S4 ... SEFQPSMS,Fo
SE-w, < SEw, plfalse
SF W, v, < SFE W, or SF

SEQu e SOE

S £ u,Uy.< k=0 (SWE 1, AV0<j<k(SO E

)

93

Expressiveness

Given a language L,
what model sets L can express ?
what model sets L cannot ?

model set: a set of behaviors

A formula = a set of models (behaviors)

foranyp €/, [@] gt {M M F@}
A language = a set of formulas.

Expressiveness: Given a model set F,
F is expressible in L iff Ap e /([@]=F)

94

Expressiveness

Comparison in expressiveness:

Given two languages L, and L,
Definition: L, Is more expressive than L, (L,<L,)

iff Voe L, ([@] is expressible in [,)

Definition: L, and L, are expressively equivalent
(L,=L0o) it (Lo<LA(L,<Ly)

Definition: L, ~ L, are expressively incomparable iff

—((Lo<Ly)v(L,<L,))

95

‘ Expressiveness
- branching-time logics

What to compare with ?
= finite-state automata on infinite trees.

= 2nd-order logics with monadic prdicate and many
successors (SnS)

= 2nd-order logics with monadic and partial-order
Very little known at the moment,

the fine difference in semantics of branching-structures

96

Expressiveness

- CTL*, example ()

A tree the distinguishes the following two
formulas.

V((Oeat) — Ofull)

o Negation: 3((Ceat) A
(VOeat) » (VOfull)

Expressiveness
- CTL*, example (II)

A tree that distinguishes the following two
formulas.

V((deat) = <full)
VL (eat » VOfull)
o Negation: 3O (eat AOfull)

CTL*
- examples (2/4)

No matter what, infinitely many comets will
hit earth.

vOO < comet-hit-earth
Why not CTL?

= VO VYOV comet-hit-earth

= YOVO3O comet-hit-eart
Exercise, please construct a

from the fircet

'CTL*
- examples (2/4)

No matter what, infinitely many comets will
hit earth.

v < comet-hit-earth

Or
v < comet-hit-eart

Why not CTL?

= VO V & comet-hit-earth

s VO 3 & comet-hit-earth

100

CTL*

The same

- WO rkout according to

lemma

= (1) YOO comet-hit-earth
= (2) vO V & comet-hit-earth

= (3) VYOO 3 & comet-hit-earth

Please draw Kripke structures that tell
= (1) from (2) and (3)

= (2) from (1) and (3)

= (3) from (1) and (2)

101

CTL* no-lover
- examples (3/4)

no-lover

If you never have a lover, | will marry you.
V((Oyou-have-no-lover) - < marry-you)
Why not CTL ?
(VO you-have-no-lover) —» V < marry-you

(VO you-have-no-lover) — 3 < marry-you

(30 you-have-no-lover) - ¥V < marry-you

102

CTL*

- Workout

(DV((
(2) (V

3) (v

(4) 3

you-have-no-lover) - <& marry-you)

yOu-
YOU-

YOU-

nave-no-

nave-no-

nave-Nno-

over) —» V < marry-you
over) » 3 <& marry-you

over) = V <& marry-you

Please draw trees that tell
(1) from (2)
(2) from (3)
(3) from (4)
(4)from(1)

103

CTL*
- examples (4/4)

If | buy lottory tickets infinitely many times,
eventually | will win the lottery.

Vv ((O<buy-lottery) — Owin-lottery)

or
Vv (($O* buy-lottery) — < win-lottery)

104

Expressiveness

- CTL*

With the abundant semantics in CTL*, we can
compare the subclasses of CTL*.

With restrictions on the modal operations after
4, ¥V, we have many CTL* subclasses.

Example:

B(—,v,O,U): only —,v,O,U after 3, V

B(—,v,0,0%): only —,v,O,O* after 4, V

B(O,Q): only O, after 3, V

105

Expressiveness

- CTL*

CTL* subclass expressiveness heirarchy

CTL*

>
>
>

V V V

B(—,v,0,0,l,0%)
B(O, &, ;)
B(—,v,0,,0)
B(O,<,)
B(—,v,0,)
B(O,<)

B(<)

106

Expressiveness

- CTL*

Some theorems :
B(—,v,0,0,U) = B(O,O,U)

3O°p is inexpressible in B(O,0,U).

107

Expressiveness

- CTL*

Comparing PLTL with CTL*
assumption, all ePLTL are interpreted as V¢

Intuition: PLTL is used to specify all runs of a
system.

CTL* PLTL(F)

108

model (system)

‘ Verification

formula specification
formula
= LPTL, validity checking { E ¢

o Instead, check the satisfiablility of 1\ A =
0 construct a tabelau for Y A —d

= model-checking MF®
o LPTL: M: a Blchi automata, ¢: an LPTL formula

o CTL: M: a finite-state automata, ¢: a CTL
formula

= simulation & bisimulation checking M F M’

109

Satistiability-checking framework

Answer
Yes if the model
— guarantees
the specification
t No if not.

model in logics
I:I, —, \/,0,0,U

specification in logics
y 1y V;O;O,U

110

LPTL

- tableau for satistiability checking
Given @.,,=2 Q. ,
we in fact check the validity of @ =2 .,

l.e., check ¢.,2 @, Is always true.
In pactice, we check whether

_'((Pmecps) =P A Pg
IS satisfiable
l.e., the satisfiability of ¢, A — @,

111

LPTL
- tableau for satistiability checking

Tableau for @
« a finite Kripke structure that fully describes the
behaviors of ¢
« exponential number of states
* An algorithm can explore a fulfilling path in the
tableau to answer the satisfiabllity.
Enondeterministic
mwithout construction of the tableau
BPSPACE.

112

1PTL

- tableau for satistiability checking
Tableau construction
a preprocessing step: push all negations to the literals.
= (VA= (v (=)
= (Vv = (v (=)
R OY=E0Vy
oY=y
n —(yUy,) = (L= yo)v (5 w)U (= v (= v2)
s o[Jy=Oay
s Oy =] |y

113

LPTL

- tableau for satistiability checking

Tableau construction

CL(p) (closure) is the smallest set of formulas containing ¢
with the following consistency requirement.

= peCL(p)
= —y e CL(op) Iff v eCL(0)

= Iy, vy, , vy, Ay, eClL(g), then vy, v, eCL(0)
 If O v eCL(p), then vy eCL(0)

= Ify,Uy, eCL(p), then vy, , v, , O (y; Uy,) eCL(9)
w If |y eCL(p), then vy, O | |y eCL(p)

114

LPTL

- tableau for satistiability checking

Tableau (V, E), node consistency condition:

A tableau node v € Vis a set v ¢ CL(f) such that
mpeviff—pégv

w Ify, vy, ev,then y,evory, ev

» Ify, Ay, ev,then y,evand vy, ev

wif Jyev,thenyevand O| |y ev

= if Oy ev,thenyevorO O wyev

w If y,Uy,ev, then y,e vor (y,evand O (y,Uy,)ev)

115

LPTL
- tableau for satistiability checking

Tableau (V, E), arc consisitency condition:
Given an arc (v,v') eE, If Oy e v, then y € V’

= Anodevin (V,E) is initial for ¢ if ¢ ev.

116

LPTL

- tableau for satistiability checking

CL(pUq) ={pUq, OpUQq, p, = p, 4, = Q}
Example: (p U g)

tableau (V,E)

Vi {p,q, pUg, OpUa} {p,q, OpUq} {p,q}
{p, 9, pUdg}

{p, =0, pUq, OpuUqg} {p, —q, OpUa} {p, —q}

{—p, 9, pUqg, OpUag} {-p,q,pUqg} {-p.q}
{—p, g, OpUQq}
{=p, =g, OpUq} {=p, —q}

E: ’) 117

LPTL
- tablea

1S
¢ IS S

the e de for
suck ths satisfied;
or 1st
ther¢” a [Corip %ﬂg SCQC)
rel Yedle from an Timeanode for that for all
until formula In a node In the SCC, there Is
also a node in the SCC containing v, ; or
there is a cycle reachable from an initial node for
such that the for all until formulas In the first

cycle node, there Is also a node In the cycle
containina

118

1PTL

- tableau for satistiability checking
Please use tableau method to show that

pUq =

g Is false.

