Logic

Max Schéfer

Formosan Summer School on Logic, Language, and Computation
2010

1 Introduction

This course provides an introduction to the basics of formal logic. We will cover
(classical) propositional and first-order logic with their truth-value semantics.
We will give an introduction to calculational logic as a tool for reasoning about
propositional logic, and to sequent calculus for first-order logic. Finally, we will
briefly discuss some limitations of first-order logic.

2 Formal logic

Formal logic as we understand it in these lectures is an approach to making
informal mathematical reasoning precise. It has three main ingredients:

e A formal language in which to express the mathematical statements we
want to reason about.

e A semantics that explains the meaning of statements in our formal lan-
guage in informal terms.

e A deductive system that establishes formal rules of reasoning about logical
statements which we can apply without having to constantly consider their
informal explanation.

It is important to remember that logic (at least as we understand it here)
does not allow us to say anything that we would not already be able to express
in an informal way. It is simply a way of making informal reasoning precise so
as to avoid mistakes and to clarify what assumptions we base our reasoning on.

Different logics may have different languages: for instance, the language
of propositional logic, which we will cover first, is a sub-language of the larger
language of first-order logic. In both cases the semantics we give for the common
parts of the language is the same. There are other variants of propositional
and first-order logic (for instance intuitionistic logic) that provide a different
semantic explanation for the same formal language.

For a given language and a given semantics, there can still be many different
deductive systems that take different approaches to formal reasoning. In these
notes, for instance, we will take a look at calculational logic and sequent calculus,
both of which are deductive systems for the same kind of logic, but which have
a very different look and feel.

3 Classical logic

Since we want to use logic to formalise reasoning about mathematical state-
ments, the concept of truth plays a key role: we want our semantics to identify
which logical statements are true and which are false, and we want our deductive
systems to provide us with rules for deducing true statements.

This approach of viewing logical statements as representing true or false
propositions is often called classical logic. It accords well with informal mathe-
matical practice and our usual understanding of logic.

Both from philosophical and from practical viewpoints many objections can
be raised against the classical interpretation of logic, and many other approaches
exist that are more useful than classical logic for certain applications. They will
not, however, concern us in these notes.

4 Propositional logic

A very simple logic is propositional logic, which formalises reasoning about
atomic propositions, i.e., statements that are either true or false, although we do
not necessarily know which. These propositions are atomic in the sense that we
cannot further analyse them. We can, however, connect them in various ways
to form other propositions that we also aim to describe in our logic.

4.1 The language of propositional logic

The language of formulas of propositional logic is given by the following gram-
mar:

pu=R | L|oAp|oVe|p—=y

The set R is the set of propositional letters, which we use to denote atomic
propositions. In these notes, we will use uppercase letters like P, (Q and R
as propositional letters. The grammar tells us that every propositional letter
is already a formula of propositional logic, called an atomic formula. Clearly,
however, in order to know whether P, viewed as a formula, is true, we need
to know whether the atomic proposition it represents is true; this map from
propositional letters to atomic propositions forms the basis of the semantics of
propositional logic defined in Subsection 4.2 below.

Apart from atomic formulas, every formula contains at least one connective,
or logical operator. We will now give a brief account of their intuitive meaning.

The connective L is called falsity, and is a propositional formula by itself.
Intuitively, it denotes a proposition that is always false, no matter what the
propositional letters stand for.

Given two formulas ¢ and v, the formula ¢ A9 is the conjunction of ¢ and
¥, often read as “p and v”. It is only true if both ¢ and 1 are true, and false
otherwise.

Given two formulas ¢ and v, the formula ¢ V ¢ is the disjunction of ¢ and
1, often read as “p or ¢”. It is only false if both ¢ and v are false, and true
otherwise. Note that this is the so-called “inclusive or” that is true even if both
of its alternatives are true.

Given two formulas ¢ and 9, the formula ¢ — 1 is the implication of ¢ and
1, often read as “p implies ¥”, or (less precisely) “if ¢ then ¢”. It is only false
if ¢ is true and ¢ is false, and true otherwise.

The grammar given above is ambiguous. As usual, we use parentheses to
disambiguate, and precedence rules to save on parentheses. We will take the
order in which the operators were introduced above as giving their precedence,
with A binding tightest, and — least tight. Thus the string PAQ — PV PAQ
should be parsed as ((PAQ) — (PV (PAQ))), since both A and V bind tighter
than —, and A tighter than V.

By convention, all binary connectives associate to the left, except —, which
associates to the right. Thus,

(P-Q—-R)—-(P—-Q) —-Q—R
is the same as
(P=(@Q—=R) = ((P—Q)—(Q—R)))
We also define three abbreviations:
1. Ti=1L—-1
2. —p =@ — L for any formula ¢
3. p = (e = Y)A (Y —) for any formulas ¢ and ¥

We give — a higher precedence than A, and < a lower precedence than —.
We also agree that <+ associates to the left.

We write ¢ = 9 to indicate that formulas ¢ and 1 are syntactically the
same. This disregards parentheses and abbreviations, thus (P A Q) V —-R =
PAQV(R— L),but PYQARZ(PVQ)AR.

4.2 Semantics of propositional logic

Now that we have established the language of propositional formulas in which
we want to reason, we need to set down its meaning. Since we use formulas
to express propositions, and propositions are characterised by whether they are
true or false, it will suffice for every formula to define whether it is true or false.

Obviously, we cannot in general say whether a formula is true or false without
further information about the propositional letters. This is provided by an
interpretation:

Definition 1. An interpretation is a mapping I: R — B from the set of propo-
sitional letters R to the set B := {F, T} of truth values.

An interpretation describes a situation in which those propositions that are
mapped to T are true, whereas those that are mapped to F are false.

