
Program Construction and Reasoning

Shin-Cheng Mu

2010 Formosan Summer School on Logic, Language, and Computation
June 28 – July 9, 2010

Part I

Hoare Logic
So, what is this course about?

• I am going to teach you how to write programs.

• But you program much more than I do. What
about programming could I possibly teach you?

1 Introduction: On Programs
Correctness

Programming Language Theory?
It has always been, and still is, hard to talk to

people about my research.

• “It’s called ‘programming language’.”

• “Like, making computers understand natural
languages?”

• “Well, no... I mean the languages we use to com-
municate to computers. We design better pro-
gramming language concepts to make program-
ming easier.”

• “. . . surely it is the easiest to program in natural
languages?”

• “Err, no. In fact we are trying to make program-
ming more mathematical.”

• “. . . and you call that an improvement?”

Correctness?
Or I could try to explain that our concern is about

“correctness.”

• “And what does that mean?”

• “That a program meets its specification.”

• (totally confused) “A program meets . . . what?”

• “Ok, I mean to ensure that a computer does what
it is supposed to do.”

• “Doesn’t a computer always do what it is in-
structed to do?”

1.1 The Maximum Segment Sum
Problem

Maximum Segment Sum

• Given a list of numbers, find the maximum sum
of a consecutive segment.

– [−1, 3, 3,−4,−1, 4, 2,−1] ⇒ 7

– [−1, 3, 1,−4,−1, 4, 2,−1] ⇒ 6

– [−1, 3, 1,−4,−1, 1, 2,−1] ⇒ 4

• Not trivial. However, there is a linear time algo-
rithm.

•
−1 3 1 −4 −1 1 2 −1
3 4 1 0 2 3 2 0 0 (up+ right) ↑ 0
4 4 3 3 3 3 2 0 0 up ↑ right

A Simple Program Whose Proof is Not

• The specification: max { sum (i, j) | 0 ≤ i ≤ j ≤
N }, where sum (i, j) = a[i]+a[i+1]+ . . .+a[i].

– What we want the program to do.

• The program:

s = 0; m = 0;

for (i=0; i<=N; i++) {

s = max(0, a[j]+s);

m = max(m, s);

}

– How to do it.

• They do not look like each other at all!

• Moral: programs that appear “simple” might
not be that simple after all!

1

Programming, and Programming Languages

• Correctness: that the behaviour of a program is
allowed by the specification.

• Semantics: defining “behaviours” of a program.

• Programming: to code up a correct program!

• Thus the job of a programming language is to
help the programmer to program,

– either by making it easy to check that
whether a program is correct,

– or by ensuring that programmers may only
construct correct programs, that is, disal-
lowing the very construction of incorrect
programs!

Verification v.s. Derivation

• Verification: given a program, prove that it is
correct with respect to some specification.

• Derivation: start from the specification, and at-
tempt to construct only correct programs!

Dijkstra: “to prove the correctness of a
given program, was in a sense putting the
cart before the horse. A much more promis-
ing approach turned out to be letting cor-
rectness proof and program grow hand in
hand: with the choice of the structure of
the correctness proof one designs a program
for which this proof is applicable.”[Dij74]

“The only effective way to raise the con-
fidence level of a program significantly is
to give a convincing proof of its correct-
ness. But one should not first make the
program and then prove its correctness, be-
cause then the requirement of providing the
proof would only increase the poor program-
mer’s burden. On the contrary: the pro-
grammer should let correctness proof and
program grow hand in hand.” [Dij72]

• What happened so far is that theoretical devel-
opment of one side benefits the other.

• We focus on verification today, and talk about
derivation tomorrow.

1.2 The Binary Search Challenge

Can you Implement Binary Search?

Given a sorted array of N numbers and a key to
search for, either locate the position where the key
resides in the array, or report that the value does not
present in the array, in O(logN) time.

• You would not expect it to be a hard program-
ming task.

• Jon Bentley [Ben86, pp. 35-36], however, noted:

“I’ve assigned this problem in
courses at Bell Labs and IBM. Pro-
fessional programmers had a couple of
hours to convert the above descrip-
tion into a program in the language of
their choice; . . . 90% of the program-
mers found bugs in their programs.

. . . Knuth points out that while the
first binary search was published in
1946, the first published binary search
without bugs did not appear until
1962.”

• Mike Taylor, owner of a popular blog
The Reinvigorated Programmer, re-
cently conducted this experiment again:
http://reprog.wordpress.com/2010/04/19/

are-you-one-of-the-10-percent/

Give It a Try?

• Bentley: “The only way you’ll believe this is by
putting down this column right now and writing
the code yourself.”

• Given: an array a[0, N) of N elements,

• that is sorted: (∀i, j : 0 ≤ i < j < N : a[i] ≤
a[j]).

• Find i such that a[i] = K, or report that K is
not in the array.

2 Program Verification using
Hoare Logic

The Guarded Command Language

In this course we will talk about program construc-
tion using Dijkstra’s calculus. Most of the materials
are from Kaldewaij [Kal90].

2

• A program computing the greatest common di-
visor:

|[con A,B : int {0 < A ∧ 0 < B}
;var x, y : int ;

x, y := A,B;
do y < x → x := x− y
[] x < y → y := y − x

od
{x = y = gcd(A,B)}

]|.

• Assignments denoted by :=; do denotes loops
with guarded bodies.

• Assertions delimited in curly brackets.

The Hoare Triple

• The state space of a program is the states of all
its variables.

– E.g. state space for the GCD program is
(int × int).

• The Hoare triple {P}S {Q}, operationally, de-
notes that the statement S, when executed in a
state satisfying P , terminates in a state satisfy-
ing Q.

• Perhaps the simplest statement: {P} skip {Q}
iff. P ⇒ Q.

– {X > 0 ∧ Y > 0} skip {X ≥ 0}.
– Note that the annotations need not be “ex-

act.”

The Hoare Triple

• {P}S {true} expresses that S terminates.

• {P}S {Q} and P0 ⇒ P implies {P0}S {Q}.

• {P}S {Q} and Q ⇒ Q0 implies {P}S {Q0}.

• {P}S {Q} and {P}S {R} equivales {P}S {Q ∧
R}.

• {P}S {Q} and {R}S {Q} equivales {P ∨
R}S {Q}.

• More on these “healthiness” conditions of Hoare
triples in the next lecture.

2.1 Assignments

Substitution

• P [E/x]: substituting free occurrences of x in P
for E.

• We do so in mathematics all the time. A for-
mal definition of substitution, however, is rather
tedious.