1) Convert to negation: (pUg)A<>—Q

2) CL((pUq)A<—0)
= {(pUg)A<—a, pUd, OpUq, p, g, O—q, OO }

LPTL

- tableau for satistiability checking
Please use tableau method to show that

pUq E <qis true.

1) Convert to negation: (pUqg)a

2) CL((pUg)AlL_|—Q)
= {(pUg)A[_]—q, pUqg, OpUq, p, q,

—q

—(, Ol J—q }

Pf. In each path that is a model of (pUQ)Al_|—Q, g
must always be satisfied. Thus, pUq is never

fulfilled in the model.
QED

LPTL

- tableau for satistiability checking
¢ Is satisfiable iff in (V,E),

there exists ...

path+cycle< (|CL(@)|+2)|V]
|CL(p)| flags to
check the
until-formulas from
the first cycle node.
nondeterministic

PSPACE can solve it.
PSPACE-complete.

cycle
node

initial

121

CTL model-checking framework

nodel Answer
Yes if the model
g — — guarantees
\%{ the specification
j t No if not.

specification in logics
H,V, y 1y \/!0101U

122

CTL
- model-checking

Given a finite Kripke structure M and a CTL
formula ¢, Is M a model of ¢ ?

usually, M Is a finite-state automata.
PTIME algorithm.

When M is generated from a program with
variables, its size is easily exponential.

123

CTL

- model-checking algorithm

technigues

state-space exploration

0 State-spaces represented as finite Kripke structure
= directed graph

= nodes: states or possible worlds
= arcs: state transitions —

regular behaviors

Usually the state count is astronomical.

124

Kripke structure
- Least fixpoint in modal logics

F R E S E A K
Dark-night murder, strategy I
A suspect will be in the 2nd round Iiff
He/she lied to the police in the 1st round; or
Some one in the 2" round is loyal to him/her
What is the minimal solution to 2nd[] ?
Liar[i] v AA(2nd[j] Loyal-to[j,i]) = 2nd[i]

125

Kripke structure

- Least fixpoint in modal logics
In a dark night, there was a cruel murder.
n suspects, numbered 0 through n-1.

Liar[i] Iff suspect | has lied to the police in the
1st round investigation.

Loyal-to[l,]] iff suspect i is loyal to suspect | in
the same criminal gang.

2nd[i] iff suspect i1 to be in 2nd round
Investigation.

What is the minimal solution to 2nd[] ?

126

Kripke structure

- Greatest fixpoint in modal logics

& H K A

In a dark night, there was a cruel murder.
n suspects, numbered 0 through n-1.

—Liar|i] iff the police cannot prove suspect |
has lied to the police in the 1st round
Investigation.

Loyal-to[l,]] iff suspect i is loyal to |.

2nd[i] iff suspect i1 to be in 2nd round
Investigation.

What Is the maximal solution to — 2nd[] ? 17

Kripke structure
- Greatest fixpoint in modal logics

Dark-night murder, strategy Il
A suspect will not be in the 2nd round Iff
We cannot prove he/she has lied to the police; and
He/she is loyal to someone not in the 2nd round.
What is the maximal solution to — 2nd[] ?
— 2nd[i] = —Liar[ijx FA(—=2nd[j]1 Loyal-tol[i,j])

In comparison:
— 2nd[i] = —Liar[ija Vj#(-=2nd[j]A Loyal-toli,j])

—2ndfi} =—bttarfiirH=(—=2ndjj]=>Loyal-toltj})

— 2nd[i] = —Liar[i]x Vj=A(Loyal-to[i,j] =2 —2nd][j]) 128

Safety analysis

Given M and p (safety predicate), do all states
reachable from initial states in M satisfy p ?

In model-checking:
Is M a model of V

p ?

Or in risk analysis: Is there a state reachable from

Initial states in M satisfy p ?

v p = ﬁ3<>ﬁp = ﬁfltl’ue Uﬁp

129

Reachability analysis: 3$n

Is there a state s reachable from another state s’?
Encode risk analysis
Encode the complement of safety analysis
Most used In real applications
What space S characterizes 3On ?
(M,s En v 3s'(R(s,s')AS’e 3ON)) =P s € IO
Is that all ? No, 3<n=Universe is a solution.
We need the smallest 3.
3<n characterizes a least fixpoint.

130

Kripke structure
- safety analysis

Reachability algorithm in graph theory
Given
a Kripke structure A = (S, Sy, R, L)
a safety predicate n,
find a path from a state in S, to a state in [-n].

Solutions in graph theory
Shortest distance algorithms
spanning tree algorithms

131

Kripke structure
- safety analysis

[* Given A= (S, S, R, L)*/
safety analysis(n) /* using least fixpoint algorithm */ {

for all s, if —neL(s), L(s)=L(s) A |

repeat{ A notation for the
for all s, if 3(s,s’)(eL(s"), possibility of

L(s)=L(s)\A 2

} until no more changes to L(s) for any s.

If there is an s,eS, with eL(sy), return ‘unsafe,’
else return ‘safe.’

}

The procedure terminates since S is finite in the Kripke
structure.

132

‘ Kripke structure
- safety analysis

Least fixpoint in modal logics
iterative expansi

Inevitability analysis

Given M and p (inevitability predicate), do all
computations from initial states in M reach p ?

In model-checking:
Is M a model of VOp ?

Or in avoidability analysis: Is there a computation
from Initial states in M that maintains p ?

134

Inevitability analysis: 31—

Is there a computation that maintains —n?
Encode avoidability analysis
Encode the complement of inevitablility analysis
Most used In real applications

What space S characterizes 3L1—m ?

seS = (s F—m A IS (R(s,s')AS'€S))

Is that all ?
No, S=0 Is a solution. We need the largest S.

So,

—mn characterizes a greatest fixpoint.

135

Kripke structure
- inevitability analysis : V< 1
Given
a Kripke structure A = (S, Sy, R, L)
an inevitability predicate n,
can n be true eventually ?

Example:
Can the computer be started successfully ?
Will the alarm sound in case of fire ?

136

Kripke structure
- inevitability analysis
Strongly connected component algorithm in graph theory
Given
a Kripke structure A = (S, Sy, R, L)
an inevitability predicate n,
find a cycle such that

all states in the cycle are —n
there is a —n path from a state in S, to the cycle.

Solutions in graph theory
strongly connected components (SCC)

137

Kripke structure
- inevitability analysis

v (Turn=0 »>Vv< Turn=1)

138

Kripke structure
- inevitability analysis

Inevitability(n) /* using greatest fixpoint algorithm */ {
for all s, if —=neL(s), L(s)=L(s){3L1-n};
repeat {
for all s, if 300—n eL(s) and V(s,s’)(30-n €L(s")),
L(s)=L(s) - {3Ll-n};
} until no more changes to L(s) for any s.
If there is an s,eS, with 4L1-nelL(s,),
return ‘inevitability not true,’
else return ‘inevitability true.’

}

The procedure terminates since S is finite in the Kripke
structure.

