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Preface: What and Why

This lecture provides a quick tour of the basic concepts and
results in the theory of computation that are considered essential
for the study of formal verification.

Formal verification hinges on precise modeling of the system
under verification, and classical computation models offer a good
starting point of how such precise modeling may be attained.

The common complexity classes are also useful when it comes to
measure the difficulty of various verification problems.
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The Simplest Model of Computing Machinery

q0 q1

b

a

a

b

This is a finite-state automaton, which recognizes/generates
strings over {a, b} that end with an a.

It is called “finite-state”, as it uses a fixed finite amount (just
one bit here) of memory, excluding the machine/program
instructions and the input.
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Simple Yet Useful
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This finite-state automaton recognizes binary numbers (strings
over {0, 1}) that are multiples of 3.

Accepted binary numbers: 0, 11, 110, etc.

Rejected binary numbers: 1, 10, 101, etc.
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Finite-State Automata

Though state diagrams are easier to grasp intuitively, we need
the formal definition, too.

A formal definition is precise so as to resolve any uncertainties
about what is allowed in a finite-state automaton.

It also provides notation for concise and clear expression.

A finite(-state) automaton (DFA) is a 5-tuple (Q,Σ, δ, q0,F ),
where

1. Q is a finite set of states,
2. Σ is a finite set of symbols (the alphabet),
3. δ : Q × Σ −→ Q is the transition function,
4. q0 ∈ Q is the start state, and
5. F ⊆ Q is the set of accept (or final) states.
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Finite-State Automata (cont.)
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Call the above automaton M3. Formally, M3 = (Q,Σ, δ, q1,F ), where

1. Q = {q0, q1, q2},
2. Σ = {0, 1},

3. δ is given as

0 1
q0 q0 q1

q1 q2 q0

q2 q1 q2

,

4. q0 is the start state, and

5. F = {q0}.
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Languages

We say that A is the language of a machine M , written as
L(M) = A, if A is the set of all strings that machine M accepts.

We also say that M recognizes A (or M accepts A).

For example, L(M3) = {w | w is a binary number divisible by 3}.
A machine is said to accept the empty language ∅ if it accepts
no strings.

The set of all (finite) strings over an alphabet Σ is
conventionally denoted by Σ∗.

So, for a machine M with Σ as the alphabet, L(M) ⊆ Σ∗.
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Formal Definition of Computation

We already have an informal idea of how a machine computes, i.e.,
how a machine accepts or rejects a string. Below is a formalization.

Let M = (Q,Σ, δ, q0,F ) be a finite automaton and
w = w1w2 . . .wn be a string over Σ.

A run of M over w is a sequence r of states r0, r1, . . . , rn such
that

1. r0 = q0 and
2. δ(ri ,wi+1) = ri+1 for i = 0, 1, . . . , n − 1.

The run r is accepting if rn ∈ F ; otherwise, it is rejecting.

We say that M accepts w if the run of M over w is accepting.
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Nondeterminism

In a nondeterministic machine, several choices may exist for the
next state after reading the next input symbol in a given state.

The difference between a deterministic finite automaton (DFA)
and a nondeterministic finite automaton (NFA):

# of next states input symbols
(per symbol)

DFA 1 from Σ
NFA 0, 1, or more from Σ or Σ ∪ {ε}

Note: sometimes we allow an NFA to make a transition without
consuming any input symbol, which is indicated by labeling the
transition with an ε. Such “ε-transitions” are convenient but do
not add expressive power. In this case, the set of input symbols
becomes Σ ∪ {ε}.
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How Does an NFA Compute?

1. If there are multiple choices for the next state, given the next
input symbol, the machine splits into multiple copies, all moving
to their respective next states in parallel.

2. If any copy is in an accept state at the end of the input, the
machine accepts the input string.

3. If there are input symbols remaining, the preceding steps are
repeated.
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Determinism vs. Nondeterminism

start

accept or reject

start

...

reject

accept
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Definition of an NFA

The transition function of an NFA takes a state and an input
symbol and produces a set of possible next states.

Let P(Q) be the power set of Q.

