Program Construction and Reasoning Exercises

Shin-Cheng Mu

2010 Formosan Summer School on Logic, Language, and Computation June 28 – July 9, 2010

Guarded Command Language Basics

1. Swapping Booleans Verify:

```
\begin{split} &|[ \ \mathbf{var} \ a,b:bool; \\ &\{a \leftrightarrow A \land b \leftrightarrow B\} \\ &a := a \leftrightarrow b; \\ &b := a \leftrightarrow b; \\ &a := a \leftrightarrow b; \\ &\{a \leftrightarrow B \land b \leftrightarrow A\} \\ ||. \end{split}
```

Hint: recall the definition $true \leftrightarrow a = a$, and that \leftrightarrow is associative: $(a \leftrightarrow b) \leftrightarrow c = a \leftrightarrow (b \leftrightarrow c)$.

```
Solution: The program can be annotated as
```

```
 \begin{aligned} & \{a \leftrightarrow A \wedge b \leftrightarrow B\} \\ & a := a \leftrightarrow b \\ & \{b \leftrightarrow B \ \wedge \ a \leftrightarrow b \leftrightarrow A\} \\ & ; b := a \leftrightarrow b \\ & \{a \leftrightarrow b \leftrightarrow B \ \wedge \ b \leftrightarrow A\} \\ & ; a := a \leftrightarrow b \\ & \{a \leftrightarrow B \wedge b \leftrightarrow A\}. \end{aligned}
```

Proofs:

$$(a \leftrightarrow B \ \land \ b \leftrightarrow A)[a \leftrightarrow b/a]$$

$$\Leftrightarrow a \leftrightarrow b \leftrightarrow B \ \land \ b \leftrightarrow A,$$

$$(a \leftrightarrow b \leftrightarrow B \ \land \ b \leftrightarrow A)[a \leftrightarrow b/b]$$

$$\Leftrightarrow a \leftrightarrow a \leftrightarrow b \leftrightarrow B \ \land \ a \leftrightarrow b \leftrightarrow A$$

$$\Leftrightarrow b \leftrightarrow B \ \land \ a \leftrightarrow b \leftrightarrow A,$$

$$(b \leftrightarrow B \ \land \ a \leftrightarrow b \leftrightarrow A)[a \leftrightarrow b/a]$$

$$\Leftrightarrow b \leftrightarrow B \ \land \ a \leftrightarrow b \leftrightarrow b \leftrightarrow A$$

$$\Leftrightarrow b \leftrightarrow B \ \land \ a \leftrightarrow b \leftrightarrow A.$$

2. Verify:

```
 \begin{aligned} & |[ \ \mathbf{var} \ a,b:bool; \\ & \{true\} \\ & \mathbf{if} \ \neg a \lor b \to a := \neg a \\ & \| \ a \lor \neg b \to b := \neg b \\ & \mathbf{fi} \\ & \{a \lor b\} \\ ] | \end{aligned}
```

Solution: Certainly $true \Rightarrow \neg a \lor b \ a \lor \neg b$. To verify the first branch:

$$(a \lor b)[\neg a/a] \\ \Leftrightarrow \neg a \lor b.$$

The other branch is similar.

Loop and Loop Invariants

3. Prove the correctness of the following program:

```
\begin{split} &|[\text{ } \mathbf{var} \ x,y,N:int \ \{N\geq 0\};\\ &x,y:=0,1;\\ &\mathbf{do} \ x\neq N\to x,y:=x+1,y+y \ \mathbf{od}\\ &\{y=2^N\} \end{split}
```

Solution: Use the loop invariant

$$y = 2^x \land 0 \le x \le N$$

and bound |N-x|.

4. Prove the correctness of the following program:

```
\begin{split} &|[\text{ } \mathbf{var} \ x,y,N:int \ \{N\geq 0\}; \\ &x,y:=0,0; \\ &\mathbf{do} \ x\neq 0 \to x:=x-1 \\ &\parallel y\neq N \to x,y:=N,y+1 \\ &\mathbf{od} \\ &\{x=0 \ \land \ y=N\} \\ ]| \end{split}
```

Solution: Apparently the negation of the guards equivals $x = 0 \land y = N$. The difficult part is the proof of termination, for which we need this loop invariant:

$$P: 0 \le x \le N \land 0 \le y \le N,$$

and bound:

$$bnd: (N+1) \times (N-y) + x.$$

It is immediate that $P \land (x \neq 0 \lor y \neq N)$ implies $bnd \geq 0$. For the second branch we reason:

$$\begin{split} &((N+1)\times(N-y)+x< C)[N,y+1/x,y]\\ \Leftrightarrow &(N+1)\times(N-y-1)+N< C\\ \Leftrightarrow &(N+1)\times(N-y)-1< C\\ \Leftarrow &(N+1)\times(N-y)+x=C \ \land \ 0 \le x. \end{split}$$

Note that the bound $N \times (N - y) + x$ fails for the second branch.

5. The following program non-deterministically computes x and y such that $x \times y = N$. Prove:

```
\begin{split} &|[ \text{ } \mathbf{var} \ p, x, y, N: int; \{N \geq 1\} \\ &p, x, y := N-1, 1, 1 \\ &\{N = x \times y + p\} \\ &; \mathbf{do} \ p \neq 0 \rightarrow \\ &\quad \text{ } \text{ } \mathbf{if} \ p \ \mathbf{mod} \ x = 0 \rightarrow y, p := y+1, p-x \\ &\parallel p \ \mathbf{mod} \ y = 0 \rightarrow x, p := x+1, p-y \\ &\quad \mathbf{fi} \\ &\quad \mathbf{od} \\ &\{x \times y = N\} \\ \end{bmatrix}| \end{split}
```

Solution: If we try reasoning about the first branch:

$$(N = x \times y + p)[y + 1, p - x/y, p]$$

$$\Leftrightarrow N = x \times (y + 1) + p - x$$

$$\Leftrightarrow N = x \times y + p,$$

we notice that $N = x \times y + p$ does not need the guard $p \mod x$ to hold. The guards, however, do play a role for the termination proof. We use the invariant

$$(N = x \times y + p) \land (0 \le p) \land (0 < x) \land (0 < y) \land (p \mod x = 0 \lor p \mod y = 0)$$

and bound p

The bound p decreases after the assignment p := p - x because 0 < x. For p to remain non-negative, notice that $p \neq 0$ and $p \mod x = 0$ implies that $p \geq x$ (otherwise $p \mod x$ would be p).