139

‘Kripke structure

- inevitability analysis
Greatest fixpoint in modal logics
iterative elimis

CTL model-checking

The NORMAL form needed in CTL model-
checking:

1. only modal operators

309, 3y, Uy,, 3Ue
2. No modal operators

vOQ, V y, Uy,, Vg, VO, IO
3. No double negation: — —¢
4. No implication: y,;=v,

141

CTL
- model-checking algorithm (1/6)

Given M and o,
1. Convert @ to NORMAL form.
2. list the elements In Cl (@) according to their sizes
PoP1 Py --- Py
for all 0<i<) <n - ¢; is not a subformula of¢p,
2. for 1I=0 to n,

label (¢,)
3. for some Initial states s, of M, if p&ZL(S,), return
"Norl’
4. return Yes!l’

142

CTL
- model-checking algorithm (2/6)

label(¢p) {
case p, return;

case —@, for all s, if oz L(s), L(s) = L(s) u{—@}

casepvy, for all s, if@el(s) oryel(s),
L(s)=L(s)Apvy}

case 300, for all s, if 3(s,s’) with peL(s’),
L(s)=L(s)AFO e}

case 3 vy, Uy, Itp(yy, v,);

case 3LJg, gfp(®);

}

143

CTL
- model-checking algorithm (3/6)

Ifp(v, , v,) /* least fixpoint algorithm */ {
for all s, If v, eL(s), L(S)=L(s) {3y, Uy, };
repeat {
for all s, If v, eL(s) and 3(s,s’)(Iy, Uy, eL(s’)),
L(s)=L(s) {3, Uy, };
} until no more changes to L(s) for any s.

}

The procedure terminates since S is finite in the
Kripke structure.

144

CTL
- model-checking algorithm (4/6)

Least fixpoint in modal logics
iterative expansi

CTL

- model-checking algorithm (5/6)
gfp(y) /* greatest fixpoint algorithm */ {

for all s, If v eL(s), L(s)=L(s) {3
repeat {

U

for all s, if I00wel(s) and V(s,s) @Oy &L(S)),

L(s)=L(s) - 13Lw 1,

} until no more changes to L(s) for any s.

}

The procedure terminates since S is finite in the

Kripke structure.

146

CTL
- model-checking algorithm (6/6)

Greatest fixpoint in modal logics
iterative elimi

‘ (F3O3IpUq) A AP
Labeling funciton:
label the subforu

state. .\‘

true In each

‘ (FO3plg) A ILp
Evaluating 7pUq using least fixpoint

@

149

lteration O

‘ (FO3plg) A ILp
Evaluating “pUcq using least fixpoint
lteration 1 \

lteration 1 \

\

Iteration O
)

‘ (FO3plg) A I0Lp
Evaluating “pUcq using least [ixpoint

Iteration 2 \Iteration 2

Iteration 1\

\

Iteration O
)

| (303plg) A I0p
Evaluating 7O pUqg

| (303plg) A I0p
Evaluating 7/ Jp using oreatest fixpoint
Iteration O

153

Evaluating

Iteration 1
3403pUqg

Iteration 1

S/
3pUq
3403pUqg

154

| (303plg) A I0p
Evaluating 7/ Jp using oreatest fixpoint

Result:
‘}Q

| (303plg) A I0p

Finally, evaluating (7O 7 lg) A [Jp

Taifn)

Workout: labelling 3 (pa 9 q)

CTL

- model-checking problem complexities

The PLTL model-checking problem is PSPACE-
complete.

a definition: Is there a run that satisfies the formula ?
The PLTL without O (modal operator “next”)
model-checking problem is NP-complete.

The model-checking problem of CTL is PTIME-
complete.

The model-checking problem of CTL* is PSPACE-
complete.

158

CTL
- symbolic model-checking with BDD

System states are described with binary
variables.

n binary variables - 2" states

we can use a BDD to describe legal states.
a Boolean function with n binary variables
state(Xy, X5, «eeen. , X,)

159

CTL - symbolic model-checking

with Propositioal logics
Example:

X; X5 X

state(X,, X,, X3) = (X A—X,AXS)

160

CTL - symbolic model-checking

with Propositioal logics

State transition relation as a logic funciton
with 2n parameters

transition(x,, X,, , X

161

CTL - symbolic model-checking

with Propositioal logics

X; X, Xq X'y X5 X3

transition(Xy, X,, X5, X1, X’,, X’5) =
(X A=XAXGAX AX A)
vV (XA AX A= AX A= X)
vV (DAY SA T K A AT AKX)

162

CTL - symbolic model-checking with

Propositioal logics

Path relation also as a logic funciton
with 2n parameters

reach(x,, X,, s Xy X1y X oy veenns X 0)

CTL - symbolic model-checking with

Propositioal logics

X1 Xy X3 X1 Xp X3

reach(x,, X,, X3, X1, X’5,

X'3) =
(X ATXOAX A=Y AX LA)

(X AXOAX A=Y AX A=)
(XA AKA=X A A= X)
(X AXOA = XgA—X 1/\—.x’ AX5)
(—|X1/\—|X2/\X3/\—|X 1/\—.x JAX 3)

< < <K<K KL

_I}\ll\}\zl_l }\3/\ _I}\ 1/\}\ 2/_I }\ 3}
164

Symbolic satety analysis

| : Initial condition with parameters

Xy Xy vevnns , X,
n . safe condition with parameters
X1y Xoy wennns , X,
If IA=(nTA reach(xy, X,, s Xy X1y Xoy vennns , X')
IS not false, change all
o a risk state is reachable. umprimed

a the system is not safe. variables in n
to primed.

165

Symbolic satety analysis
- construction of reach(x;y.ccccey X,y X7 5e0eeeey X))

(X{=X"{ A Ay Xp= X'1)
VAV, oo, Y, (transition(Xy,..eeey Xoy Yiyeeoeees Yi)
A TeaChN(Yy,eeeeeey Ypy X'gyeeeenny X'p)
)
=> reach(Xq,......, Xpy X'yeeneeny X'p)
This Is a least fixpoint for backward analysis.

166

Symbolic satety analysis
- construction of reach(x;y.ccccey X,y X7 5e0eeeey X))

729
transition(Xy,......, Xy, X'gyeeeeeny X))
V= |2 , Ay, (reach(Xy,...... s Xy Ygeneee: , V)
A reach(Yy,eeeey Yoy X' qyeeeneny X))
)
=> reach(Xq,...... s Xy X' qyeennns , X'0)

This Is another least fixpoint for speed-up.

167

Symbolic satety analysis
- construction of reach(x;y.ccccey X,y X7 5e0eeeey X))

729
transition(Xy,......, Xy, X'gyeeeeeny X))
V= |2 , Ay, (reach(Xy,...... s Xy Ygeneee: , V)
A ranSition (Yy,...ce, Yoy Xqyeveeees X'0)
)
=> reach(Xq,...... s Xy X' qyeennns , X'0)

This Is another least fixpoint for forward analysis.

168

Symbolic model-checking
- based on reachability relation

Drawbacks
Reachabillity relation is usually huge.

BDD Is exponential in size to the number of
variables.

State() Is an n-variable relation.

R() and reachable() are both 2n-variable
relations.

In fact, we do model-checking with only
transiton relation.

169

‘ Symbolic satety analysis (backward)

Encode the states with variables x;,X4,...,X..