Definition 2. Given an interpretation I, the semantics [¢]; € B of a proposi-
tional formula @ is defined by recursion:

1. For every propositional letter r € R, we define [r]r := I(r).
2. [[J_]]I =F
3. For two propositional formulas ¢ and ¥ we define

(a) [eAY]r =T if[e]lr =T and [¢]; =T, and [p AY]1 :=F otherwise.
(b) leVYlr :=F if [e]r =F and [¢]; =F, and [o VY] ;=T otherwise.

(¢c) [p = ¥l =F if [plr = T and [¢];r = F, and [p — ¢]; =T
otherwise.

These definitions roughly correspond to the intuitive explanations we have
given above, except maybe for implication. Although it is common to read
p — 1 as “if p then 9", this is not very helpful for understanding its semantics.
After all, ¢ — 1 is just a formula whose truth value is defined in terms of the
truth values of ¢ and %; in no sense are we deriving the truth of v from the
truth of ¢. Perhaps the most unexpected feature of implication is that ¢ — ¥
is true if ¢ is false, no matter if ¢ is true or not.

Lemma 1. For any interpretation I we have [T]; = T, and for any formulas
@ and ¥ we have

o [-olr =T if [¢lr =F, and [~¢]; =F otherwise

o [Y] =Tif [¢lr = [¥]1, and [¢ < ¥]r =F otherwise.
Proof. By unfolding the definitions. O

Thus T can be read as “true”, - as “not ¢” and ¢ <> ¥ as “p has the same
truth value as ©¥” or “p equivales ¥”.

Normally, we are not interested in finding out whether a formula is true
under a given interpretation: given the above definition, that can be done by
a simple calculation. Rather, we are interested in formulas that are true no
matter what truth values we assign to them, or how the truth values of two
formulas relate independently of any concrete interpretation.

Definition 3. Let I be an interpretation and ¢ a propositional formula.

We say that I is a model for for ¢ and write I = ¢ if [¢]r = T.

We call ¢ satisfiable if there is some interpretation I with I = ¢, and
unsatisfiable otherwise.

We call ¢ valid or a tautology if for all interpretations I we have I = .

We say that o entails some propositional formula ¢ and write o = 1 if for
any interpretation I such that I = ¢ we also have I = . If o = ¢ and ¢ = ¢
we say that ¢ and ¢ are equivalent and write ¢ < 1.

Example 1. The formula P — P is valid. Indeed, let an interpretation I be
given. Then either I(P) =T or I(P) = F. Checking the definition, we can see
that in both cases [P — P]; = T. Since I is arbitrary, this shows that P — P
1s valid.

Example 2. The formula P \—P is unsatisfiable. Indeed, let an interpretation
I be given. Then either I(P) =T or I(P) = F. In the former case, [P]r =T
and [-P]; =F, so [P A—P]; =F; in the latter case, [P]; =F and [-P]; =T,
so again [P A —-P]; =F.

Example 3. The formula PAQ entails the formula PV Q, i.e., PAQ = PV Q.
Indeed, let an interpretation I be given and assume I |E P AQ; then [P]; =T
and [Q]r = T, which means that I(P) = I(Q) = T. The definition then shows
that [PV Q]r =T, so Il EPVQ.

These properties are connected in the following way:

Theorem 2. ¢ is valid iff' —p is unsatisfiable iff ¢ < T; furthermore, we
have @ < ¥ iff [¢]r = [W]1 for every interpretation I.

Proof. Assume ¢ is valid, and let any interpretation I be given; then [¢]; =T,
so [-¢]r = F. Since I was arbitrary this means that —¢ is unsatisfiable if ¢ is
valid.

Conversely, assume —¢ is unsatisfiable and let an arbitrary interpretation I
be given; then [-¢]r =F, so [¢]r = T. Since I was arbitrary this means that ¢
is valid if - is unsatisfiable.

We can show that ¢ is valid iff ¢ < T in a very similar manner.

For the second half of the theorem, first assume ¢ < 1, and let an interpre-
tation I be given. If [¢]; = T, then we must have [¢)]; = T since ¢ = 1. If
[¢]r = F, we cannot have [¢)]; = T as this would violate our assumption that
¥ = ¢, so we must have [¢)]; = F. Hence in either case [¢]; = [¢]:-

Conversely, assume [¢]; = [¢]; for any interpretation I, and assume I |= ¢;
then clearly I = 4 since [¢]; = [¢]r = T, so ¢ = 1; by the same reasoning we
get 1 = ¢, and thus ¢ < 1. O

The preceding lemma is what we call a meta-theorem: it is a statement
about the logic we are investigating, which we prove to be true by an informal
argument, not by formalising it in the logic itself.

IShort for “if and only if”.

Example 4. The formulas ——P and P are equivalent: by applying Lemma 1
twice, we see that [-—P]; = [P]s for any interpretation I, hence by Theorem 2
-—P & P.

Note ¢ =1 and ¢ < 1 mean very different things. The former says that ¢
and 1 are syntactically the same formula, if we unfold abbreviations and fully
parenthesise them. The latter says that they are semantically the same in the
sense that they have the same truth value in every interpretation. If ¢ = v then
also ¢ < 1, but not necessarily the other way around; for instance, -——P # P.

4.3 Truth tables

We have defined the meaning of complex formulas in terms of the meanings
of their components, and the meaning of the most basic formulas in terms of
the truth values assigned to propositional letters by the interpretation. For this
reason, it seems clear that the truth value we compute for a formula only depends
on the truth values that the interpretation assigns to those propositional letters
that actually occur in the formula.