A nondeterministic finite automaton (NFA) is a 5-tuple
(Q,Σ, δ, q0,F ), where

1. Q is a finite set of states,
2. Σ is a finite alphabet,
3. δ : Q × Σ −→ P(Q) is the transition function,

(alternatively, δ ⊆ Q × Σ× Q, called the transition relation)
4. q0 ∈ Q is the start state, and
5. F ⊆ Q is the set of accept states.

We have chosen to disallow “ε-transitions” in this definition.
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Equivalence of NFAs and DFAs

Two machines are equivalent if they recognize the same language.

Theorem

Every NFA has an equivalent DFA.

Let N = (Q,Σ, δ, q0,F ) be an NFA.

Construct a DFA M = (Q ′,Σ, δ′, q′0,F
′) to recognize L(N) as

follows:

1. Q ′ = P(Q).
2. For R ∈ Q ′ and a ∈ Σ, let δ′(R, a) =

⋃
r∈R

δ(r , a).

3. q′0 = {q0}.
4. F ′ = {R ∈ Q ′ | R contains some element of F}.

The above construction is conventionally referred to as the
subset construction.
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An NFA and Its Equivalent DFA

q0 q1

a, b

a
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{q1}∅
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Regular Languages

A language is called a regular language if it can be recognized
(is recognizable) by some DFA.

There are a few alternatives for defining regular languages.

We will see some of them and show that they are all equivalent.

From the equivalence of NFAs and DFAs, we can immediately
conclude that a language recognizable by an NFA is regular.
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Myhill-Nerode Theorem

Given a language L ⊆ Σ∗, define a binary relation RL over Σ∗ as
follows:

xRLy iff ∀z ∈ Σ∗(xz ∈ L↔ yz ∈ L)

RL can be shown to be an equivalence relation.

Theorem (Myhill-Nerode)

With RL defined as above, the following are equivalent:

1. L is regular.

2. RL is of finite index.

Moreover, the index of RL equals the number of states in the smallest
DFA that recognizes L.

Note: the index of an equivalence relation is the number of
equivalence classes it induces.
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Regular Operations

In arithmetic, the basic objects are numbers and the tools for
manipulating them are operations such as + and ×.

In the theory of computation, the objects are languages and the
tools include operations specifically designed for manipulating
them. We consider three operations called regular operations.

Let A and B be languages. The three regular operations are
defined as follows:

Union: A ∪ B = {x | x ∈ A or x ∈ B}.
Concatenation: A ◦ B = {xy | x ∈ A and y ∈ B}.
Star: A∗ = {x1x2 . . . xk | k ≥ 0 and each xi ∈ A}.

We will use these operations to study the properties of finite
automata and regular languages.
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Closure Properties

Theorem

The class of regular languages is closed under the union operation
(i.e., if A1 and A2 are regular languages, so is A1 ∪ A2).

Note: in fact, the class of regular languages is closed under negation
and intersection and hence all Boolean operations.

Theorem

The class of regular languages is closed under the concatenation
operation.

Theorem

The class of regular languages is closed under the star operation.
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Regular Expressions

We can use the regular operations (union, concatenation, star)
to build up expressions, called regular expressions, to describe
languages.

The value of a regular expression is a language.

For example, the value of (0 ∪ 1)0∗ is the language consisting of
all strings starting with a 0 or 1 followed by any number of 0’s.
(The symbols 0 and 1 are shorthands for the sets {0} and {1}.)
Regular expressions have an important role in computer science
applications involving text.
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Formal Definition of a Regular Expression

We say that R is a regular expression if R is

1. a for some a ∈ Σ,
2. ε,
3. ∅,
4. (R1 ∪ R2), where R1 and R2 are regular expressions,
5. (R1 ◦ R2), where R1 and R2 are regular expressions, or
6. (R∗1 ), where R1 is a regular expression.

(Note: a definition of this type is called an inductive definition).

We write L(R) to denote the language of R .
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Example Regular Expressions

Let Σ be {0, 1}.
0∗10∗ = {w | w has exactly a single 1}.
Σ∗1Σ∗ = {w | w has at least one 1}.
Σ∗001Σ∗ = {w | w contains 001 as a substring}.
(ΣΣ)∗ = {w | w is a string of even length}.
0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 =
{w | w starts and ends with the same symbol}.
(0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}.
∅∗ = {ε}.
R ∪ ∅ = R , R ◦ ε = R , R ◦ ∅ = ∅, but R ∪ ε may not equal R .
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Regular Expressions vs. Finite Automata

Theorem

A language is recognizable by an NFA if and only if some regular
expression describes it.