• For this lecture we will only appeal to “common
sense”:

– E.g. (x ≤ 3)[x− 1/x] ⇔ x−1 ≤ 3 ⇔ x ≤ 4.

– ((∃y : y ∈ N : x < y) ∧ y < x)[y + 1/y]

⇔ (∃y : y ∈ N : x < y) ∧ y + 1 < x.

– (∃y : y ∈ N : x < y)[y/x]

⇔ (∃z : z ∈ N : y < z).

• The notation [E/x] hints at “divide by x and
multiply by E.” In the refinement calculus, sub-
stitution is closely related to assignments, thus
some also write [x := E].

Substitution and Assignments

• Which is correct:

1. {P}x := E {P [E/x]}, or
2. {P [E/x]}x := E {P}?

• Answer: 2! For example:

{(x ≤ 3)[x+ 1/x]}x := x+ 1 {x ≤ 3}
⇔ {x+ 1 ≤ 3}x := x+ 1 {x ≤ 3}
⇔ {x ≤ 2}x := x+ 1 {x ≤ 3}.

2.2 Sequencing

Catenation

• {P}S;T {Q} equivals that there exists R such
that {P}S {R} and {R}T {Q}.

• Verify:

|[var x, y : int ;

{x = A ∧ y = B}
x := x− y;
{y = B ∧ x+ y = A}
y := x+ y;
{y − x = B ∧ y = A}
x := y − x;
{x = B ∧ y = A}

]|.

3

2.3 Selection

If-Conditionals

• Selection takes the form if B0 → S0 [] . . . [] Bn →
Sn fi.

• Each Bi is called a guard; Bi → Si is a guarded
command.

• If none of the guards B0 . . . Bn evaluate to true,
the program aborts. Otherwise, one of the
command with a true guard is chosen non-
deterministically and executed.

• To annotate an if statement:

{P}
if B0 → {P ∧B0}S0 {Q}
[] B1 → {P ∧B1}S1 {Q}
fi
{Q,Pf },

where Pf : P ⇒ B0 ∨B1.

Binary Maximum

• Goal: to assign x ↑ y to z. By definition, z =
x ↑ y ↔ (z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z.

• Try z := x. We reason:

((z = x ∨ z = y) ∧ x ≤ z ∧ y ≤ z)[x/z]

⇔ (x = x ∨ x = y) ∧ x ≤ x ∧ y ≤ x

⇔ y ≤ x,

which hinted at using a guarded command: y ≤
x → z := x.

• Indeed:

{true}
if y ≤ x → {y ≤ x} z := x {z = x ↑ y}
[] x ≤ y → {x ≤ y} z := y {z = x ↑ y}
fi
{z = x ↑ y}.

On Understanding Programs

• There are two ways to understand the program
below:

if B00 → S00 [] B01 → S01 fi;
if B10 → S10 [] B11 → S11 fi;

:
if Bn0 → Sn0 [] Bn1 → Sn1 fi.

• One takes effort exponential to n; the other is
linear.

• Dijkstra: “. . . if we ever want to be able to com-
pose really large programs reliably, we need a
programming discipline such that the intellec-
tual effort needed to understand a program does
not grow more rapidly than in proportion to the
program length.” [Dijnd]

2.4 Loop and loop invariants

Loops

• Repetition takes the form do B0 →
S0 [] . . . [] Bn → Sn od.

• If none of the guards B0 . . . Bn evaluate to true,
the loop terminates. Otherwise one of the com-
mands is chosen non-deterministically, before the
next iteration.

• To annotate a loop (for partial correctness):

{P}
do B0 → {P ∧B0}S0 {P}
[] B1 → {P ∧B1}S1 {P}

od
{Q,Pf },

where Pf : P ∧ ¬B0 ∧ ¬B1 ⇒ Q.

• P is called the loop invariant. Every loop should
be constructed with an invariant in mind!

Linear-Time Exponentiation

|[con N {0 ≤ N}; var x, n : int ;

x, n := 1, 0
{x = 2n ∧ n ≤ N}
;do n ̸= N →

{x = 2n ∧ n ≤ N ∧ n ̸= N}
x, n := x+ x, n+ 1
{x = 2n ∧ n ≤ N,Pf1}

od
{x = 2N ,Pf2}

]|

Pf1:

(x = 2n ∧ n ≤ N)[x+ x, n+ 1/x, n]

⇔ x+ x = 2n+1 ∧ n+ 1 ≤ N

⇔ x = 2n ∧ n < N

4

Pf2:

x = 2n ∧ n ≤ N ∧ ¬(n ̸= N)

⇒ x = 2N

Greatest Common Divisor

• Known: gcd(x, x) = x; gcd(x, y) = gcd(y, x − y)
if x > y.

• |[con A,B : int {0 < A ∧ 0 < B};
var x, y : int ;

x, y := A,B
{0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B)}
;do y < x → x := x− y

[] x < y → y := y − x
od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

• (0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B))[x− y/x]
↔ 0 < x− y ∧ 0 < y ∧ gcd(x− y, y) = gcd(A,B)
⇐ 0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B) ∧ y < x

A Weird Equilibrium

• Consider the following program:

|[var x, y, z : int

{true, bnd : 3× (x ↑ y ↑ z)− (x+ y + z)}
;do x < y → x := x+ 1

[] y < z → y := y + 1
[] z < x → z := z + 1

od
{x = y = z}

]|.

• If it terminates at all, we do have x = y = z.
But why does it terminate?

1. bnd ≥ 0, and bnd = 0 implies none of the
guards are true.

2. {x < y ∧ bnd = t}x := x+ 1 {bnd < t}.

Repetition
To annotate a loop for total correctness:

{P, bnd : t}
do B0 → {P ∧B0}S0 {P}
[] B1 → {P ∧B1}S1 {P}

od
{Q},

we have got a list of things to prove:

1. B ∧ ¬B0 ∧ ¬B1 ⇒ Q,

2. for all i, {P ∧Bi}Si {P},

3. P ∧ (B1 ∨B2) ⇒ t ≥ 0,

4. for all i, {P ∧Bi ∧ t = C}Si {t < C}.

E.g. Linear-Time Exponentiation

• What is the bound function?

|[con N {0 ≤ N}; var x, n : int ;

x, n := 1, 0
{x = 2n ∧ n ≤ N, bnd : N − n}
;do n ̸= N →

x, n := x+ x, n+ 1
od
{x = 2N}

]|

• x = 2n ∧ n ∧ n ̸= N ⇒ N − n ≥ 0,

• {. . .∧N−n = t}x, n := x+x, n−1 {N−n < t}.