For instance, the truth value of PV —Q certainly only depends on I(P) and
I(Q). It is the same no matter whether I(R) = T or I(R) = F. In order to make
this intuition precise, we first need to define what it means for a propositional
letter to “occur” in a formula.

Definition 4. The set PL(p) of propositional letters occuring in a formula ¢ is
defined as follows:

1. For every propositional letter r € R, we define PL(r) := {r}.
2. PL(L) :=0.
8. For two propositional formulas ¢ and ¥ we define

(a) PL(¢ A1) := PL(p) UPL(%)
(b) PL(p V) := PL(p) UPL(¢))
(¢) PL(p — 1) := PL(p) UPL(¢)).

Definition 5. Two interpretations I1 and Iy are said to agree on a set RC R
of propositional letters if I (r) = Is(r) for every r € R.

Lemma 3 (Agreement). For any formula ¢ and interpretations I, and Iy that
agree on PL(p) we have [¢]r, = [¢]1,-

Proof. Let an arbitrary formula ¢ and two interpretations I; and Is be given
that agree on PL(y). We prove [¢]r, = [¢]1, by induction on the structure of
®.

If ¢ is a propositional letter r, then [¢]r, = I1(r) and [¢]r, = I2(r). Since
I, and I agree on PL(y) = {r} we must have I1(r) = I2(r), and hence [¢]1, =
[[4,0]][2-

If pis L, then [¢];, =F = [¢] -

If o is of the form ¥ Ay, then PL(p) = PL(¢))UPL(x). Since I; and I5 agree on
PL(yp), they also agree on PL(¢)) and PL(x), so by induction hypothesis we have
[¥]r, = [¥]1, and [x]r, = [x]z- To show [¢]r, = [¢]1,, assume [¢]r, = T;
then [¢];, =T and [x]1, =T, so [¥]1, = T and [x]1, = T, and hence [¢];, = T.
Conversely, assume [¢]r, = T, then [¢], = T and [x], =T, so [¢], = T and
[x]1, =T, and hence [¢]r, =T.

If ¢ is of the form % V x or ¢ — ¥, the argument is similar.

It follows by induction that [¢];, = [¢]1,- O

While the agreement lemma may seem like a rather technical result, it is
actually quite important in practice, since it shows that whenever we want to
find out whether a formula is valid or satisfiable, it suffices to consider the
possible interpretations of the propositional letters that occur in the formula
only.

This makes a big difference: while in general there can be infinitely many
propositional letters, and hence infinitely many interpretations, if our formula
only makes use of, say, n propositional letters, we only have to consider the
different ways that truth values could be assigned to those n letters, of which
there are 2”.

We can represent these interpretations by truth tables like the following:

P Q|P-Q P=-Q —=P|(P>Q —P)—P

F F T F T
F T T F T
T F F T T
T T T T T

Here, the first two columns give the truth values assigned to P and @ in
different interpretations, hence every line represents one of the 22 = 4 interpre-
tations we need to consider. In every further column, we compute the truth
values of more complex formulas under each of these interpretations, building
up from simple formulas to more complex ones.

Since the last column only contains T, we know that Peirce’s Law, the for-
mula (P — @) - P) — P, is valid. We can also use truth tables to establish
the equivalence of two formulas:

P Q|-P -Q PAQ|-(PAQ)|-PV-Q
F F| T T F T T
F T|T F F T T
T F| F T F T T
T T| F F T F F

Since the last two columns show the same truth value in every interpretation,
we see that =(P A Q) < —PV —Q, which is one of De Morgan’s Laws, the other
being ~(PV Q) & -P A -Q.

Theorem 4. For a propositional formula o, it is decidable whether ¢ is satis-
fiable, and also whether it is valid.

Proof. Given ¢, it suffices to draw up a truth table. If the last column contains
a T, then ¢ is satisfiable; if it contains only T, then ¢ is valid. O

Notice that for a formula containing n propositional letters we need to check
2™ possible assignments, so this algorithm for deciding satisfiability is exponen-
tial in n. In fact, the problem of deciding satisfiability is the paradigmatic ex-
ample of an NP-complete problem; whether it is possible to solve NP-complete
problems in polynomial time is the most famous open problem of theoretical
computer science. There are heuristic algorithms that make it possible to de-
cide the satisfiability of most propositional formulas very efficiently, although
their worst-case complexity is still exponential.

4.4 Logical equivalence

We have above defined the concept of logical equivalence by saying that ¢ < ¥
if o = 1 and ¥ = ¢, i.e., every model of ¢ is also a model of ¥ and vice versa.
Using the definition, it is easy to check that equivalence is reflexive, sym-
metric and transitive, i.e., for all formulas ¢, 1, x we have ¢ < ¢; if p < P
then ¢ < @; if ¢ < 1 and 1 < x then p < x.
The following result shows an interesting connection between <> and <,
which allows us to reflect the meta-theoretic < operator back into the logic:

Lemma 5. E o< ¢ iff oo ¢
Proof. Follows from Lemma 1 and Theorem 2. O

Equivalent formulas have the same truth value under every interpretation, so
we can substitute one for the other without changing the meaning of a formula.

To carefully prove this statement, we need to first define what it means to
substitute one formula for another. To keep things simple, we only define what
it means to subsitute a formula for a propositional letter.

Definition 6. The substitution ¢[9/r] of a formula ¥ for all occurrences of a
propositional letter v in formula ¢ is defined by structural recursion as follows:

1. if ¢ is some 7' € R, then

(a) plO)r] =0 if r =1
(b) @[¥/r] :==1r" otherwise

if p is L, then p[U/r] := L

if ¢ is Y Ax, then pld/r] := [0 /r] A x[9/7]
if ¢ is YV x, then ld[r] := [0 /r] vV x[9/7]
if g isp = X, then [V/r] == P[0/r] = x[0/7].