= the state set as a proposition formula: s(Xy,X,-..,Xg)

= the risk state set as r (X, Xy,-.-,Xp)

= the initial state set as 1(Xg,Xy,-.-,X) umprimed

= the transition set as t(Xy,X1,..., XX g, X 15++,X'1) ;’ggﬁﬂiz_i” Dy

Dy = r(Xg,Xq, -+ X,) AS(XgsX1,---,X0); K= 1;

repeat
b, = by vIAX oIX' ;. IX (E(Kg X g0 Xy X 00X 10 X)A D, T));

K=Kk +1; : :
_ a least fixpoint procedure
until b, = b, ;;

If (b, Al(Xg,X4,...,Xp)) = false, return ‘safe’; else return ‘risky’;

change all

170

Kripke structure
- symbolic safety analysis

\

states: s(X,y,z) = (—XAY A=Z)V(=XA—Y AZ)V(=XAY A—2Z)
V (=XAY AZ)V(XADY A=Z)V(XA—Y AZ)
= (—X)v (XA—y)

Initial state: 1(X,y,z)=—=xA=y A=z

risk state: r(X,y,z)= XA—y A—Z 71

Kripke structure
- symbolic safety analysis

\

transitions: T(x,y,z,X’,y’,2’)=

(= XA=YA—ZA=X A=Y AZ)V (=XA=YAZA—X A=Y A—Z)
V(AXA=YAZA=X AY A=Z)V (=XAYA—ZAX A—Y' A—Z)
V(EXAYA=ZAX A=Y AZYV(SXAYAZAX A=Y A=Z)

172

Symbolic satety analysis (backward)

by = 1(X,y,Z) = XAy A—Z

b, = b, v IXIY'3IZ'(t(X,Y,2,X,Y,Z) Ab,T)
= (XA—Y A=2)Vv AXAY'AZ'(1(X,Y,Z2,X,Y,2") A X' A=Y A=Z')
= (XA—Y A=2)Vv IX'AY'IZ (((—XAYA=Z)V(=XAYAZ))AX A=Y A—Z)
= (XA—Y A—=Z)V(=XAYA—=Z)V(—XAYAZ)

b, = b, v IX3IY'3IZ’(t(X,y,2,X,Y,Z) A b, T)

= (- XAYAZ)V(XA=YA=Z)V(=XAYA=Z)V(—XAYAZ)
b, = b, v IXIY'3Z'(t(X,y,2,X,Y.Z) A b,T)

= (—XAYA=Z)V (—XA=YAZ)V(XA=YA—Z)V(=XAYA—=Z) V(
b, = by v IXIY3IZ'(t(X,Y,2,X,Y,Z) A b T)

= (—XAYAZ)V (—XAYAZ)V(XA=YA=Z)V(=XAYA—Z)V(—XAYAZ)
b, AKY;Z) = (EXA=YA=Z) non-empty intersection

with the initial condition
- risk detected.

fixpoint

‘ Symbolic satety analysis (backward)

One assumption for the correctness!
= Two states cannot be with the same
proposition labeling.

= Otherwise, the collapsing of the states may

cause problem. may need a few propositions
for the names of the states.

174

‘ Symbolic satety analysis (forward)

Encode the states with variables x;,X4,...,X..
= the state set as a proposition formula: s(Xy,X,-..,Xg)
= the risk state set as r (X, Xy,-.-,Xp) e ——
= the initial state set as 1(Xg,Xy,-.-,X) primed
= the transition Set as t(Xg, Xy, XX g X' gy ey X') [ba s
fo = 1(Xgs X1, -+ X1) AS(XgsXys---,Xn); K= 1;
repeat

fo = f i vV(@XoIXq o 3K (UK X g0 s Xy X 00X 100 X)AT D)V

k=k+1;

until f, = f,_;;

If (f, Ar(Xq,Xq,-.-,X,)) = false, return ‘safe’; else return ‘risky’;

umprimed.

175

‘ Symbolic satety analysis (forward)

fo = 1(X,Y,Z) = —=XA—=Y A—Z
f, =f, v (@x3y3z(t(x,y,z,X,y,2) Af)V

= (—XA—Y A—2Z)v (AXTYIZ(H(X,Y,Z,X,Y,Z)) A —XA—YA—Z))V

= (—XA—Y A—Z)Vv(EXTYTZ(—X A=Y AZ' A —XA—=YA—Z))

= (—XA—Y A—Z)V(=X A=Y AZ W

= (—XAY A=Z)V(—XAYAZ) = XAy
f, =1, v (3x3y3z(t(x,y,z,x,y.2) A I = (~xA=y)v(=xAy
f, =1, v @x3y3z(t(X,y,2,X,Y,Z) A D) = (my)V(=XAYA—Z
f, = fy v (@x3y3z(H(X,Y,2,X,Y,Z) A T = (1Y) V(=XAYA—Z
f, AT(XY,Z) = ((Y)V(=XAYA—Z)) A(XA—YA—Z) = (XA—YA—Z)

2)

176

The value

‘Bounded model-checking

of x,, at
state k.

Encode the states with variables Xg i, Xy ;- X%k
= the state set as a proposition formula: s(Xg X1 s+ -1 X k)
= the risk state set as r(Xq ., Xy -+ Xn k)

= the initial state set as 1(Xg g,X{ g,-+-:X1 0)

= the transition set as t(Xg .1, X1 15+ X k11 X0 00 X1 ko -+ % k)

fo = 1(Xg 0:X1 0+ -+1Xn.0) AS(Xg 0:X1 gs---1%n o) K= 1,
repeat
fie = WX k1 X1 -2+ X k1 X0 o X o -+ 1 X i) A1
k=k+1;

until fAr(Xg o Xq k-1 %n i) # false 1. diameter of the state graph
2. explosion up to tens of steps.

When to stop ?

177

‘Bounded model-checking

fo = 1(X,Y,Z) = —XyA—Yo A—Z,
f; = WX0,Y0:Z0:X1:Y1:21) Ao = —XoAYoARZpA—XATY1AZy
fo = UX1,Y1:21:X0,Y2:25) ATy
= XA oA TZeAXATYIAZIA((FXoATYATZ)V (=X AYA—Z,))
f3 = 1(X2,Y2:22,%3,Y3,23) A T,
= —XgA—YgA—ZoA—X ATy AZ,
A (XoAY o AZoA—XgATY3AZS)
V(=XoAYAZoA((XgA—Y3ATZ3) V(XgA—Y3AZ3)))
)
= = XgATY AT ZLgAT X ATYINL

£ [\ [\
13 A 1\X3,Y3,23) = (XgATY3ATL3)
178

‘ Symbolic inevitability analysis

Encode the states with variables x0,x1,...,xn.
= the state set as a proposition formula: s(Xy,X,-..,Xg)
= the negated inevitability state set as b(Xq,Xy,... & el
= the initial state set as i(Xq,Xy,...,X,) umprimed
. variable in b, ,

= the transition set as t(Xg,Xy, ..., XX 0, X 1,...,X') [T
Dy = b(Xg,Xq,---,X) AS(Xg,Xq,---,%,); K= 1;
repeat

b, = B ATX G TX 1 IX (UKo X g s Xy X o X 10w X)AL, T

k =k +1;

until b, = b, ;;

If (b, AI(Xy,Xq,...,X,)) = false, return ‘inevitable’;

else return ‘not inevitable™
179

‘ Symbolic inevitability analysis

Encode the states with variables x0,x1,...,xn.
= the state set as a proposition formula: s(Xy,X,-..,Xg)
= the negated inevitability state set as b(Xq,Xy,... & el
= the initial state set as i(Xq,Xy,...,X,) umprimed
. variable in b, ,

= the transition set as t(Xg,Xy, ..., XX 0, X 1,...,X') [T
Dy = b(Xg,Xq,---,X) AS(Xg,Xq,---,%,); K= 1;
repeat

D, = B A=YX VX o VX = (E(X o X s e s Xy X 00X 10w X)ADL T

k =k +1;

until b, = b, ;;

If (b, AI(Xy,Xq,...,X,)) = false, return ‘inevitable’;

else return ‘not inevitable™
180

Kripke structure
- symbolic inevitability analysy

\

states: s(X,y,z) = (—XAY A=Z)V(=XA—Y AZ)V(=XAY A—2Z)
V (=XAY AZ)V(XADY A=Z)V(XA—Y AZ)
= (—X)v (XA—y)
Initial state: 1(X,y,z)=—=xA=y A=z
non-liveness state: b(x,y,z)= (—=X)v(XA—y AZ) 181

Kripke structure
- symbolic inevitability analysy

\

transitions: T(x,y,z,X’,y’,2’)=

(= XA=YA—ZA=X A=Y AZ)V (=XA=YAZA—X A=Y A—Z)
V(AXA=YAZA=X AY A=Z)V (=XAYA—ZAX A—Y' A—Z)
V(EXAYA=ZAX A=Y AZYV(SXAYAZAX A=Y A=Z)