E.g. Greatest Common Divisor

• What is the bound function?

|[con A,B : int {0 < A ∧ 0 < B};
var x, y : int ;

x, y := A,B
{0 < x ∧ 0 < y ∧ gcd(x, y) = gcd(A,B),
bnd : |x− y|}

;do y < x → x := x− y
[] x < y → y := y − x

od
{x = gcd(A,B) ∧ y = gcd(A,B)}

]|

• . . . ⇒ |x− y| ≥ 0,

• {. . . 0 < y∧y < x∧|x−y| = t}x := x−y {|x−y| <
t}.

2.5 Summary

We have the following rules for constructs of the
guarded command language.

• {P} skip {Q} ↔ [P ⇒ Q].

• {P}x := E {Q} ↔ [P ⇒ Q[E/x]] and P im-
plies that E is defined.

5

• {P}S;T {Q} ↔ (∃R :: {P}S {R} ∧
{R}T {Q}).

• {P} if B0 → S0 [] B1 → S1 fi {R} equivals

1. [P ⇒ B0 ∨B1] and

2. {P ∧B0}S0 {Q} and {P ∧B1}S1 {Q}.

• {P}do B0 → S0 [] B1 → S1 od {Q} follows
from

1. [P ∧ ¬B0 ∧ ¬B1 ⇒ Q],

2. {P ∧B0}S0 {P} and {P ∧B1}S1 {P}, and
3. there exists an integer function bnd on the

state space such that

(a) [P ∧ (B0 ∨B1) ⇒ bnd ≥ 0],

(b) {P ∧B0 ∧ bnd = C}S0 {t < C}, and
(c) {P ∧B1 ∧ bnd = C}S1 {t < C}.

Statements of the guarded command language satisfy
the following rules:

• {P}S {false} ↔ [P ↔ false],

• {P}S {Q} ∧ [P0 ⇒ P] ⇒ {P0}S {Q},

• {P}S {Q} ∧ [Q ⇒ Q0] ⇒ {P}S {Q0},

• {P}S {Q} ∧ {P}S {R} ⇒ {P}S {Q ∧R},

• {P}S {Q} ∧ {R}S {Q} ⇒ {P ∨R}S {Q}.

3 Binary Search Revisited

The van Gasteren-Feijen Approach

• Van Gasteren and Feijen [vGF95] pointed a sur-
prising fact: binary search does not apply only
to sorted lists!

• In fact, they believe that comparing binary
search to searching for a word in a dictionary
is a major educational blunder.

• Their binary search: let Φ be a predicate on
(int × int), with some additional constraints to
be given later:

|[con M,N : int {M < N ∧ Φ(M,N) . . .};
var l, r : int ;
bsearch
{M ≤ l < N ∧ Φ(l, l + 1)}

]|

3.1 The van Gasteren-Feijen Ap-
proach

The Program

{M < N ∧ Φ(M,N)}
l, r := M,N
{M ≤ l < r ≤ N ∧ Φ(l, r), bnd : r − l}
;do l + 1 ̸= r →

{. . . ∧ l + 2 ≤ r}
m := (l + r)/2
{. . . ∧ l < m < r}
; if Φ(m, r) → l := m
[] Φ(l,m) → r := m
fi

od
{M ≤ l < N ∧ Φ(l, l + 1)}

Proof of Correctness
Let’s start with verifying the easier bits.

• When the loop exits:

M ≤ l < r ≤ N ∧ Φ(l, r) ∧ ¬(l + 1 ̸= r)

⇒ M ≤ l < l + 1 ≤ N ∧ Φ(l, l + 1)

⇔ M ≤ l < N ∧ Φ(l, l + 1).

• Termination: exercise.

• To verify {. . . l + 2 ≤ r}m := (l + r)/2 {. . . l <
m < r}:

(l < m < r)[((l + r)/2)/m]

⇔ l < (l + r)/2 ⇐ l + 2 ≤ r.

Proof of Correctness

• To verify that the loop body maintains the in-
variant, check the first branch in if :

(M ≤ l < r ≤ N ∧ Φ(l, r))[m/l]

⇔ M ≤ m < r ≤ N ∧ Φ(m, r)

⇐ M ≤ l < r ≤ N ∧ Φ(l, r) ∧
l < m < r ∧ Φ(m, r).

• Similarly with the other branch.

• However, we still need to be sure that at least
one of the guards in if holds! Thus we need this
property from Φ:

Φ(l, r) ∧ l < m < r ⇒ Φ(l,m) ∨ Φ(m, r). (1)

6

Instantiations

Some Φ that satisfies (1):

• Φ(i, j) = a[i] ̸= a[j] for some array a. Van
Gasteren and Feijen suggested using this as the
example when introducing binary search.

• Φ(i, j) = a[i] < a[j],

• Φ(i, j) = a[i]× a[j] ≤ 0,

• Φ(i, j) = a[i] ∨ a[j], etc.

3.2 Searching in a Sorted List

Searching for a Key

• To search for a key K in an ascending-sorted
array a, it seems that we could just pick:

Φ(i, j) = a[i] ≤ K < a[j],

and check whether a[i] = K after the loop.

• However, we are not sure we can establish the
precondition a[l] ≤ K < a[r]!

• For a possibly empty array a[0..N), imagine two
elements a[−1] and a[N] such that a[−1] ≤ x
and x < a[N] for all x.

• Equivalently, pick:

Φ(i, j) = (i = −1 ∨ a[i] ≤ K) ∧ (K < a[j] ∨ j = N).

The Program

{0 ≥ N ∧ Φ(−1, N)}
l, r := −1, N
{−1 ≤ l < r ≤ N ∧ Φ(l, r), bnd : r − l}
;do l + 1 ̸= r →

{. . . ∧ l + 2 ≤ r}
m := (l + r)/2
; if a[m] ≤ K → l := m
[] K < a[m] → r := m
fi

od
{−1 ≤ l < N ∧ Φ(l, l + 1)}
; if l > −1 → found := a[l] = k
[] l = −1 → found := false
fi

Discussions

• “Adding” elements to a?

– The invariant implies that −1 < m < N ,
thus a[−1] and a[N] are never accessed.

– No actual alteration necessary.

– It also enables us to handle possibly empty
arrays

• Is the program different from the usual binary
search you’ve seen?