AR

As a simple example, (R — R)[Q A —Q/R] is (Q A —Q) = (Q A —Q).
Now we can prove the following meta-theorem:

Theorem 6 (Leibniz’ Law for Propositions). If 11 < 2, then p[i1/r] <
e /r] for any propositional letter r and formulas o, V1, Ps.

Proof. Exercise (by structural induction on ¢). O
Another important result is the following, ostensibly very similar theorem:

Theorem 7 (Substitution in Tautologies). If = ¢, then = [¢/r] for any
propositional letter v and formulas ¢, V.

Proof. Let an interpretation I be given. We define the interpretation I’ to be
the same as I, except that it assigns the value [¢]; to r. It can now be shown
by structural induction on ¢ that [¢[/r]];r = [¢]1r (exercise!).

Now let an arbitrary interpretation I be given. Since ¢ is valid, we have

[elrr =T, so [e[/r]]r = T. But I was arbitrary, so = ¢[¢/r]. O

4.5 Functionally complete sets of connectives

Using truth tables and Theorem 7, it is easy to establish a long list of equiva-
lences between different operators, for instance:

o Ll S p ANy

[_‘_‘SO<:>§0

PAY & (= V)
eV Y & a(mp A)

s pVip o =Y

These equivalences show that some operators can be defined in terms of
others. For example, by the substitution theorem and the last equivalence above,
wherever we write ¢ V ¥ we could just as well write = — 1. In particular, the
above equivalences show that every operator can be expressed in terms of —
and L.

In a sense, then, our set of operators is too large in that we can throw out
certain operators without diminishing the set of propositions we can describe.
Conversely, one might ask whether the set of operators is large enough, or
whether we are missing any.

Since ultimately our semantics is defined in terms of truth values of atomic
propositions, we can make this question precise in the following way:

Definition 7. Let us call a function f: B™ — B that maps any n-tuple of truth
values to a truth value a truth function of arity n.

Every formula ¢ with PL(¢) = {r1,...,rn} expresses a truth function f, of
arity n defined as follows:

f@(‘rla cee 75571) = [[90]]17-1;:1»1 ri=Tn

where I .—g, .. r, .=z, 15 the interpretation that assigns x1 to ri, x2 to 2, and
so on, and assigns arbitrary values to all other propositional letters.

For instance, the formula P A @) expresses the binary truth function that
maps (T,T) to T, and any other tuple to F.

The formula 1 expresses the truth function of arity 0 that maps the tuple
() to F.

Definition 8. We call a set of operators functionally complete for arity n if
every truth function of arity n can be expressed by a formula that is built up
only from propositional letters and operators from this set. If a set of operators
18 functionally complete for any arity, we simply call it functionally complete.

Lemma 8. The set {L,—,V, A} is functionally complete.

Proof. Let f be a truth function of arity n, and choose n distinct propositional
letters {ry,...,m}.

We prove the result by induction on n.

If n =0, then f is either constant T or constant F; in the former case, it is
expressed by T, which is just L — 1L, in the latter case by L.

If n > 0, we define two (n — 1)-ary functions f* and f~ as follows:

f+(.’1,'17...,$n,1> = f(.’l?]_,...,l‘n,]_,T)
f(z1,.. s xn—1) = f(x1,...,20-1,F)

By induction hypothesis we can find formulas ¢+ and ¢~ to express f* and
f~; we claim that ¢ := r,, ATV =r, Ap~ expresses f. Indeed, let truth values
ti,...,t, be given and construct I := I, ,.—¢, .. r,.=¢, as above. We claim that
[elr = Fltas. s ta).

If t, = T, then f(t1,...,tn) = f(t1,...,tn), and also [¢]; = [¢], but
the two right-hand sides are equal by induction hypothesis. If ¢, = F, then
f(tl,...,tn):f_(tl,...,fn):[[(p_]][:[[(p]][. O

There is another way to prove this result, which can easily be visualised
using truth tables. Assume we want to find a formula to express the function f
encoded by the following table:

HHHAaAammm oty
HHAaMmmAaAam
HmHAamAa T TSy
-—J»—J»—1'-:-1-—1'-:-1'-:-1-:-J‘M1

—
o

We see that it is true in the fourth, sixth, seventh and eighth lines. Now
we simply take these lines, and for every line build a conjunction of P, () and
R, where each propositional letter occurs negated if its value in that line is F,
and un-negated otherwise. For the fourth line, for example, we get =P AQ A R.
Then we take the disjunction of all these lines to arrive at the formula

-PAQARVPA-QARVPAQA-RVPAQAR

which expresses the given truth function.

Once we know that {_L, —,V, A} is functionally complete, we can easily show
the same for other sets; for instance, { L, —,V} by itself is already functionally
complete, and so is {L,—}. On the other hand, {L,V} is not functionally
complete: for instance, it is not hard to show that any formula ¢ with a single
propositional letter r built up from | and V is equivalent to either » or L or T,
so there is no way to express negation.

5 Calculational logic

Drawing up truth tables is a tedious and error-prone business. The approach of
calculational logic tries to avoid reasoning by cases as much as possible, instead
deriving the truth of logical formulas from the truth of other, simpler formulas
by “equational” reasoning.

Calculational derivations are based on a set of laws, which are just equiva-
lence formulas that we know to be valid (for instance, we can check them using
truth tables). The precise set of laws to be used is not so important, but the
main appeal of calculational logic comes from keeping this set as small as possi-
ble, and deriving other laws from it. In this section, we will use the set of laws
from Roland Backhouse’s book “Program Construction”, shown in Figure 1.