The “if” part can easily be proven by induction:

Languages described by the basic regular expressions (a, ε, and
∅) are clearly recognizable by NFAs.

For the compound regular expressions ((R1 ∪ R2), (R1 ◦ R2), and
R∗1 ), the proof is similar to that for the closure of regular
languages under regular operations.

Corollary

A language is regular if and only if some regular expression describes
it.
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Regular Expressions vs. Finite Automata (cont.)

q0

a

q1

b

(a) NFA for a∗ (b) NFA for b∗

q0 q1

a

ε

b

q0 q1

a

b

b

(c) NFA with an ε-transition (d) NFA for a∗b∗

Note: ε-transitions make it easier to “connect” two automata.
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Nonregular Languages

To understand the power of finite automata we must also
understand their limitations.

Consider the language B = {0n1n | n ≥ 0}.
To recognize B , a machine will have to remember how many 0’s
have been read so far. This cannot be done with any finite
number of states, since the number of 0’s is not bounded.

C = {w | w has an equal number of 0’s and 1’s} is not regular,
either.

But, D = {w | w has equal occurrences of 01
and 10 as substrings} is regular.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Elementary Computation Theory FLOLAC 2011 25 / 69



The Pumping Lemma

Lemma

If A is a regular language, then there is a number p (the pumping
length) such that, if s is any string in A and |s| ≥ p, then s may be
divided as s = xyz satisfying:

1. for each i ≥ 0, xy iz ∈ A,

2. |y | > 0, and

3. |xy | ≤ p.

Let M = (Q,Σ, δ, q0,F ) be a DFA that recognizes A.

We assign the pumping length p to be |Q|.
Any string s in A of length at least p has an accepting run with
two identical states; the input consumed between two closest
identical states may serve as the needed y .
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Example Nonregular Languages

B = {0n1n | n ≥ 0}.
C = {w | w has an equal number of 0’s and 1’s}.
D = {0i1j | i > j}.
E = {1n2 | n ≥ 0}.
F = {w#w | w ∈ {0, 1}∗}.
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Context-Free Languages

We have seen languages that cannot be described by any regular
expression (or recognized by any finite automaton).

Context-free grammars (CFGs) are a more powerful method for
describing languages; they were first used in the study of natural
languages.

They play an important role in the specification and compilation
of programming languages.

The collection of languages associated with context-free
grammars are called the context-free languages (CFLs).
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Context-Free Grammars

Basically, a context-free grammar (CFG) consists of a collection
of substitution rules (or productions) such as:

A → 0A1
A → B
B → #

or alternatively
A → 0A1 | B
B → #

Symbols A and B here are called variables; the other symbols 0,
1, and # are called terminals.

A grammar describes a language by generating each string of the
language through a derivation.

For example, the above grammar generates the string 000#111:
A⇒ 0A1⇒ 00A11⇒ 000A111⇒ 000B111⇒ 000#111.
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A Parse Tree

The parse tree for 000#111 in grammar G1:

A

A

A

A

B

#000 1 1 1
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Definition of a CFG

A context-free grammar is a 4-tuple (V ,Σ,R , S):

1. V is a finite set of variables.
2. Σ (Σ ∩ V = ∅) is a finite set of terminals.
3. R is a finite set of rules, each of the form A→ w , where A ∈ V

and w ∈ (V ∪ Σ)∗.
4. S ∈ V is the start symbol.

If A→ w is a rule, then uAv yields uwv , written as uAv ⇒ uwv .

We write u ⇒∗ v if u = v or a sequence u1, u2, . . . , uk (k ≥ 0)
exists such that u ⇒ u1 ⇒ u2 ⇒ . . .⇒ uk ⇒ v .

The language of the grammar is {w ∈ Σ∗ | S ⇒∗ w}.
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Example CFGs

G3 = ({S}, {(, )},R , S), where R contains

S → (S) | SS | ε.

L(G3) is the language of all strings of properly nested
parentheses.