3.3 Searching with Premature Return

A More Common Program
Bentley’s program can be rephrased below:

l, r := 0, N − 1; found := false;
do l ≤ r →

m := (l + r)/2;
if a[m] < K → l := m+ 1
[] a[m] = K → found := true; break
[] K < a[m] → r := m− 1
fi

od.

I’d like to derive it, but

• it is harder to formally deal with break

– but Bentley also employed a semi-formal
reasoning using a loop invariant to argue
for the correctness of the program;

• to relate the test a[m] < K to l := m+1 we have
to bring in the fact that a is sorted earlier.

Comparison

• The two programs do not solve exactly the same
problem (e.g. when there are multiple Ks in a).

• Is the second program quicker because it assigns
l and r to m+ 1 and m− 1 rather than m?

– l := m + 1 because a[m] is covered in an-
other case;

– r := m − 1 because a range is represented
differently.

• Is it quicker to perform an extra test to return
early?

– When K is not in a, the test is wasted.

– Rolfe [Rol97] claimed that single compari-
son is quicker in average.

7

– Knuth [Knu97, Exercise 23, Section 6.2.1]:
single comparison needs 17.5 lgN + 17
instructions, double comparison needs
18 lgN − 16 instructions.

Exercise: Unimodel Search

• Let array a[0, N), with 0 < N , be the concate-
nation of a strictly increasing and a strictly de-
creasing array. Formally:

(∃k : 0 ≤ k < N :

(∀i : 0 < i ≤ k : a[i− 1] < a[i]) ∧
(∀j : k ≤ j < N : a[j − 1] > a[j])).

Use binary search to find the maximum element.

• What invariant to use?

Part II

Program Derivation
Program Derivation

• Wikipedia: program derivation is the derivation
of a program from its specification, by mathe-
matical means.

• To write a formal specification (which could be
non-executable), and then apply mathematically
correct rules in order to obtain an executable
program.

• The program thus obtained is correct by con-
struction.

4 What is a Proof, Anyway?

But What is a Proof, Anyway?
Xavier Leroy, “How to prove it” http://cristal.

inria.fr/~xleroy/stuff/how-to-prove-it.

html:

Proof by example Prove the case n = 2 and sug-
gests that it contains most of the ideas of the
general proof.

Proof by intimidation ‘Trivial’.

Proof by cumbersome notation Best done with
access to at least four alphabets and special sym-
bols.

Proof by reference to inaccessible literature
a simple corollary of a theorem to be found in
a privately circulated memoir of the Slovenian
Philological Society, 1883.

Proof by personal communication ‘Eight-
dimensional colored cycle stripping is NP-
complete [Karp, personal communication] (in
the elevator).’

Proof by appeal to intuition Cloud-shaped
drawings.

A semantic proof
A map of London is place on the ground of Trafal-

gar Square. There is a point on the map that is di-
rectly above the point on the ground that it repre-
sents. [Bac03, Figure 3.2]

Proof. The map is directly above a part of London. Thus

the entire map is directly above the part of the area which

it represents. Now, the smaller area of the map repre-

senting Central London is also above the part of the area

which it represents. Within the area representing Central

London, Trafalgar Square is marked, and this yet smaller

part of the map is directly above the part it represents.

Continuing this way, we can find smaller and smaller ar-

eas of the map each of which is directly above the part of

the area which it represents. In the limit we reduce the

area on the map to a single point.

Proof of Pythagoras’s Theorem
I B J

E

AC

L D K

a c

b

Let ABC be a trian-
gle with B̂AC = 90o. Let the lengths of BC, AC,
AB be, respectively, a, b, and c. We wish to prove
that a2 = b2 + c2. Construct a square IJKL, of
side b + c, and a square BCDE, of side a. Clearly,
area(IJKL) = (b+ c)2. But

area(IJKL) = area(BCDE)+

4× area(ABC)

= a2 + abc.

That is, (b+ c)2 = a2 + 2bc, whence b2 + c2 = a2.

8

Informal v.s. Formal Proofs

• To read an informal proof, we are expected to
have a good understanding of the problem do-
main, the meaning of the natural language state-
ments, and the language of mathematics.

• A formal proof shifts some of the burdens to the
“form”: the symbols, the syntax, and rules ma-
nipulating them. “Let the symbols do the work!”

• Our proof of the swapping program is formal:

{x = A ∧ y = B}
x := x− y; y := x+ y; x := y − x

{x = B ∧ y = A}.

Tsuru-Kame Zan

The Tsuru-Kame Problem
Some cranes (tsuru) and tortoises (kame) are mixed
in a cage. Known is that there are 5 heads and 14
legs. Find out the numbers of cranes and tortoises.

• The kindergarten approach: plain simple enu-
meration!

– Crane 0, Tortoise 5 . . . No.

– Crane 1, Tortoise 4 . . . No.

– Crane 2, Tortoise 3 . . . No.

– Crane 3, Tortoise 2 . . .Yes!

– Crane 4, Tortoise 1 . . . No.

– Crane 5, Tortoise 0 . . . No.

• Elementary school: let’s do some reasoning . . .

– If all 5 animals were cranes, there ought to
be 5× 2 = 10 legs.

– However, there are in fact 14 legs. The ex-
tra 4 legs must belong to some tortoises.
There must be (14− 10)/2 = 2 tortoises.

– So there must be 5− 2 = 3 cranes.

• It generalises to larger numbers of heads and
legs.

• Given a different problem, we have to come up
with another different way to solve it.

• Junior high school: algebra!

x+ y = 5

2x+ 4y = 14.

• It’s a general approach applicable to many other
problems . . .

• . . . and perhaps easier.

• However, it takes efforts to learn!

Another Formal Proof
The calculational logic proofs we have seen were

formal:

¬(P ↔ Q)

⇔ { unfolding ¬ }
(P ↔ Q) ↔ ⊥

⇔ { ↔ associative }
P ↔ (Q ↔ ⊥)

⇔ { folding ¬ }
P ↔ ¬Q.

Rather than relying on intuition on truth tables, we
try to develop intuition on calculational rules.

4.1 Quantifier manipulation

Quantifications

• Let ⊕ be a commutative, associative operator
with identity e, that is,

– x⊕ y = y ⊕ x,

– x⊕ (y ⊕ z) = (x⊕ y)⊕ z, and

– e⊕ x = x = x⊕ e,

and let f be a function defined on int .

• We denote f m ⊕ f (m + 1) ⊕ . . . ⊕ f (n − 1) by
(⊕i : m ≤ i < n : f i).

• (⊕i : n≤i<n : f i) = e.