All of these laws, except the Substitution law, are of the form ¢ < ¢, and
in every case we can use truth tables to check that the given formula is valid.

By Lemma 5 these laws can also be read as semantic equivalences of the form
@ < ; by Theorem 7, they hold with arbitrary formulas substituted for the
propositional letters; finally, by Theorem 6 we can substitute their right hand
side for their left hand side in any other formula without changing its validity.

Here is an example of a derivation using the laws of calculational logic:

(P& Q)

& { unfolding — }
(P+Q)+ L

& { associativity of + }
P (Qe L)

& { unfolding - }
P+ -Q

11

Associativity of < (P+Q)« R+« (P (Q+R)

Symmetry of + PsQ+Q«P

Unfolding T T+ P« P

Unfolding — P+~ P& 1

Idempotence of Vv PVP& P

Symmetry of V PvQ+QVP

Associativity of Vv PV(QVR)«< (PVQ)VR
Distributivity of Vv PV(Q+ R« PVQ+— PVR
Excluded Middle PV-P+ T

Golden Rule PANQ& P Q+PVQ
Unfolding — P-Q+<Q+—PVQ
Substitution (P+ Q)N@[P/R] < (P < Q) N9[Q/R]

Figure 1: Laws of calculational logic

This derivation can be read as a series of steps, where each step shows the
semantic equivalence of two formulas with a comment between curly braces men-
tioning the applied law. We will often omit steps applying associativity like the
second step above, and instead write associative operators without parentheses.

By transitivity of <, the derivation shows that =(P < Q) & P + —Q.

Here is another derivation involving negation:

-—P

= { unfolding — twice }
P&ole L

& { unfolding T }
P&T

& { unfolding T }
P

Perhaps the most complex of the laws of calculational logic is the Golden
Rule. We can use it to derive the important Absorption Law:

PV (PAQ)
& { Golden Rule }

12

PV(P+~ Q<+ PVQ)
& { distributivity of V twice }
PVP& PVQo PYPVQ

&= { idempotence of V twice }
P& PVQQ<+ PVQ

& { unfolding T }
P& T

& { unfolding T }
P

We usually deal with implication by the unfolding rule:

T—P

& { unfolding — }
P<PVvT

& {PVT+ T (exercise!) }
PeT

& { unfolding T }
P

The substitution rule is not a single law, but a whole set of laws, one for
every formula ¢. We can show by structural induction on ¢ that the rule is
valid for every choice of ¢. Here is an example for the use of this rule, where
we make use of the equivalence just established:

PA(P—Q)
& { unfolding T }
(P T)N(P—Q)
& { substitution }
(P TINT—=Q)
& {T—Q + Q and unfolding T }
PAQ

13

6 First-order logic

While propositional logic has its uses in circuit design and verification, it is by
itself not sufficient to formalise many mathematical statements. In mathemat-
ics we often want to express propositions about individuals, for instance the
statement “for every x we have 1 +x > z”.

In the example statement, the individuals are numbers, ranged over by indi-
vidual variables such as z. The symbol 1, on the other hand, is not a variable: it
is a constant. Both constants and individual variables are terms; more complex
terms can be built up by using functions, such as the binary function +. Rela-
tions such as the binary > are then used to express atomic propositions about
terms, which we can combine into more complex propositions. First-order logic
formalises statements like this in an abstract setting.

6.1 The language of first-order logic
Definition 9. A first-order signature ¥ = (F,R) consists of
e function symbols f € F with arity a(f) € N
e relation symbols r € R with arity a(r) € N
We write f/n to mean a(f) =n, and F™ = {f/n | f € F}, same for R,

Definition 10. The set of terms T(X,V) over a signature ¥ and a set V of
individual variables is inductively defined:

e)V C T(E, V)
o for f/neF, t1,...,tn € T(E,V), also f(t1,...,t,) € T(E,V)
For a 0-ary constant d, we write d() simply as d.

Example 5. Consider the signature X4 = (Fa, Ra) with Fa = {0/0,s/1,4+/2, x/2}
and R4 = {<}.

Ezamples for terms over ¥4 and V := {x,y} are 0, s(0), s(s(0)), s(z),
+(s(x),y), s(+(x,y)). Non-examples are 0(0) and +(s(0)). We usually write
+(z,y) as x +y, and similar for other binary operators, but this is purely syn-
tactic sugar.

Definition 11. An atomic formula, or atom for short, is of the formr(t1, ..., t,),
where r/n € R, t1,...,tn € T(X,V); like before we write just v if a(r) = 0.
Additionally, for any two terms s,t € T(3,V), there is an atom s =t. The set
of atoms over ¥ and V is written A(X,V).

The language of first-order formulas over ¥ and V is described by the fol-
lowing grammar:

e m= AEV) | LlerpleVele—e | We| Ve

14

We define T, - and ¢ <> 9 as abbreviations in the same way as for propo-
sitional logic.

The quantifiers V and 3 bind less tight than any of the other connectives.

Note that every propositional formula over the set R of propositional letters
is a first-order formula over ¥ = (), R) and V = 0.

Example 6. Taking the signature X4 and V from before, the following are
atoms (again, we use infix notation):

e x<zr+y

e (z<s(y) > (@=s(y) Ve <y)
e VnVYmm<m-+n

An occurrence of an individual variable is called bound if it is within the
scope of a quantifier, otherwise it is free. For instance, in the following formula
the underlined occurrences are bound, and the others are free:

(Va.R(z,z) = (Jy.S(y,z))) NT(x)

Note that one and the same variable can have both bound and free oc-
currences in the same formula: in this case, x has one free and one bound
occurrence, whereas the only occurrence of y is bound.