G4 =
({〈EXPR〉, 〈TERM〉, 〈FACTOR〉}, {a,+,×, (, )},R , 〈EXPR〉),
where R contains

〈EXPR〉 → 〈EXPR〉+ 〈TERM〉 | 〈TERM〉
〈TERM〉 → 〈TERM〉 × 〈FACTOR〉 | 〈FACTOR〉

〈FACTOR〉 → (〈EXPR〉) | a
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Pushdown Automata

Pushdown automata (PDAs) are like nondeterministic finite
automata but have an extra component called a stack.

A stack is valuable because it can hold an unlimited amount of
information.

In contrast with the finite automata situation, nondeterminism
adds power to the capability that pushdown automata would
have if they were allowed only to be deterministic.

Pushdown automata are equivalent in power to context-free
grammars.

To prove that a language is context-free, we can give either a
context-free grammar generating it or a pushdown automaton
recognizing it.
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Recognize a CFL by a PDA

B = {0n1n | n ≥ 0}.
Push the 0’s one by one to the stack.
For each 1 read, pop out one 0.
When the input is exhausted, accept if the stack is empty.
Reject, otherwise.

C = {w | w has an equal number of 0’s and 1’s}.
Push the input symbol to the stack if it is the same as top of
the stack or if the stack is empty.
Pop out the symbol on top of the stack if it is opposite to the
input symbol.
When the input is exhausted, accept if the stack is empty.
Reject, otherwise.
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Definition of a PDA

A pushdown automaton (PDA) is a 6-tuple (Q,Σ, Γ, δ, q0,F ),
where Q, Σ, Γ, and F are all finite sets, and

1. Q is the set of states,
2. Σ is the input alphabet,
3. Γ is the stack alphabet,
4. δ : Q × Σε × Γε −→ P(Q × Γε) is the transition function,

(note: Σε = Σ ∪ {ε} and Γε = Γ ∪ {ε})
5. q0 ∈ Q is the start state, and
6. F ⊆ Q is the set of accept states.

Note that a PDA as defined is nondeterministic.
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State Diagram of a PDA

The state diagram of MB for B = {0n1n | n ≥ 0}:

q0 q1

q2q3

ε, ε→ $
0, ε→ 0

1, 0→ ε

1, 0→ ε
ε, $→ ε
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Computation of a PDA

Let M = (Q,Σ, Γ, δ, q0,F ) be a PDA and w be a string over Σ.

We say that M accepts w if we can write w = w1w2 . . .wn,
where wi ∈ Σε, and sequences of states r0, r1, . . . , rn ∈ Q and
strings s0, s1, . . . , sn ∈ Γ∗ exist such that:

1. r0 = q0 and s0 = ε,
2. for i = 0, 1, . . . , n − 1, (ri+1, b) ∈ δ(ri ,wi+1, a) and si = at and

si+1 = bt for some a, b ∈ Γε and t ∈ Γ∗.
3. rn ∈ F .
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Equivalence of PDAs and CFGs

Theorem

A language is context free if and only if some pushdown automaton
recognizes it.

Recall that a context-free language is one that can be described
with a context-free grammar.

The proof is by converting any context-free grammar into a
pushdown automaton that recognizes the same language and
vice versa.
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The Pumping Lemma for CFL

Lemma

If A is a context-free language, then there is a number p such that, if
s is a string in A and |s| ≥ p, then s may be divided into five pieces,
s = uvxyz, satisfying the conditions: (1) for each i ≥ 0, uv ixy iz ∈ A,
(2) |vy | > 0, and (3) |vxy | ≤ p.

Let G be a CFG that generates A.

Consider a “sufficiently long” string s in A that satisfies the
following condition:
The parse tree for s is very tall so as to have a long path on
which some variable symbol R of G repeats.

Take p to be b|V |+1, where V is the set of variables of G . A
string of length at least p is sufficiently long.
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Non-Context-Free Languages

B = {anbncn | n ≥ 0}.
C = {aibjck | 0 ≤ i ≤ j ≤ k}.
D = {w#w | w ∈ {0, 1}∗}.
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Turing Machines

Finite and pushdown automata are too restricted to serve as
models of general-purpose computers.

A Turing machine (TM) is similar to a finite automaton but with
an unlimited and unrestricted memory—an infinite tape. It has a
tape head that can read and write symbols and move around on
the tape.

A Turing machine can do everything that a real computer (as we
know it) can do.