182

‘ Symbolic inevitability analysis

b0 = b(Xx,y,z) = (=X)v(XA=Y AZ)
bl =b0 A IX3IY'IZ'(T(X,y,z,X’,y’,2") ADQO’)
= (=X)v(XA—y AZ))
A IX3AY'3AZ(T(X,Y,z2,X,Y,2) A ((=X)v(X' A=Y’ AZY))
= ((—X)v(XA=y AZ))A
AX'AY'AZ'(((—XA=YA=Z)V(—=XAYA=Z)V(=XA—=YAZ))
AN(=X)V(X'A=Y'AZ)))
= (—XAYAZ)V(—XAYA—Z)V(—=XA—YAZ)
b2 = bl A IX3AY'3Z'(T(X,y,z,X’,y’,2") ADL)
= (—XAYAZ)V(—XAYA—Z)
b3 =Db2 A IXAY'IZ'(T(X,Y,2,X",\5

Symbolic model-checking

- with real-world programs

Consider transition rules
Guard - Actions
Guard is a propositional formula of state variables.
Actions Is a command of the following syntax.

C:=ACT|{C}|CC|if(B)Celse C|while (B) C
ACT ::=; | goto name; | x=E;

184

Transition rules from programs

w = 0;

X =0;

y = z*Z;

while (X <vy) {
W =W + X*z;
X=X+1;

}

If (w > z*2*2) w = z*7*z;

program

guarded commands
(pc==1) - w = 0; pc=2;
(pc==2) =2 x = 0; pc=3;
(pc==3) 2 y = z*z; pc=4;
(pc==4&&x>=y) > pc=8;
(pc==4&&X < y) - pc=5;
(pc==5) 2> w=w+x*Z; pc=6;
(pc==6) 2> x=x+1; pc=4;
(pc==8) =2 If (w>z*z*z) w= z*z*z,;

185

A state-transition
- represented as a transition rules

8 rules In total:

(al) - w = 0; goto az;

(a2) = x = 0; goto a3;

(a3) =2 y = z*z,; goto a4;
(ad4&&x>=y) > goto a8;
(a4&&x <y) - goto a5;

(ab) = w=w+x*z; goto ab;
(ab) =2 x=x+1; goto a4,

(@a8) - if (w>z*z*z) w= z*z*z; }

186

A state-transition
- represented as a transition rules

al al)->w = 0;

(a2)>x =0; o

a3

R
a4 a5 ab

(@drx>=y)>; (2drx<y)=>; (ad)2w = w+x*z;

(@a8)—2>if(w>z*z*z)w = z*z*z;

a8

a0

187

Transition relation

- from state-transition graphs
Given a set of rules ry, 1, ..., r, of the form

r. when (t,) may Yy o=do; Y 1=d1; -+ Yink=ni

t(X01X1, e ’Xn!X,O’X’l’ "o ’X,n)

= vke[l,m] T A Yk0==0oAY k1 7=01A A Y i ==

N\ /\he[l,n] (X hE{Yko Y1 - Yint=>Xp== X,h)

)

188

Transition relation

- from transition rules.

Given a set of rules for X={x,y,z}

r: when (X<y&& y>2) may y=x+y; x=3;
r,: when (z>=2) may y=x+1,; z=0;

r;: when (x<2) may x=0;

t(X0, X1y -1 X X s X 15+, X 1)

= (XY AY>2 AY'==X+HY A X'==3 A 2'==2)
V(Z>=2 A Yy'==X+1 A 2’==0 A X'==X)

V(X<2 A X'==0 A Y'==y A Z2'==2)

189

Transition relation

- from state-transition graphs

In general, transition relation Is expensive to
construct.

Can we do the following state-space
construction

X 3K IX (UK Xy e Xy X 9 X 1w X)ADL, T))
directly with the GCM rules ?

Yes, It Is possible.

190

‘ On-the-tly precondition calculation

- with transition rules.
Given a setof rulesry, r,, ..., r,, of the form

re: when (t,) may y, 4=do; ¥k 1=d1; -5 Y k=i

X 3K IX (UK X e 1 Xy X 0K 152 X)ADT))
= vke[l,m] (Tk N\

Y 0TVk 1+ FYink (b VAN he[0,nK] yk,h::dh)

_However, transition rules are more complex than that.

191

On-the-tly precondition calculation

with transition rules.
X AN IX (T(Xgs X oo X X g X s oo X) A(DT))

= Vierm (T A YoV 1+ IVink (O A Anconkg Yen==0dh))
pre(b) {
r = false;
fork=1tom, {
let f = b;
for h=nk to O, f = 3y, (f Ay, n==d});
r=rv(t Af);
}

return (r);

}

192

‘ On-the-tly precondition calculation
- with transition rules.

Given a set of rules for X={x,y,z}

r:w
ro: W
r3: W

nen (Xx<y&& y>2) may y=z; x=3;
nen (z>=2) may y=x+1; z=7,

nen (x<2) may z=0;

X o IX' 1. X (R Xgs oo 1 X X 9o X 150X) A(X<AAZ>5) T)
= (XY A Y>2 A JYyAX(X<4AAZ>5 A Yy==Z A X==3))
V(Zz>=2 A ydz(X<4Arz>5 A y==X+1 A 2==7))
V(X<2 A Jz(X<4Az>5 A z==0))

(X<Y A Y>2 A Z235) v(Z2>=2 A X<4)v(X<2 A dz(false))
(XY A Yy>2 A Z2>5) v(z>=2 A X<4)

193

‘ On-the-tly precondition calculation

with transition rules.
Given a setof rulesry, r,, ..., r,, of the form
r. when (t,) may s,;

X o 3IX' 1 IX (1Ko X gy Xy X 9 X e X A DT))
=V i (rk A pre(s, ,b))

precondition A general propositional formula
procedure

What is pre(s,b

A transition statement

Precondition calculation

- with substituion.
Given a set of rules ry, 1, ..., r,, of the form
r. when (t,) may s,;

What is pre(s,b) ?

pre(x=E;, b) = b[x/E]7

EX 1. b:(X==y+2 A X<4Az>5) t0 SIX=X+Z;
(X==y+2 A X<4AAZ>D) [XIX+2Z] = X+Z2==y+2 A X+Z<4AZ>5

EX 2. b:(X==y+2 A X<4Az>5) t0 S:X=5;

(X==y+2 A X<4AZ>D5) [X/5] = 5==y+2 A 5<4AZ>5

Ex 3. b:(X==y+2 A X<4Az>5) t0 S: X=2*X+1;
(X==y+2 A X<4AZ>D) [X[2*X+1] = 2*X+1==y+2 A 2*X+1<4AZ>5

195

‘ On-the-tly precondition calculation
with transition rules.

Given a setof rulesry, r,, ..., r,, of the form
r. when (t,) may S,;
: new expression obtained from b by
What is pre(s) b) ? replacing every occurrence of x with E.

= pre(x = E;, b) = b[x/E]

EX. the precondition to x=x+z;

[X/x+Z]
= pre(s;Ss,, b) = pre(s,, pre(s,, b))l cre i ariess

= pre(if (B) s,else s,) = (BApre(s,, b))v(—=BAapre(s,,b))
= pre(while (B) s, b) =....

196

On-the-tly precondition calculation

with transition rules.
Given a setof rulesry, r,, ..., r,, of the form
r. when (t,) may s,;

What is pre(s,b) ?
pre(while (K) s, b) = formula L,vL, for

L,: those states that reach —KAb with finite steps of s

through states in K; and

L,: those states that never leave K with steps of s.

197

‘ On-the-tly precondition calculation
with transition rules.