A formula without bound variable occurrences is called closed. We formally
define the set of variables that occur freely (or free variables for short) in a
formula as follows:

Definition 12. The set FV(t) of free variables for a term t is defined by recur-
ston:

1. FV(z) = {z} forxz €V
2. Fv(f(tlv s 7tn)) = Uie{l,...,n} Fv(tl)

Likewise, the set FV () of free variables for a formula ¢ is defined by recur-
ston:

1 FV(r(t,. . ta) = Uieqrmy FV(8)
2. FV(s = t) = FV(s) UFV(t)
3. FV(L) =0

15

4. EV(p A Y) =FV(p V) = FV(p = ¢) = FV(p) UFV(¢)
5. FV(Vz.0) =FV(p) \ {z}
6. FV(3z.¢) =FV(p) \ {z}

Example 7. FV(s(z) = 0V 2z = z) = {z}, FV(Vm.3n.s(m) < n) = 0,
FV(&Ba.s(x) <y) = {y}

We can now define substitution of a term for an individual variable:

Definition 13. The operation of substituting a term t for a variable T in a
term s (written s[t/x]) is defined as follows:

1. yft/a] = {t yo =1,

y otherwise

2. f(tr,....to)[t/x] = f(t1]t/x], ... talt/x)])

On formulas, the definition is

1. r(ty, ... ty)[t/z] = r(ta]t/z], ..., ta[t/2])

2. (51 = s2)[t/a] = (s1[t/2] = sa[t/x])

3. L[t/z] =1L

4. (po)[t/x] = (@[t/x] o Y[t/x]), where o is either A or V or —
) Vye ifr =y,

7 ol = {Vy.mt/z]) ot vy EEV()
_)3 ifx =y,

Cuolifel = {ay.«o[t/xn oty y € V)

Note that substitution on formulas is a partial operation. We use the same
notation as for substitution of formulas for propositional letters in propositional
logic, but these two are actually different operations.

Example 8.
o (5(2) = 0V & = 2)[s(0)/a] = (s(s(0)) =0V 5(0) = s(0)
o (s(x)=0Va=x)s(0)/y]=(s(xr) =0V =n1x)

Ym.3n.m < n)[0/m] = (Vm.In.m < n)

Jz.x < y)[z/y] is not defined

(
(
(
(

o (Ym.In.m < n)[m/n| is not defined

16

Definition 14. We say that the formula V. alpha-reduces to formula Vy.p'
if ' = oly/x], and similar for Jx.p.

¢ is called alpha equivalent to ¢ (written ¢ =, V), if ¥ results from ¢ by
any number of alpha reductions anywhere inside .

Example 9.
o (Vz.R(z, 7)) =a (Vy-R(y,y))
o (Vr.3z.5(x)) =, (Vy.3x.5(x)) =4 (Vy.32.5(2))
o (Ve.IyT(z,y)) Zo (Ve.32.T(x,x))

6.2 The semantics of first-order logic

Definition 15. A first-order structure M = (D, I) over signature ¥ comprises
e a non-empty set D, the domain
o an interpretation I = ([] 7, ['|r) such that

— for every f € F, [f]7: D* — D
— for every r € R, [r]r: D™ — B

A variable assignment on I is a function o:V — D.

Definition 16. We write o[z := t] for the assignment o’ such that o' (x) = t,
and o' (y) = o(y) for all y # x.

Definition 17. The semantics [t|am,o € D of a term t over a structure M and
a variable assignment o is defined as follows:

1. [z]pm,0 = o(2)

2. [t t)me = [fIr (e, -5 En]mio)
For formulas, we define

Lo rty, . tn)me = [rlr(ladmeos - - [En]mio)

2. [s=tlme =T if [sSIm,c = [tlm,o, otherwise [s =tjpm,oe =F
3. [Llmeo =F
4

e AYlm.o, ete.: as before

—]

if, for all d € D, [o] m olwi=a) = Ts
F otherwise

v

- VoMo = {

T if there is d € D with [o] pm,o[zma) = T
F otherwise

)

(=

- [Brelme = {

17

Definition 18. We write M,o = ¢ for [p]lme = T. M [E ¢ means that
M, o |= ¢ for any o; M is then called a model for p. If ¢ has a model, we call
it satisfiable. If every M is a model for ¢, we call it valid and write |= ¢.

For a set of formulas I' we extend these definitions point-wise: We write
M,o ET to mean that M, o |=y for every v € ', and similar for M |=T. We
call a set of formulas satisfiable if it has a model and valid if every structure is
a model for it.

Finally, we write T' |= ¢ to mean that any M and o such that M,o =T
also gives M, o = .

Example 10. Consider the structure M = (N, {[-]#,[-]r)) for signature ¥ 4
as before:

o [0]F=0

o [sl=(n) =n+1

o [+](m,n) =m+n

o [x]F(m,n) =m xn

o [<lx = {(m,n) | m,n € N,m < n}
Then M |= Va.3y.5(z) < y.

Lemma 9. Let M be a structure for some signature X3, ¢ a formula, and o, o’
variable assignments that agree on FV(p). Then M,o |E ¢ iff M,o’ |= ¢.

Corollary 10. The interpretation of a closed formula is independent of variable
assignments.

Lemma 11. Alpha equivalent formulas evaluate to the same truth value.

This shows that semantically there is no way to distinguish between alpha
equivalent formulas. From here on, we will consider alpha equivalent formulas

to be different ways of writing the same formula; substitution is then always
defined.