Nonetheless, there are problems that no Turing machines, and
hence no real computers, can solve.
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An Example Turing Machine

Let D = {w#w | w ∈ {0, 1}∗}. A Turing machine Mw#w for D
(with input on the infinite tape) may work as follows:

1. Zig-zag across the tape to corresponding positions on either side
of the # symbol to check whether these positions contain the
same symbol. If they do not, or if no # is found, reject.
Cross off symbols as they are checked.

2. When all symbols to the left of # have been crossed off, check
for any remaining symbols to the right of the #. If any symbols
remain, reject; otherwise, accept.
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Formal Definition of a TM

A Turing machine (TM) is a 7-tuple (Q,Σ, Γ, δ, q0, qaccept, qreject),
where Q, Σ, and Γ are all finite sets and

1. Q is the set of states,

2. Σ is the input alphabet, where the blank symbol  6∈ Σ,

3. Γ is the tape alphabet, where  ∈ Γ and Σ ⊆ Γ,

4. δ : Q × Γ −→ Q × Γ× {L,R} is the transition function,

5. q0 ∈ Q is the start state,

6. qaccept ∈ Q is the accept state, and

7. qreject ∈ Q is the reject state.

Note: L instructs the tape head to move left and R to move right.
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State Diagram of a TM
The state diagram of Mw#w (partial):

q0

q7

qaccept

q1 q2

q3 q4

q5

q6

#→ R
0→ x , R 1→ x , R

0, 1→ R

#→ R

0, 1→ R

#→ R

x → R

t → R

x → R

0→ x , L

x → R

1→ x , L

x → L

#→ L

0, 1→ L

x → R
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Snapshots/Configurations of a TM

A few snapshots/configurations of Mw#w on input 011000#011000:

0 1 1 0 0 0 # 0 1 1 0 0 0  . . .
q0

x 1 1 0 0 0 # 0 1 1 0 0 0  . . .
q1

x 1 1 0 0 0 # 0 1 1 0 0 0  . . .
q3

x 1 1 0 0 0 # x 1 1 0 0 0  . . .
q5

x 1 1 0 0 0 # x 1 1 0 0 0  . . .
q6

x x 1 0 0 0 # x 1 1 0 0 0  . . .
q0

x x x x x x # x x x x x x  . . .
qaccept
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Variants of Turing Machines

Alternative definitions of Turing machines abound, including
versions with multiple tapes or with nondeterminism. They are
called variants of the Turing machine model.

The original model and its reasonable variants all have the same
power—they recognize the same class of languages.

To show that two models are equivalent, we simply need to show
that we can simulate one by the other.
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The Definition of Algorithm

All models of a general-purpose computer turn out to be at best
equivalent in power to the Turing machine, as long as they
satisfy certain reasonable requirements.

This has an important philosophical corollary: Even though there
are many different computational models, the class of algorithms
that they describe is unique.

The Church-Turing thesis says that the intuitive notion of an
algorithm corresponds to the formal definition of a Turing
machine.
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Turing-Recognizability and Decidability

A language is Turing-recognizable (also called recursively
enumerable) if some Turing machine recognizes it.

A Turing machine can fail to accept an input by entering the
qreject state and rejecting, or by looping (not halting).

A machine is called a decider if it halts on all inputs. A decider
that recognizes some language is said to decide the language.

A language is Turing-decidable, or simply decidable (also
called recursive), if some Turing machine decides it.
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Example Decidable Languages/Problems

ADFA = {〈B ,w〉 | B is a DFA that accepts w}.
ANFA = {〈B ,w〉 | B is an NFA that accepts w}.
AREX = {〈R ,w〉 | R is a regular expression that generates w}.
EDFA = {〈A〉 | A is a DFA and L(A) = ∅}.
EQDFA = { 〈A,B〉 | A and B are DFAs and L(A) = L(B) }.
ACFG = {〈G ,w〉 | G is a CFG that generates w}.
ECFG = {〈G 〉 | G is a CFG and L(G ) = ∅}.