L,: those states that reach —KAb with finite steps of

s through states in K
W, = —Kab; k = 1;
repeat
Wy = W, v(Kapre(s, wy4));
k=Kk +1;
until w, = w,4;
return w,,;

198

Precondition to b W, = —Knb k = 1

repeat

through while (K) s; = i ™™

until wy, = w, ;;

Example: D=X==2 Ay == return w,;
while (X <y) X = x+1;

L1 computation.
W, = X>=y A X==2 A y==3 =false ; k = 1,
W, = false v (x<y A pre(x=x+1, false));

= false v (x<y A false);

= false;

199

‘ On-the-tly precondition calculation

with transition rules.
Given a setof rulesry, r,, ..., r,, of the form
pre(while (K) s, b)
L,: those states that never leave K with steps of s.
w, = K; k =1;
repeat
w, = Kapre(s, w,_4);
kK=K +1;
until w, = w,_4;
return w,;

200

Precondition to b Wo=K; k=1,

repeat

through while (K) s; = ko™ ™

Example: ety
while (X<y && x>0) X = x+1;
L2 computation.
W, = X<YAx>0 ; k = 1;
W, = X<YAX>0 A pre(x=x+1, x<yax>0)

= X<YAX>0 A X+1<yax+1>0 = x>0 A X+1<y
W, = X+1<yAax>0 A pre(x=x+1, x+1<yax>0)

= X+1<yAX>0 A X+2<yAX+1>0 = x>0 A X+2<y
non-terminating for algorithms and protocols!

201

Precondition to b Wo=K; k=1,

repeat

through while (K) s; = ks

Example: return w;
while (x>y && x>0) X = x+1;
L2 computation.
W, = X>yAx>0 5 k = 1;
W, = X>YyAx>0 A pre(x=x+1, x>yAx>0)

= X>YAX>0 A X+15YAX+1>0 = x>y A x>0
terminating for algorithms and protocols!

202

Precondition to b W, = —Knb k = 1

repeat

through while (K) s; = i ™™

until wy, = w, ;;

Example: b = Xx==2Ay==3 return w;
while (x>y && x>0) x = x+1;
L, computation.
Wy = (X<=YVX<=0)AX==2Ay==3 = X==2Ay==3;
W, = (X==2Ay==3)v(X>yAx>0Apre(x=x+1,x==2Ay==3));
= (X==2Ay==3)Vv(X>YAX>0AX==1Ay==3);
= (x==2Ay==3) v false
= X==2Ay==

203

‘ Symbolic satety analysis (backward)
- without transition relation

Encode the states with variables x;,X4,...,X..

the state set as a proposition formula: S(xy,X4,...,X;,)
the risk state set as —n(Xg,Xy,---,X)

the initial state set as 1(Xg,Xy,-.-,X)

the precondition procedure pre(Xy,Xy,-..,Xg)

Dy = —N(XgsXqs---1Xn) AS(Xg,Xq,---:%p); K= 1;
repeat

b, = b,V pre(by,.,);
k=k+1;

M MEI P a least fixpoint procedure

If (b, AI(Xgp.X1,...,X,)) = false, return ‘safe’; else return ‘risky’;

204

CTL

- symbolic model-checking algorithm

label() {
case true, return s(Xy,...,X,);

case p, return pAS(Xy,...,X,);
case —@, return s(Xy,...,X,) A —label(o);
case @vy, return s(X4,...,X,) A (label(¢) v label(y));
case 30, return
S(Xqy..45Xp)
ATX o 3X . TX (UK X e Xy X 0K 1., X) Alabel(@)T);
case 3 p, Uy, , return Ifp(label(v,), label(\y.,));

case -

}

o, return gfp(label(p));

205

Bisimulation Framework

model Answer
Yes if the model
Design .—» IS equivalent to
1 DRSS, the specification
No if not.

|\/|ns gtion Spec| tion

206

Bisimulation-checking

K=(S, Sy R, AP, L)

K=(S, Sy, R, AP, L")

Note K and K’ use the same set of atomic

propositions AP.

BeSxS’ is a bisimulation relation between K and

K’ iff for every B(s, s'):

0 L(s) = L'(s’) (BSIM 1)

o If R(s, s,), then there exists s,’ such that R’(s’, s;’) and
B(s,, S;). (BISIM 2)

o If R(s', s,'), then there exists s, such that R(s, s,) and
B(s,, S,). (BISIM 3)

207

‘ Bisimulations

208

‘ Bisimulations

209

‘ Bisimulations

210

‘ Bisimulations

211

‘ Examples

212

‘ Examples

Unwinding preserves bisimulation

L] _>

213

‘ Examples

215

Examples
[
&

‘ Examples

‘ Examples

‘ Examples

‘ Examples

Bisimulations

K=(S, Sy, R, AP, L)
K’'=(S’,5,’, R’, AP, L)
K and K’ are bisimilar (bisimulation equivalent) iff

there exists a bisimulation relation B S x S’
between K and K’ such that:

o For each s, in S, there exists s,” in Sy’ such that
B(sy , Sp’)-

ao Foreach sy’ in Sy’ there exists s, in S, such that
B(sy , Sp’)-

221

The Preservation Property.

K=(S, Sy R, AP, L)
K'=(S", Sy, R’, AP, L’)
B = SxS’, a bisimulation.
Suppose B(s, s’).

FACT: For any CTL* (or proposition mu-
calculus) formula y (over AP), K,skFy Iff

K’,S’Fy.
If K’ iIs smaller than K this is worth something.

222

Simulation Framework

model Answer
Yes if the model
_..—> satisfies the
implementatio specification
t No if not.

Mon specifeation

223

Simulation-checking

K=(S, Sy R, AP, L)

K'=(S", S, R, AP, L)

Note K and K’ use the same set of atomic
propositions AP.

B €S xS’Is asimulation relation between

K and K’ iff for every B(s, s’):

o L(s)=L(s’) (BSIM 1)

o If R(s, s,), then there exists s;” such that R'(S’,
s,’) and B(s;, S;'). (BISIM 2)

224

Simulations

K=(S, Sy, R, AP, L)

K’'=(S’,5,’, R’, AP, L)

K Is simulated by (implements or refines) K’ iff there
exists a simulation relation B ¢ SxS’ between K and

K’ such that for each s, In S, there exists s;’ In Sy’
such that B(s, , Sp’)-

225

Bisimulation Quotients

K=(S, S, R, AP, L)
There Is a maximal simulationBc S x S.
o Let R be this bisimulation.

a[s]={s’ | sRs’}.

R can be computed “easily”.

K’ = K /R Is the bisimulation quotient of K.

226

Bisimulation Quotient

K=(S, S5y, R, AP, L)

s]={s’ | sRs’}.

K’=K/R=(S", S, R”, AP,L").

1S ={s]|s28S}

0 S’ ={[sql | Sp2 S}

0 R*={([s], [s’]) | R(s1, 81) , s1€ls], 5,"€[s’]}
o L’([s]) = L(s).

227

=D

/@\
\Vl

& &

‘ Examples

‘ Examples

229

‘ Examples

Facts About a (Bi)Simulation

The empty set is always a (bi)simulation
If R, R’ are (bi)simulations, sois R U R’

Hence, there always exists a maximal (bi)simulation:

o Checking if DB,=DB,: compute the maximal bisimulation R,
then test (root(DB,),root(DB,)) in R

231

Kripke structure
- simulation-checking

[* Given model A = (S, S,, R, L), spec. A'=(S’, S’y, R’, L") */
Simulation-checking(A,A") /* using greatest fixpoint algorithm */ {
Let B={(s,s’) | s€S, s'eS’, L(s)=L'(s")};
repeat {
B=B-{(s,s)](s,s)eB, 3(s,t)eRV(s',I')eR’((t,t')¢B)};
} until no more changes to B.
If there Is an sy;eS, with Vs’,eS’,((Sq,S’g) ¢ B),
return ‘no simulation,’
else return ‘simulation exists.’

}

The procedure terminates since B is finite in the Kripke
structure.