• (⊕i : m≤i<n+1 : f i) = (⊕i : m≤i<n : f i)⊕f n
if m ≤ n.

– We will refer to this rule as to “split off n”.

Quantifications in General
General form: (⊕i : R : F), where R specifies a

range. We sometimes write (⊕i : R i : F i) to empha-
sise that they depend on i.

• (⊕i : false : F) = e.

• (⊕i : i = x : F i) = F x.

• (⊕i : R : F) ⊕ (⊕i : S : F) = (⊕i : R ∨ S :
F)⊕ (⊕i : R ∧ S : F).

• (⊕i : R : F)⊕ (⊕i : R : G) = (⊕i : R : F ⊕G).

• (⊕i, j : R i ∧ S i j : F) = (⊕i : R i :
(⊕j : S i j : F)),

• (i, j distinct, j does not occur free in R).

(Of which rule is range splitting a special case?)

9

Examples

• E.g.

– (+i : 3≤i<5 : i2) = 32 + 42 = 25.

– (+i, j : 3≤i≤j<5 : i× j) = 3× 3 + 3× 4 +
4× 4.

– (∧i : 2≤i<9 : odd i ⇒ prime i) = true.

– (↑ i : 1≤i<7 : −i2 + 5i) = 6 (when i = 2 or
3).

• As a convention, (+i : R : F) is written (Σi :
R : F), (∧i : R : F) is written (∀i : R : F), and
(∨i : R : F) is written (∃i : R : F).

• A special rule for ↑ (or ↓) and +:

x+ (↑ i : R : F i) = (↑ i : R : x+ F i).

The Number Of . . .

• Define # : Bool → {0, 1}:

false = 0
true = 1.

• “The number of” quantifier is defined by:

(#i : R i : F i) = (Σi : R i : #(F i)),

from which we may derive:

– (#i : false : F i) = 0,

– (#i : 0 ≤ i < n + 1 : F i) = (#i : 0 ≤ i <
n : F i) + #(F n).

5 Loop construction

Deriving Programs from Specifications

• From such a specification:

|[con declarations;
{preconditions}
prog
{postcondition}

]|

we hope to derive prog .

• We usually work backwards from the post con-
dition.

• The techniques we are about to learn is mostly
about constructing loops and loop invariants.

5.1 Taking Conjuncts as Invariants

Conjunctive Postconditions

• When the post condition has the form P ∧Q, one
may take one of the conjuncts as the invariant
and the other as the guard:

– {P}do ¬Q → S od {P ∧Q}.

• E.g. consider the specficication:

|[con A,B : int ; {0 ≤ A ∧ 0 ≤ B}
var q, r : int ;
divmod
{q = A div B ∧ r = A mod B}

]|.

• The post condition expands to R :: A = q×B+
r ∧ 0 ≤ r ∧ r < B.

But Which Conjunct to Choose?

• q = A div B ∧ r = A mod B expands to
R : A = q × B + r ∧ 0 ≤ r ∧ r < B, which
leads to a number of possibilities:

• {0 ≤ r ∧ r < B}do A ̸= q×B+r → S od {R},

• {A = q×B+r ∧ r < B}do 0 > r → S od {R},
or

• {A = q×B+r ∧ 0 ≤ r}do r ≥ B → S od {R},
etc.

Computing the Quotient and the Remainder
Try A = q × B + r ∧ 0 ≤ r as the invariant and

¬(r < B) as the guard:

q, r := 0, A;
{P : A = q ×B + r ∧ 0 ≤ r}
do B ≤ r →

{P ∧ B ≤ r}
q, r := q + 1, r −B
{P}

od
{P ∧ r < B}

• P is established by q, r := 0, A.

• Choose r as the bound.

• Since B > 0, try r := r −B:

P [r −B/r]

⇔ A = q ×B + r −B ∧ 0 ≤ r −B

⇔ A = (q − 1)×B + r ∧ B ≤ r.

10

Hmm... we almost have P ∧ B ≤ r, apart from
that q is replaced by q − 1.

• P [q + 1, r −B/q, r]

⇔ A = (q + 1)×B + r −B ∧ 0 ≤ r −B

⇔ A = q ×B + r ∧ B ≤ r.

5.2 Replacing Constants by Variables

Exponentiation

• Consider the problem:

|[con A,B : int {A ≥ 0 ∧ B ≥ 0};
var r : int ;
exponentiation
{r = AB}

]|.

• There is not much we can do with a state space
consisting of only one variable.

• Replacing constants by variables may yield some
possible invariants.

• Again we have several choices: r = xB, r = Ax,
r = xy, etc.

Exponentiation

• Use the invariant P0 : r = Ax, thus P0 ∧ x = B
implies the post-condition.

• Strategy: increment x in the loop. An upper
bound P1 : x ≤ B.

• (r = Ax)[x+ 1/x] ⇔ r = Ax+1. However, when
r = Ax holds, Ax+1 = A×Ax = A× r!

• Indeed,

(r = Ax+1)[A× r/r]

⇔ A× r = Ax+1

⇐ r = Ax.

r, x := 1, 0
{r = Ax ∧ x ≤ B, bnd : B − x}

; do x ̸= B →
r := A× r
{r = Ax+1 ∧ x+ 1 ≤ B}
;x := x+ 1
od
{r = AB}

Constructing Loop Body in Steps
We will see this pattern often:

• we have discovered that (r = e)[x+ 1/x] ⇔ r =
e⊕ e′.

• We want to establish:

{r = e ∧ . . . }
r := r ⊕ e′

{r = e⊕ e′}
;x := x+ 1
{r = e}.

• It works because:

(r = e⊕ e′)[r ⊕ e′/r]

⇔ r ⊕ e′ = e⊕ e′

⇐ r = e.

Summing Up an Array

• Another simple exercise.

• We talk about it because we need range splitting.

|[con N : int {0 ≤ N}; f : array [0..N) of int ;
var x : int
sum
{x = (Σi : 0≤i<N : f [i])}

]|

Summing Up an Array

|[con N : int {0 ≤ N}; f : array [0..N) of int ;

n, x := 0, 0
{P : x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n,

bnd : N − n}
;do n ̸= N → {P ∧ n ̸= N}

x := x+ f [n]; n := n+ 1 {P}
od
{x = (Σi : 0≤i<N : f [i])}

]|

• Inv. is established by n, x := 0, 0.