Note: 〈O1,O2, . . . ,Ok〉 denotes the encoding of objects
O1,O2, . . . ,Ok as a string.
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Classes of Languages

Chomsky Grammar Language Computation
Hierarchy Model

Type-0 Unrestricted R.E. Turing Machine

N/A (no common name) Recursive Decider

Type-1 Context-Sensitive Context-Sensitive Linear Bounded

Type-2 Context-Free Context-Free Pushdown

Type-3 Regular Regular Finite

Recall that Recursively Enumerable (R.E.) ≡ Turing-recognizable
and Recursive ≡ Decidable (Turing-decidable).

Linear Bounded Automata is a restricted type of Turing machine
wherein the tape head is not permitted to move off the portion
of the tape containing the input.
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Undecidability

An important finding in computation theory is that there are
specific problems that are algorithmically unsolvable.

One such problem is testing whether a Turing machine accepts a
given input string.

This result demonstrates that computers are limited in a very
fundamental way.

Unsolvable problems are not necessarily esoteric. Some ordinary
problems that people want to solve may turn out to be
unsolvable.

For example, the general problem of software verification is not
solvable by computer.
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Example Undecidable Languages/Problems

ATM = {〈M ,w〉 | M is a TM and M accepts w}.
HALT TM = {〈M ,w〉 | M is a TM and M halts on w}.
ETM = {〈M〉 | M is a TM and L(M) = ∅}.
ALLCFG = {〈G 〉 | G is a CFG and L(G ) = Σ∗}.
OVERLAPCFG = {〈G1,G2〉 |
G1 and G2 are CFGs where L(G1) ∩ L(G2) 6= ∅}.
CONTAINCFG = {〈G1,G2〉 |
G1 and G2 are CFGs where L(G1) ⊆ L(G2)}.
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Turing-Unrecognizable Languages

Theorem

If a language L and its complement L both are Turing-recognizable,
then L is decidable.

A TM that simulates the TM for L and that for L in parallel is a
decider for L.

Let ATM = {〈M ,w〉 | M is a TM and M does not accept w}.
Since ATM is Turing-recognizable but not decidable, a corollary
follows:

Corollary

ATM is not Turing-recognizable.
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Mapping (Many-One) Reducibility

Language A is mapping reducible (many-one reducible) to
language B , written A ≤m B , if there is a computable function
f : Σ∗ −→ Σ∗, where for every w ,

w ∈ A⇐⇒ f (w) ∈ B .

M_A

f M_B
w f(w) yes/no

(computable func.)

This provides a way to convert questions about membership
testing in A to membership testing in B .
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Reducibility and Decidability

Theorem

If A ≤m B and B is decidable, then A is decidable.

Let M be a decider for B and f a reduction from A to B . A
decider N for A works as follows.

N = “On input w :

1. Compute f (w).
2. Run M on input f (w) and output whatever M outputs.”

Corollary

If A ≤m B and A is undecidable, then B is undecidable.
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Rice’s Theorem

Let P be a set of Turing machine descriptions.

P is nontrivial if it contains some, but not all, TM descriptions.

P is said to be a property about the languages recognized by
Turing machines if, for any two TMs M1 and M2 such that
L(M1) = L(M2), 〈M1〉 ∈ P iff 〈M2〉 ∈ P , i.e., P does not
distinguish TMs that recognize the same language.

Theorem (Rice)

Any nontrivial property about the languages recognized by Turing
machines is undecidable.
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Time Complexity

Let M be a deterministic TM that halts on all inputs.

The running time or time complexity of M is the function
f : N −→ N , where f (n) is the maximum number of steps that
M uses on any input of length n.

If f (n) is the running time of M , we say that M runs in time
f (n) or that M is an f (n) time Turing machine.

The running time of a nondeterministic TM N is the function
f : N −→ N , where f (n) is the maximum number of steps that
N uses on any branch of its computation on any input of length
n.
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Time Complexity Classes

Let t : N −→ R+ be a function.

Define the time complexity classes as follows:

TIME(t(n)) = {L | L is a language decided by an O(t(n)) time
Turing machine}.
NTIME(t(n)) = {L | L is a language decided by an O(t(n))
time nondeterministic Turing machine}.

P =
⋃

k TIME(nk).

EXP =
⋃

k TIME(2nk
).

NP =
⋃

k NTIME(nk).

Apparently, P ⊆ EXP and P ⊆ NP.
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Space Complexity

Let M be a deterministic TM that halts on all inputs.