Lemma 12. The following equivalences hold in first-order logic:
1. (Va.p) & =(Fz.—p)

2. (Ve.p Ap) & (Vo.p) A (Va.1h)

3. Bx.oVy) s (Fr.p)V (Fx.9)

4. (Ve Vy.@) & (Vy.Va.p)

5. (Fz3y.0) & Fy.Tz.p)

6. (

FxVy.p) = (Vy.3z.), but not vice versa

18

PQFP PQFQ
P.QFPAQ
PFPAQ,—Q
FPAQ,-P,—Q

~(PAQ)F —P,—Q

~(PAQ)F-PV-Q

(AR)

(-R)
(-R)

(-L)

(VR)

Figure 2: An example derivation in sequent calculus

In general we have neither (Vx.o V ¢) & (Vz.@) V (Vz.ap) nor (Fr.o A) <

(Fz.) A (Fzp).
However, if x & FV(p) we have:

1. Ve.p V) < oV (Vo)
2. Bx.oAY) e oA (Fza)

While the agreement lemma for first-order logic looks very similar to its
propositional equivalent, there is no such thing as a truth table for first-order
logic. In fact, we have the following result:

Theorem 13 (Undecidability of First-order Logic). It is, in general, undecid-
able for a formula ¢ of first-order logic whether it is valid or satisfiable.

7 Sequent calculus

The semantics of first-order logic gives us a clear description of which formulas
are true and which are false, but it is not very helpful with finding a proof of
a true formula, or with deriving the truth of one formula from the truth of the
other.

The sequent calculus, introduced by Gerhard Gentzen in 1933, is a system
for finding proofs of formulas. It defines a notion of a derivation, usually written
in tree form, that shows why a formula must be true, decomposing it further
and further until we come to formulas that are “obviously” true.

An example of a derivation in sequent calculus is given in Figure 2. We will
use it as an example to explain how derivations are built up.

The derivation consists of sequents of the form

kA

where I' and A are finite sets of first-order logic formulas.? This means in

particular that the order of the formulas in I" and A does not matter, and that
we can duplicate formulas as needed. We write I, ¢ to mean I' U {¢}, and the
empty string to mean the empty set.

2The symbol F is called “turnstile”.

19

TFep A | RN

(L) ———F— (-R) ———F
L—-pkFA 'k —p, A
(AL) Lo A (AR) ke, A 'y, A
FioAyptA oAy, A
L) ek A ryEA i) 'k, A
TevykEA TFoVvay A
(L) 'k A LykA (OR) | NGRS VRVAN
Ne—vkEA TFe—Y, A
T, o[t/z] F A ke, A
(VL)W (VR)mlf.’EgFV(F,A)
LA | Tk elt/z], A
(ammﬂ’ngV(F,A) (amm
s=1t,T[s/z] - Als/x] 'k, A Lok A
(suBsT) - (cur)
s=t,T[t/x] - Alt/z] A

Figure 3: Inference rules of LK

Intuitively, we understand a sequent I' = A to assert that whenever all
formulas in T hold, one formula in A must hold. This, however, is just an
intuition, not a formal definition!

The leaves of the tree at the very top must all carry basic sequents. A basic
sequent is either of the form

Lok o, A

where ¢ is an arbitrary formula; or it is of the form
1LFEA

or it is of the form
'Ht=t A

where t is an arbitrary term. In all cases, I' and A may be arbitrary finite sets.

Any sequent that is not a basic sequent must appear below a horizontal
line, with one or more sequents above the line. The sequents above the line
are called antecedents, the one below the line is the consequent. We call such a
construction a derivation step.

Every derivation step has a label to the left of the horizontal line, which
indicates the inference rule of which this step is an instance. The derivation
rules of LK, the sequent calculus we are using in these notes, are given in Fig-
ure 3. A derivation step must match the indicated rule, with concrete formulas
substituted for ¢ and v and concrete sets of formulas substituted for I" and A.

20

The bottom-most sequent in a derivation is called the conclusion of the
derivation; alternatively we say that the derivation is a derivation of that se-
quent.

At first sight, the sheer number and variety of inference rules might seem
quite bewildering. There is, however, a beautiful symmetry behind these rules.
Note that for every connective except L there are two inference rules, a so-called
left rule where the connective occurs on the left hand side of the turnstile in the
consequent, and a right rule where it occurs on the right hand side.

The rules for A and V are very symmetric, but with left and right rules
reversed, and the same is true for V and 3. Only two rules do not fit into this
schema: the substitution rule for equality and the cut rule.

You should now be able to convince yourself that the example derivation
in Figure 2 is a genuine derivation, built up from basic sequents and inference
rules.

Notice that such a derivation can be built quite systematically, starting with
the conclusion: in every step, we choose a non-atomic formula either on the left
or on the right, and apply the corresponding left or right rule. In this way, we
“srow” the derivation bottom-up until we are only left with basic sequents.

For propositional formulas, this process is purely mechanical. For first-order
logic, when we want to apply rules (vL) or (3rR) we have to “guess” the term ¢ to
use in the antecedents. But of course we cannot really hope for an automatic
way of constructing derivations for first-order formulas, since first-order logic is
undecidable.

Notice that the rules (vrR) and (3L) can only be applied if their side conditions
are fulfilled (we write FV(I', A) to mean FV(I') UFV(A)). To see why this is
necessary, consider the following flawed “derivation”:

P(z)F P(x)
Jx.P(z) F P(x)
dz.P(z) F Vx.P(z)

F (3z.P(x)) — (Va.P(x))

(3L)
(VR)
(—=R)

Here, the side condition of (3L) is violated, since in that derivation step we
have A = {P(z)}, sox € FV(A). If we try to apply (vR) first, we likewise cannot
satisfy its precondition. Of course, the above formula should not be derivable,
since it is not valid according to our semantics of first-order logic.