• Use N − n as bound, try incrementing n:

(x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n)[n+ 1/n]
⇔ x = (Σi : 0≤i<n+ 1 : f [i]) ∧ 0 ≤ n+ 1
⇐ x = (Σi : 0≤i<n+ 1 : f [i]) ∧ 0 ≤ n
⇔ x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n.

11

•

(x = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n)
[x+ f [n]/x]

⇔ x+ f [n] = (Σi : 0≤i<n : f [i]) + f [n] ∧ 0 ≤ n
⇐ x = (Σi : 0≤i<n : f [i]) ∧ 0 ≤ n.

5.3 Strengthening the Invariant

No. of Pairs in an Array

|[con N : int{N ≥ 0}; a : array [0..N)of int ;
var r : int ;
S
{r = (#i, j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}

]|.

• Replace N by n:

P0 : r = (#i, j : 0 ≤ i < j < n :

a[i] ≤ 0 ∧ a[j] ≥ 0),

P1 : 0 ≤ n ≤ N .

• Initialisation: n, r := 0, 0.

|[con N : int {N ≥ 0}; a : array [0..N)of int ;
var r : int ;

n, r := 0, 0
{P0 ∧ P1, bnd : N − n}
;do n ̸= N → . . . n := n+ 1 od
{r = (#i, j : 0 ≤ i < j < N :

a[i] ≤ 0 ∧ a[j] ≥ 0)}
]|.

No. of Pairs in an Array
To reason about P0[n+ 1/n], we calculate (assum-

ing P0, P1 : 0 ≤ n ≤ N and n ̸= N):

(#i, j : 0 ≤ i < j < n+ 1 : a[i] ≤ 0 ∧ a[j] ≥ 0)

= { split off j = n }
(#i, j : 0 ≤ i < j < n : a[i] ≤ 0 ∧ a[j] ≥ 0)+

(#i : 0 ≤ i < n : a[i] ≤ 0 ∧ a[n] ≥ 0)

= { P0 }
r + (#i : 0 ≤ i < n : a[i] ≤ 0 ∧ a[n] ≥ 0)

=

{
r, if a[n] < 0;

r + (#i : 0 ≤ i < n : a[i] ≤ 0), if a[n] ≥ 0.

We could compute (#i : 0 ≤ i < n : a[i] ≤ 0) in a
loop. . . or can we store it in another variable?

Strengthening by Using More Variables
New plan:

|[con N : int {N ≥ 0}; a : array [0..N)of int ;
var r, s : int ;

n, r, s := 0, 0, 0
{P0 ∧ P1 ∧ Q, bnd : N − n}
;do n ̸= N → . . . n := n+ 1 od
{r = (#i, j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}

]|.
P0 : r = (#i, j : 0 ≤ i < j < n : a[i] ≤ 0 ∧ a[j] ≥ 0),

P1 : 0 ≤ n ≤ N ,

Q : s = (#i : 0 ≤ i < n : a[i] ≤ 0).

Update the New Variable

(#i : 0 ≤ i < n : a[i] ≤ 0)[n+ 1/n]

= (#i : 0 ≤ i < n+ 1 : a[i] ≤ 0)

= { split off i = n (assuming 0 ≤ n) }
(#i : 0 ≤ i < n : a[i] ≤ 0) + #(a[i] ≤ 0)

= { Q }
s+#(a[i] ≤ 0)

=

{
s if a[i] > 0,

s+ 1 if a[i] ≤ 0.

Resulting Program

|[. . . {N ≥ 0}
n, r, s := 0, 0, 0
{P0 ∧ P1 ∧Q, bnd : N − n}
;do n ̸= N → {P0 ∧ P1 ∧Q ∧ n ̸= N}

if a[n] < 0 → skip
[] a[n] ≥ 0 → r := r + s
fi
{P0[n+ 1/n] ∧ P1 ∧Q ∧ n ̸= N}
; if a[n] > 0 → skip
[] a[n] ≤ 0 → s := s+ 1
fi
{(P0 ∧ P1 ∧Q)[n+ 1/n]}
;n := n+ 1

od
{r = (#i, j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}
]|.

Since P0∧P1∧Q∧n ̸= N is a common precondition
for the if ’s (the second if does not use P0), they can

12

be combined:

|[. . . {N ≥ 0}
n, r, s := 0, 0, 0
{P0 ∧ P1 ∧Q, bnd : N − n}
;do n ̸= N → {P0 ∧ P1 ∧Q ∧ n ̸= N}

if a[n] < 0 → s := s+ 1
[] a[n] = 0 → r, s := r + s, s+ 1
[] a[n] > 0 → r := r + s
fi
{(P0 ∧ P1 ∧Q)[n+ 1/n]}
;n := n+ 1

od
{r = (#i, j : 0 ≤ i < j < N : a[i] ≤ 0 ∧ a[j] ≥ 0)}
]|.

It’s Easier to Do More?

• The resulting loop computes values for two vari-
ables rather than one. It appears that it does
more work.

• However, we often find that a loop that does
more is eaiser to construct, because more has
been established in the previous iteration of the
loop.

• The invariant is “stronger” because it promises
more.

• It is a common phenomena: a generalised theo-
rem is easier to prove.

• We will see another way to generalise the invari-
ant in the next section.

Isn’t It Getting A Bit Too Complicated?

• Quantifier and indexes manipulation tend to get
very long and tedious.

– Expect to see even longer expressions later!

• With long and complex expressions, one tend to
make mistakes.

• To certain extent, it is a restriction of the data
structure we are using. With arrays we have to
manipulate the indexes.

• Is it possible to use higher-level data structures?
Lists? Trees?

– Like map, filter , foldr . . . in functional pro-
gramming?

– More on this issue later.

Fibonacci
Recall: fib 0 = 0, fib 1 = 1, and fib (n + 2) =

fib n+ fib (n+ 1).

|[con N : int {0 ≤ N}; var x, y : int ;

n, x, y := 0, 0, 1
{P : x = fib n ∧ 0 ≤ n ≤ N ∧ y = fib (n+ 1)}
;do n ̸= N → {P ∧ n ̸= N}

x, y := y, x+ y; n := n+ 1 {P}
od
{x = fib N}

]|.

• Inv. is established by n, x := 0, 0.

•
(x = fib n ∧ 0≤n≤N ∧ y = fib (n+1))[n+1/n]

⇔ x = fib (n+1) ∧ 0≤n<N ∧ y = fib (n+2)

•
(x = fib (n+1) ∧ . . . ∧ y = fib (n+2))

[y, x+ y/x, y]
⇔ y = fib (n+1) ∧ . . . ∧ x+ y = fib (n+2)
⇐ x = fib n ∧ . . . ∧ y = fib (n+1).