232

Kripke structure
- bisimulation-checking

[* Given model A = (S, S,, R, L), spec. A'=(S’, S’y, R’, L") */
Bisimulation-checking(A,A’) /* using greatest fixpoint algorithm */ {
Let B={(s,s’) | s€S, s'eS’, L(s)=L'(s")};
repeat {
B=B-{(s,s)](s,s)eB, 3(s,t)eRV(s',I')eR’((t,t')¢B)};
B=B-{(s,s)](s,s)eB, 3(s’,t)eR'V(s,1)eR((t,t')¢B)};
} until no more changes to B.
If there Is an s,eS, with Vs’,€S’,((Sq,S’p) ¢ B),
return ‘no simulation,’
If there Is an s',eS’, with Vs e S,((S(,S’g) ¢ B),
return ‘no simulation,’
else return ‘simulation exists.’

} 233

(B1)Simulation

- complexities
Bisimulation: O((m+n)log(m+n))
Simulation: O(m n)

In contrast, finding a graph homeomorphism
IS NP-complete.

234

Symbolic simulation-checking

Encode the states with variables
Q XgiXq,---,X, (for the model) and

QO Yoi¥Yis -2 Y (fOr the spec.)
Usually there are shared variables

between {Xy,X;,....X, } and {ys,Y1, ---, Yim}-
L(s)=L’(s’) means that the shared variables are of the same values.

the state sets as proposition formulas:
O S(Xg:Xqs---Xn) & S(YoiY1s---:Ym)
the Initial state set as
O 1(XgiXqy--- %) & 1Yo Y1r--:Yim)
the transition set as
0 RXgXgy-e - XpoX 0 X 15-:%0) & R'(Yo:Y1r-- Y Y 0. Y 15+ 1Y 1)

235

‘ Symbolic simulation-checking

BO = /\L(xo,xl xn) =L(y0,y1,...,ym) S(XOixl"'”Xn) /\S(y(),yl,---,ym);
for (k =1, B,= false; B, # B, _;; k=k+1)
B, =B, A —3X3X ... 3X (
R(Xg,X1, -1 Xps X' 9:X 15--,X'1)
A=YV Ty (
R'(YorY1r-Yms Yo 1Y m) A (B T)

)).
e change all
If (1(X0s Xy, -+ X0)Z3YoTY1 .- TYm (BY)), umprimed
return ‘no simulation’: variable in B ;

to primed.

else return ‘a simulation exists’

236

‘ Symbolic simulation-checking
- an example

spec
{x,y,z}
model

0]0)
) 200
01 010 011
10 11 100 110

» S(X,y)=true, s'(X,y,Z) = —zVv(—XAYAZ)
m 1(XY) = —XAY, I'(X,Y,Z) = < XA—YA—Z
= Rxy,xy)=......, R(x,y,z,x,y,z2) =

237

‘ Symbolic simulation-checking
- an example

spec
{x,y,z}
model

00 000
{x,y}
01 010 011
10 11 100 110

n R(X,Y,X,Y) = (- XA=YA=X'AY') V(=XAYAX A=Y')
V (XAYAXAY') V(XASYA—=X ATY) VIXAYA—=X AY)
= R'(X,Y,2,X,Y",Z2) = (- XA=YA—ZA=X'AY')
V (—XAY AmZAX A=Y A=Z') V(AXAYAZAX AY' A—Z')

V(XA=YA=Z A=X A=Y AZ') VIXAY A—ZA—X A=Y A—Z)

238

Symbolic simulation-checking
- an example

B, = S(X,Y)AS'(X,Y,Z) = —ZVv(—XAYAZ)
B, = (—zVv(—XAYAZ)) A — IXAY’ (
((=XA=YA=X'AY’) V(=XAYAX AY')
V (XAYAXAY') V(XASYA—X ATY) VIXAYA—X AY)
)
A — AX'3y'3Z’ (
((- XA=YA=ZAXAY)
V (—XAY AZAX' AY ATZ) V(AXAYAZAX AY A—Z)
V (XA—YA—=Z A=X'A—Y A—ZY) VIXAY A—ZA—X A=Y A—Z))
) A (FZV(=XAY'AZY)))
= (—z2Vv(—XAYAZ)) A = XY (((-XAY AZ A=XAY') V (—XAYAX'AY')
V(XA—Y AZ A=X' A1) V(XAY AZ A=X'A—Y)))

= (ZV(=XAYAZ)) A A(SXAZY AZVXAYIVXAZY AZ) VIXAY AZ))

Symbolic simulation-checking
- an example

B, = (—zV(—XAYAZ)) A —((—XA=Y AZ)V(=XAY)V(XA—Y AZ) V(XAY AZ))
= (—2ZV(—XAYAZ)) A =((—XA=Y AZ)V(=XAY)V(XA—Y AZ) V(XAY AZ))

= (—2ZV(—XAYAZ)) A =(Zv(—=XAY A—Z))

= (—2z2Vv(—XAYAZ)) A =(Z) A =(—XAY A—Z)

= (—2z2Vv(—XAYAZ)) A =(Z) A =(—XAY A—Z)

= (= XAYA—Z)V (XA— YAZ)V(XAY A —Z)

240

Symbolic simulation-checking
- an example

B, = ((-XA—=YA—=Z)V (XA— YA=Z)V(XAY A —Z)) A — XY’ (
((XA=YA=XAY') V(=XAYAX A=Y')
V (XAYAXAY') V(XASYA=X ATY) VIXAYA—X A=Y)
)
A — AX'3Ay'3Z’ (
((- XAYA=ZAXAY)
V (XAY AZAX A—Y ATZ) V(AXAYAZAX AY A—Z)
V (XA=YA=Z A=X AAY A—ZY) VIXAY AZA=X A=Y A—ZT)
) A (X A=Y AZ)V (XA Y A=Z)VIXAY A —2Z7)))
= ((—=XA=YA—Z)V (XA= YAZ)V(XAY A —Z)) A — XY (
((=XA=YA=XAY') V(XA=YAZA=X ATY') V(XAYAZA—X A=Y')))
= ((—=XA=YA=Z)V(XA— YAZ)V(XAY A=Z2)A=((XASY)VIXA—YAZ)V(XAYAZ)))

241

Symbolic simulation-checking
- an example

BZ
= ((—=XA=YA=Z)V(XA— YAZ)V(XAY A—Z2)A=((—XA=Y)VIXA—YAZ)V(XAYAZ)))
= (XA—= YA=Z)V(XAY A—Z)

Here, the Initial state-
pair has been
elimianted.

242

Tool & library available

REDLIB version 3 at Sourceforge

http://sourceforge.net/projects/redlib/
o GUI for timed automata editor & simulator
o Timed automata model/simulation-checking
o Pre/post-condition calculation
o Dense-space manipulation

RED version 8

0 atimed automata model/simulation-checker
o an LHA parametric analyzer

o built on top of REDLIB.