The space complexity of M is the function f : N −→ N ,
where f (n) is the maximum number of tape cells that M scans
on any input of length n.

If f (n) is the space complexity of M , we say that M runs in
space f (n).

The space complexity of a nondeterministic TM N is the
function f : N −→ N , where f (n) is the maximum number of
tape cells that N scans on any branch of its computation on any
input of length n.
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Space Complexity Classes

Let f : N −→ R+ be a function.

Define the space complexity classes as follows:

SPACE(f (n)) = {L | L is a language decided by an O(f (n))
space Turing machine}.
NSPACE(f (n)) = {L | L is a language decided by an O(f (n))
space nondeterministic Turing machine}.

PSPACE =
⋃

k SPACE(nk).

NPSPACE =
⋃

k NSPACE(nk).

Apparently, PSPACE ⊆ NPSPACE.
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Complexity Classes of Complements

The complement of a language L ⊆ Σ∗, written as L, is defined
to be Σ∗ − L; in other words, x ∈ L iff x 6∈ L.

For a complexity class C, define

coC = {L | L ∈ C}.

For a deterministic complexity class C, we have coC = C.

Consider coNP = {L | L is in NP}.
P ⊆ coNP.
If L ∈ P, then L ∈ P ⊆ NP and hence L ∈ coNP.
There exist languages in NP ∩ coNP (e.g., the problem of
checking wether a number is prime), i.e., NP ∩ coNP 6= ∅.
Whether coNP = NP is open.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Elementary Computation Theory FLOLAC 2011 61 / 69



Relation between Complexity Classes

Theorem

P ⊆ NP
coNP

⊆ PSPACE = NPSPACE ⊆ EXP.

PSPACE = NPSPACE follows from Savitch’s Theorem, which
says NSPACE(f (n)) ⊆ SPACE(f 2(n)).

We also know that P 6= EXP.

So, at least one of the containments must be proper, but we do
not know which one.

Most researchers believe all the containments are proper.
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Polynomial Time Reducibility

When problem A is efficiently reducible to problem B , an
efficient solution to B can be used to solve A efficiently.

A function f : Σ∗ −→ Σ∗ is a polynomial time computable
function if some polynomial time Turing machine M , on every
input w , halts with just f (w) on its tape.

Language A is polynomial time mapping reducible
(polynomial time reducible) to language B , written A ≤p B , if
there is a polynomial time computable function f : Σ∗ −→ Σ∗,
where for every w ,

w ∈ A⇐⇒ f (w) ∈ B .

Polynomial time reducibility is a transitive relation.
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Polynomial Time Reducibility (cont.)

M_A

f M_B
w f(w) yes/no

(det. polynomial)
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Hardness and Completeness

Let C be a complexity class such that P ⊆ C.

A language B is C-hard if every A in C is polynomial time
reducible to B .

A language is C-complete if it is in C and is also C-hard.

C-complete problems are the hardest in the class C, ignoring
polynomial time differences.

From the transitivity of polynomial time reducibility, a theorem
follows:

Theorem

If A is C-complete and A ≤p B for some B ∈ C, then B is
C-complete.

We have restricted to C that contains P, as the above
concepts/results would make little sense for complexity classes
beneath P.
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NP-Completeness and coNP-Completeness

Let SAT = {〈φ〉 | φ is a satisfiable Boolean formula}.

Theorem

SAT is NP-complete.

Let VALIDITY = {〈φ〉 | φ is a valid Boolean formula}.

Theorem

VALIDITY is coNP-complete.
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PSPACE-Completeness

A fully quantified Boolean formula is a quantified Boolean
formula where each Boolean variable is bound, e.g.,
∀x∃y((x ∨ y) ∧ (x ∨ y)).

Every fully quantified Boolean formula is either true or false,
e.g., the formula ∀x∃y((x ∨ y) ∧ (x ∨ y)) is true, but
∃y∀x((x ∨ y) ∧ (x ∨ y)) is false.

Let
TQBF = {〈φ〉 | φ is a true fully quantified Boolean formula}.

Theorem

TQBF is PSPACE-complete.
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Concluding Remarks

The material summarized here, if fully expanded, would require
one full semester to cover.

In particular, we have omitted almost all proofs.

If you have never taken a course or done a self-study on theory
of computation, you should try to look up some of the proofs.
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