5.4 Tail Invariants

Tail Recursion

• A function f is tail recursive if it looks like:

f x = h x, if b x;
f x = f (g x), if ¬(b x).

• The goal is to derive a program that computes
f X for given X. Plan:

|[con X; var r, x;

x := X
{f x = f X}
;do ¬(b x) → x := g x od
; r := h x
{r = f X}

]|,

provided that the loop terminates.

Using Associativity

• Consider function k such that:

k x = a, if b x;
k x = h x⊕ k (g x), if ¬(b x).

where ⊕ is associative with identity e. Note that
k is not tail recursive.

13

• Goal: establish r = k X for given X.

• Trick: use an invariant r ⊕ k x = k X.

– ‘computed’⊕ ‘to be computed’ = k X.

– Strategy: keep shifting stuffs from right
hand side of ⊕ to the left, until the right
is e.

Constructing the Loop Body
If b x holds:

r ⊕ k x = k X

⇔ { b x }
r ⊕ a = k X.

Otherwise:

r ⊕ k x = k X

⇔ { ¬(b x) }
r ⊕ (h x⊕ k (g x)) = k X

⇔ { ⊕ associative }
(r ⊕ h x)⊕ k (g x) = k X

⇔ (r ⊕ k x = k X)[r ⊕ h x, g x/r, x].

The Program

|[con X; var r, x;

r, x := e,X
{r ⊕ k x = k X}
;do ¬(b x) → r, x := r ⊕ h x, g x od
{r ⊕ a = k X}
; r := r ⊕ a
{r = k X}

]|,

if the loop terminates.

Exponentation Again

• Consider again computing AB . Notice that:

x0 = 1
xy = 1× (x× x)y div 2 if even y,

= x× xy−1 if odd y.

• How does it fit the pattern above? (Hint: k now
has type (int × int) → int .)

• To be concrete, let us look at this specialised case
in more detail.

Fast Exponentiation

• To achieve r = AB, choose invariant r × xy =
AB :

• To construct the loop body, we reason for the
case even y:

r × xy

= { assumption: even y }
r × (x× x)ydiv2

= (r × xy)[x× x, y div 2/x, y].

and for odd y:

r × xy

= { assumption: odd y }
r × (x× xy−1)

= { × associative }
(r × x)× xy−1

= (r × xy)[r × x, y − 1/r, y].

Fast Exponentiation
The resulting program:

r, x, y := 1, A,B;
{r × xy = AB ∧ 0 ≤ y, bnd = y}
do y ̸= 0 ∧ even y → x, y := x× x, y div 2
[] y ̸= 0 ∧ odd y → r, y := r × x, y − 1

od
{r × xy = AB ∧ y = 0}.

6 Max. Segment Sum Solved

Specification

|[con N : int{0 ≤ N}; f : array [0..N) of int ;
var r, n : int ;

n, r := 0, 0
{r = (↑ p, q : 0≤p≤q≤n : sum p q) ∧ 0 ≤ n ≤ N}
;do n ̸= N →

. . . ;n := n+ 1
od
{r = (↑ p, q : 0≤p≤q≤N : sum p q)}

]|

• sum p q = (Σi : p≤i<q : f [i]).

• Replacing constant N by variable n, use an up-
loop.

14

Strengthening the Invariant

• Let P0 : r = (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q).

n, r, s := 0, 0, 0;
{P0 ∧ 0 ≤ n ≤ N ∧ s = (↑ p : 0 ≤ p ≤ n : sum p n)}
do n ̸= N− >

. . . ;n := n+ 1
od
{r = (↑ p, q : 0 ≤ p ≤ q ≤ N : sum p q)}

• With assumption that 0 ≤ n+ 1 ≤ N :

(↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q)[n+ 1/n]
= (↑ p, q : 0 ≤ p ≤ q ≤ n+ 1 : sum p q)
= (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q) ↑

(↑ p, q : 0 ≤ p ≤ n+1 : sum p (n+1)).

• Let’s introduce P1 : s = (↑ p : 0 ≤ p ≤ n :
sum p n).

Constructing the Loop Body

• Known: P0 : r = (↑ p, q : 0 ≤ p ≤ q ≤ n :
sum p q),

• P1 : s = (↑ p : 0 ≤ p ≤ n : sum p n),

• P0[n+ 1/n] : r = (↑ p, q : 0 ≤ p ≤ q ≤ n :
sum p q) ↑ (↑ p : 0 ≤ p ≤ n+1 : sum p (n+1)).

• Therefore, a possible strategy would be:

{P0 ∧ P1 ∧ 0 ≤ n ≤ N ∧ n ̸= N}
s := ?;
{P0 ∧ P1[n+ 1/n] ∧ 0 ≤ n ≤ N ∧ n ̸= N}
r := r ↑ s;
{(P0 ∧ P1 ∧ 0 ≤ n ≤ N)[n+ 1/n]}
n := n+ 1
{P0 ∧ P1 ∧ 0 ≤ n ≤ N}

Updating the Prefix Sum
Recall P1 ≡ s = (↑ p : 0 ≤ p ≤ n : sum p n).

(↑ p : 0 ≤ p ≤ n : sum p n)[n+ 1/n]

= (↑ p : 0 ≤ p ≤ n+1 : sum p (n+1))

= { splitting p = n+ 1 }
(↑ p : 0 ≤ p ≤ n : sum p (n+1)) ↑

sum (n+1) (n+1)

= { [n+ 1, n+ 1) is an empty range }
(↑ p : 0 ≤ p ≤ n : sum p (n+1)) ↑ 0

= (↑ p : 0 ≤ p ≤ n : sum p n+ f [n]) ↑ 0

= ((↑ p : 0 ≤ p ≤ n : sum p n) + f [n]) ↑ 0.

Thus, {P1} s :=? {P1[n+ 1/n]} is satisfied by s :=
(s+ f [n]) ↑ 0.

Derived Program

|[con N : int {0 ≤ N}; f : array [0..N) of int ;
var r, s, n : int ;

n, r, s := 0, 0, 0
{P0 ∧ P1 ∧ 0 ≤ n ≤ N, bnd : N − n}
;do n ̸= N →

s := (s+ f [n]) ↑ 0;
r := r ↑ s;
n := n+ 1

od
{r = (↑ 0 ≤ p ≤ q ≤ N : sum p q :)}

]|

• P0 : r = (↑ p, q : 0 ≤ p ≤ q ≤ n : sum p q).