243

	Temporal Logics �& Model Checking�
	Specifications, descriptions, �& verification
	Formal specification �& automated verification
	Why formal specifications ?
	Why automated verification ?
	Specification & Verification ?
	投影片編號 7
	投影片編號 8
	Bugs in complex software
	Three technologies in verification
	Sum of the 3 angles = 180 ?
	Model-checking�- a general framework for verification of hw/sw systems
	Models & Specifications �- formalism
	Models & Specifications�- fairness assumptions
	Model-checking�- frameworks in our lecture
	Kripke Structure
	Kripke structure
	Kripke structure� - syntax
	Kripke Model� - syntax
	Kripke structure � - semantics
	Control and data variables
	Program  Kripke structure �- Data variables
	Program  Kripke structure �- Control Locations
	Program  Kripke structure �- States and Transitions
	Program  Kripke structure �- States and Transitions
	Kripke structure �- Transition Relation
	Transition relation�- A synchronous mod 8 counter
	Kripke Structure� - example
	Kripke Structure� - example
	Kripke Structure� - example
	Kripke Structure� - example
	Workout � - Kripke Structure
	Kripke Structure� - an example
	Kripke Structure� - example
	Kripke Structure� - workout
	Automata & Kripke structure
	Concurrent programs
	Kripke Structure �- for a concurrent system
	Kripke Structure �- for a concurrent system
	Concurrent systems�- Interleaving semantics
	Kripke Structures�- composition for a concurrent system
	Kripke Structures�- Cartesian product method
	Kripke structure�- Practical algorithm for construction
	Kripke Structures�- on-the-fly method
	History of Temporal Logic
	Framework
	Outline
	BNF, syntax definitions�Note!
	BNF, syntax definitions
	BNF, syntax definitions�- derivation trees (from top down)
	BNF, syntax definitions�- parsing trees (from bottom up)
	Temporal Logics：Catalog
	Temporal Logics
	Amir Pnueli�1941
	LPTL (PTL, LTL)�Linear-Time Propositional Temporal Logic
	LPTL
	Syntax definitions�Note!
	LPTL� - syntax
	LPTL� - syntax
	LPTL� - syntax
	LPTL� - syntax
	LPTL� - syntax
	LPTL� - syntax
	2011/06/30 stopped here.
	LPTL� - semantics
	LPTL� - semantics
	LTL �- examples
	Branching Temporal Logics
	投影片編號 71
	Branching Temporal Logic
	Branching Temporal Logic
	CTL(Computation Tree Logic)
	CTL(Computation Tree Logic)� - syntax
	CTL � - semantics
	CTL � - semantics
	CTL � - semantics
	CTL � - semantics
	CTL � - semantics
	CTL � - semantic
	CTL � - semantics
	CTL � - semantics
	CTL � - examples (I)
	CTL � - examples (II)
	CTL � - examples (III)
	CTL � - examples (IIIa)
	CTL�- important classes
	CTL*� - syntax
	CTL*� - examples (1/4)
	投影片編號 91
	CTL*� - semantics
	CTL*� - semantics
	Expressiveness
	Expressiveness
	 Expressiveness� - branching-time logics
	Expressiveness� - CTL*, example (I)
	Expressiveness� - CTL*, example (II)
	CTL*� - examples (2/4)
	CTL*� - examples (2/4)
	CTL*� - Workout
	CTL*� - examples (3/4)
	CTL*� - Workout
	CTL*� - examples (4/4)
	Expressiveness� - CTL*
	Expressiveness� - CTL*
	Expressiveness� - CTL*
	Expressiveness� - CTL*
	Verification
	Satisfiability-checking framework
	投影片編號 111
	投影片編號 112
	LPTL� - tableau for satisfiability checking
	LPTL� - tableau for satisfiability checking
	LPTL� - tableau for satisfiability checking
	LPTL� - tableau for satisfiability checking
	LPTL� - tableau for satisfiability checking
	LPTL�- tableau for satisfiability checking
	LPTL�- tableau for satisfiability checking
	LPTL�- tableau for satisfiability checking
	LPTL� - tableau for satisfiability checking
	CTL model-checking framework
	CTL � - model-checking
	CTL � - model-checking algorithm
	Kripke structure� - Least fixpoint in modal logics
	Kripke structure� - Least fixpoint in modal logics
	Kripke structure� - Greatest fixpoint in modal logics
	Kripke structure� - Greatest fixpoint in modal logics
	Safety analysis
	Reachability analysis: 
	Kripke structure � - safety analysis
	Kripke structure � - safety analysis
	Kripke structure � - safety analysis
	Inevitability analysis
	Inevitability analysis: 
	Kripke structure � - inevitability analysis :  η
	Kripke structure � - inevitability analysis
	Kripke structure � - inevitability analysis
	Kripke structure � - inevitability analysis
	Kripke structure � - inevitability analysis
	CTL model-checking
	CTL � - model-checking algorithm (1/6)
	CTL � - model-checking algorithm (2/6)
	CTL � - model-checking algorithm (3/6)
	CTL � - model-checking algorithm (4/6)
	CTL � - model-checking algorithm (5/6)
	CTL � - model-checking algorithm (6/6)
	(pUq)  p�Labeling funciton: �label the subforumulae true in each state.
	(pUq)  p� Evaluating pUq using least fixpoint
	(pUq)  p� Evaluating pUq using least fixpoint
	(pUq)  p� Evaluating pUq using least fixpoint
	(pUq)  p� Evaluating pUq
	(pUq)  p� Evaluating p using greatest fixpoint
	(pUq)  p� Evaluating p using greatest fixpoint
	(pUq)  p� Evaluating p using greatest fixpoint
	(pUq)  p� Finally, evaluating (pUq)  p
	Workout: labelling (p q)
	CTL � - model-checking problem complexities
	CTL �- symbolic model-checking with BDD
	CTL - symbolic model-checking with Propositioal logics
	CTL - symbolic model-checking with Propositioal logics
	CTL - symbolic model-checking with Propositioal logics
	CTL - symbolic model-checking with Propositioal logics
	CTL - symbolic model-checking with Propositioal logics
	Symbolic safety analysis
	Symbolic safety analysis�- construction of reach(x1,......, xn, x’1,......, x’n)
	Symbolic safety analysis�- construction of reach(x1,......, xn, x’1,......, x’n)
	Symbolic safety analysis�- construction of reach(x1,......, xn, x’1,......, x’n)
	投影片編號 169
	Symbolic safety analysis (backward)
	Kripke structure � - symbolic safety analysis
	Kripke structure � - symbolic safety analysis
	Symbolic safety analysis (backward)
	Symbolic safety analysis (backward)
	Symbolic safety analysis (forward)
	Symbolic safety analysis (forward)
	Bounded model-checking
	Bounded model-checking
	Symbolic inevitability analysis
	Symbolic inevitability analysis
	Kripke structure � - symbolic inevitability analysis
	Kripke structure � - symbolic inevitability analysis
	Symbolic inevitability analysis
	Symbolic model-checking �- with real-world programs �
	Transition rules from programs�
	A state-transition �- represented as a transition rules
	A state-transition �- represented as a transition rules
	Transition relation �- from state-transition graphs
	Transition relation �- from transition rules.
	Transition relation �- from state-transition graphs
	On-the-fly precondition calculation�- with transition rules.
	On-the-fly precondition calculation� with transition rules.
	On-the-fly precondition calculation�- with transition rules.
	On-the-fly precondition calculation� with transition rules.
	Precondition calculation�- with substituion.
	On-the-fly precondition calculation� with transition rules.
	On-the-fly precondition calculation� with transition rules.
	On-the-fly precondition calculation� with transition rules.
	Precondition to b � through while (K) s;
	On-the-fly precondition calculation� with transition rules.
	Precondition to b � through while (K) s;
	Precondition to b � through while (K) s;
	Precondition to b � through while (K) s;
	Symbolic safety analysis (backward)�- without transition relation
	CTL � - symbolic model-checking algorithm
	Bisimulation Framework
	Bisimulation-checking
	Bisimulations
	Bisimulations
	Bisimulations
	Bisimulations
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Examples
	Bisimulations
	The Preservation Property.
	Simulation Framework
	Simulation-checking
	Simulations
	Bisimulation Quotients
	Bisimulation Quotient
	Examples
	Examples
	Examples
	Facts About a (Bi)Simulation
	Kripke structure � - simulation-checking
	Kripke structure � - bisimulation-checking
	(Bi)Simulation�- complexities
	Symbolic simulation-checking
	Symbolic simulation-checking
	Symbolic simulation-checking�- an example
	Symbolic simulation-checking�- an example
	Symbolic simulation-checking�- an example
	Symbolic simulation-checking�- an example
	Symbolic simulation-checking�- an example
	Symbolic simulation-checking�- an example
	Tool & library available