• P1 : s = (↑ p, q : 0 ≤ p ≤ n : sum p n).

7 Where to Go from Here?

What Have We Learnt?
How to program!

• Imperative program derivation by backwards
reasoning.

• Key to imperative program derivation: every
loop shall be built with an invariant and a bound
in mind.

• Some techniques to construct loop invariants:

– taking conjuncts as invariants;

– replacing constants by variables;

– strengthening the invariant;

– tail invariants.

What Have We Learnt?
And some more philosophical issues.

• What being formal means, and how it helps us.

• To program is to construct code that meets the
specification;

• and to do so, the program must be constructed
together with its proof.

Connection with other courses?

• What we have learnt is axiomatic semantics.

• We have not talked about Dijkstra’s weakest
precondition semantics, in which a program is
seen as a predicate transformer – a function
from predicates to predicates. See Dijkstra and
Scholten [DS90].

15

What’s Missing?

• One reason making this calculus rather tedious:
complex manipulation of quantifiers and array
indexes.

• To certain extent it is the limitation of data
structure we are using. To manipulate arrays,
we tend to perform plenty of operations using
indexes.

• Could we use “higher-level” data structures to
avoid these messy details?

Purity and Aliasing

• Side-effects strictly forbidden in expressions.

– {P [E/x]}x := E {P} fails if E has side ef-
fects,

– which is why some programming languages
have a clear separation of expressions and
statements.

• That means aliasing could cause disasters,

• which in turn makes call-by-reference dangerous.

– Extra care must be taken when we intro-
duce subroutines,

– which is why procedure calls were such a
big issue.

• If your interests are in program derivation, you
could dismiss these problematic features. If you
work on verification, however, you have to cope
with them. We may see that in Frama-C.

Functional Program Derivation
In contrast, much of functional program derivation

is essentially built on a theory of data structure.

max ◦ map sum ◦ segments

= max ◦ map sum ◦ concat ◦ map inits ◦ tails

= { map f ◦ concat = concat ◦ map (map f) }
max ◦ concat ◦ map (map sum) ◦ map inits ◦ tails

= { since max ◦ concat = max ◦ map max }
:

= max ◦ scanr zmax 0.

For an introduction, check out lectures in FLOLAC
’07 and ’08!

Separation Logic

• Another way out is separation logic: a logic
about heap and stores.

• Advocated by John C. Reynolds [Rey02].

• Facilitates reasoning about pointers and sharing.

• Separation between concurrent modules.

Where to Go from Here?

• Early issues of Science of Computer Program-
ming have regular columns for program deriva-
tion.

• Books and papers by Dijkstra, Gries, Back,
Backhouse, etc.

• You might not actually derive programs, but
knowledge learnt here can be applied to program
verification.

– Plenty of tools around for program verifica-
tion basing on pre/post-conditions. Some
of them will be taught in this summer
school.

• You might never derive any more programs for
the rest of your life. But the next time you need
a loop, you will know better how to construct it
and why it works.

Other Historical References

References to some of the historical materials that
are mentioned in the supplementary part of this lec-
ture:

• Correspondence between Maarten van Em-
den and Dijkstra is recorded at http:

//vanemden.wordpress.com/2008/05/06/

i-remember-edsger-dijkstra-1930-2002/.

• Details of the first ALGOL compiler is docu-
mented by Kruseman Aretz [KA03].

• History and analysis of ALGOL by de Beer
[dB06].

• Controversy around Go To [Dij68, Knu74,
Rub87, MML+87, Dij87].

16

References

[Bac03] Roland C. Backhouse. Program Con-
struction: Calculating Implementations
from Specifications. John Wiley & Sons,
Ltd., 2003.

[Ben86] Jon Bentley. Programming Pearls.
Addison-Wesley, 1986.

[dB06] Heer de Beer. The history of the AL-
GOL effort. Master’s thesis, Eindhoven
University of Technology, August 2006.

[Dij68] Edsger W. Dijkstra. Go To statement
considered harmful. Communications of
the ACM, 11(3):147–148, March 1968.

[Dij72] Edsger W. Dijkstra. The humble pro-
grammer. Communications of the ACM,
15(10):859–866, 1972. EWD 340, Turing
Award lecture.

[Dij74] Edsger W. Dijkstra. Programming as a
discipline of mathematical nature. Amer-
ican Mathematical Monthly, 81(6):608–
612, May 1974. EWD 361.

[Dij87] Edsger W. Dijkstra. On a somewhat dis-
appointing correspondence. EWD 1009,
circulated privately, May 1987.

[Dijnd] Edsger W. Dijkstra. On understand-
ing programs. EWD 264, circulated pri-
vately, n.d.

[DS90] Edsger W. Dijkstra and Carel S.
Scholten. Predicate Calculus and Pro-
gram Semantics. Springer-Verlag, 1990.

[KA03] Frans E. J. Kruseman Aretz. The
Dijkstra-Zonneveld ALGOL 60 compiler
for the Electrologica X1. Technical
Report SEN N 0301, Centrum voor
Wiskunde en Informatica, 2003.

[Kal90] Anne Kaldewaij. Programming: the
Derivation of Algorithms. Prentice Hall,
1990.

[Knu74] Donald E. Knuth. Structured program-
ming with go to statements. ACM Com-
puting Surveys, 6(4):261–301, 1974.

[Knu97] Donald E. Knuth. The Art of Com-
puter Programming Volume 3: Sorting
and Searching, 3rd Edition. Addison
Wesley, 1997.

[MML+87] Donald Moore, Chuck Musciano,
Michael J. Liebhaber, Steven F. Lott,
and Lee Starr. “‘GOTO considered
harmful’ considered harmful” considered
harmful? Communications of the ACM,
30(5):351–355, May 1987.

[Rey02] John C. Reynolds. Separation logic: a
logic for shared mutable data structures.
In Gordon Plotkin, editor, Annual IEEE
Symposium on Logic in Computer Sci-
ence, pages 55–74. IEEE Computer So-
ciety Press, 2002.

[Rol97] Timothy J. Rolfe. Analytic derivation of
comparisons in binary search. SIGNUM
Newsletter, 32(4):15–19, October 1997.

[Rub87] Frank Rubin. ‘GOTO considered harm-
ful’ considered harmful. Communications
of the ACM, 30(3):195–196, March 1987.

[vGF95] Netty van Gasteren and Wim H. J.
Feijen. The binary search revisited.
AvG127/WF214, November 1995.

17