Our list of inference rules contains rules for —; these are convenient, but not
strictly necessary: after all, -y is just an abbreviation for ¢ — 1, so we can
replace any application of (-L) by an application of (—L) like this:

T'kep, A rLFA
-k A

(—=L)

Notice that the right antecedent is a basic sequent, so we only have to find a
derivation of the left antecedent, which is the same as the antecedent of the (-L)
rule.

For (-Rr), things don’t look so promising at first. We can try applying (=R)

21

ek 1L,A

Ry ——M ~
=1 'k =p, A

but now we have an extra L on the right hand side in the antecedent. Fortu-
nately, it turns out that this does not matter:

Lemma 14 (Weakening). If there is a derivation for I' = A, then there is also
a derivation for I,T' = A, A’ for any finite sets I and A’.

Proof. Assume we have a derivation D of I' H A; we construct a derivation of
I,V - A, A’ by induction on the number of derivation steps in D.

If there are no derivation steps in D, then I' H A must be a basic sequent.
If it is of the form I'", o = A”, ¢, then I', TV F A, A’ is of the form I'”, o, I
A", A’, which is also a basic sequent. If it is a basic sequent of one of the two
other forms, we again see easily that I', TV - A, A’ is also a basic sequent.

If D has derivation steps, we consider the conclusion of D. It must have
been obtained by one of the inference rules, so we do a case analysis on which
rule was used to perform the final derivation step. In every case, we can assume
that the result holds for the antecedents, since they have been built up with
fewer derivation steps.

As an example, assume the final derivation step was an application of (AR).
Then A is of the form ¢ A ¢, A”, and the antecedents are ' F ¢, A” and
I' -4, A”. By induction hypothesis we can assume that there are derivations
for T,TV + ¢, A” A’ and TI',TV ¢, A” A’, so by applying (AR) we can find a
derivation of I', TV F o A¢p, A", A’ as desired.

The other cases are similar, except for (vR) and (3L), where we need to do
some renaming to make sure the side conditions are not violated. O

Sometimes, weakening rules are added as explicit rules to the sequent calcu-
lus; by the previous lemma this does not change the power of the system:
(WL) A (WR) A
I'TVEA T'EAA
Example 11. As an example of the use of (susst), here is how we can derive
symmetry of equality; we choose T' =0, A = {x = s} for a variable x & FV(s):

s=thks=s
s=tkt=s

We have here made use of the fact that if x € FV(s), then s[t/x] = s, which
s easy to prove by structural induction.

(suBsT)

Definition 19. We write I' Frx A to mean that there is a derivation according
to the rules of LK with the conclusion I' F A.
If Frk @, then we call ¢ a theorem of LK.

Example 12. The following are theorems of LK, for any formulas ¢ and :
P =, Vo, (P AY) eV, (e V) & e A, o = e
eV, (0 =) = @) = ¢, (Vo) = (Fr.¢)

22

Theorem 15 (Soundness of LK). The system LK is sound: If T bk ¢ then
T = ¢. In particular, all theorems are valid.

Theorem 16 (Consistency of LK). The system LK is consistent, i.e., there is
a formula ¢ such that we do not have Frx ¢.

Proof. Indeed, take 1. If we could derive Frx L, then by the soundness lemma
= L. But that is not the case. O

Theorem 17 (Completeness of LK). The system LK is complete: If T |= ¢
then T' Frk o, i.e., all valid formulas can be derived.

The proof of this theorem is quite difficult.

8 Peano arithmetic

One of the most basic fields of mathematics is arithmetic, i.e., calculating with
the natural numbers. Arithmetic can be captured as a first-order theory, that
is, a set of first-order formulas, over the signature X4 := (F,0), where Fy4 :=
{0/0,s/1,+/2, x/2}. Intuitively, 0 represents the number zero, s the successor
function, and + and x are addition and multiplication, respectively.

We define the theory of Peano arithmetic T4 as the set containing the fol-
lowing formulas (and no others):

o Vr.s(x) =s(y) »x =y

Vo= (s(z) = 0)
Vex+0==zx

Vo Vy.x + s(y) = s(z + y)
Ve.x x0=0

VeVy.x x s(y) = (z X y)+z
e for any formula ¢: p[0/2] = (Vz.po = @[s(z)/z]) = (Vz.p)

Note that in any model M = (D, I) of T4 the function I(s) must be injective,
and I(0) is not in its range: this is ensured by the first two formulas. The third
and fourth formula describe the behaviour of + and x, whereas the (infinite)
set of formulas added to T4 by the last rule makes sure that M must validate
the induction principle.

We can now formally prove the validity of many arithmetic laws by showing
that they are entailed by T4, for instance T4 = Va.(x = 0V Ip.(x = s(p))), or
Ty EVeVy.(z+y=y+2x).

Note that we defined the set of relation symbols to be empty. But we can
easily define commonly used arithmetic relations as abbreviations; for instance,
t1 < to can be encoded as Jz.t; + z = to, where we choose z € FV(t1) UFV(t2),
and t1 < tg is (t1 < tg) A —\(tl = tQ).

23

Our signature does not contain function symbols for other commonly used
arithmetic operators like exponentiation or the factorial function. Of course,
we could add these symbols to the signature and extend T4 with formulas
describing their meaning. For example, for exponentiation we could add the
formulas Vr.2® = s(z) and Vo.Vy.z*®) = 2¥ x x, which would enable us to
prove the usual laws of calculating with exponents.

Surprisingly, this is not necessary as the following theorem tells us:

Theorem 18. Let o be a binary operator symbol; let g and h be terms not
containing o such that FV(g) C {z} and FV(h) C {x,y,z}. Let ¢ be the
formula

Vr.xolO=g

and o the formula
VeVy.x o s(y) = hlxoy/z].

Let Tao be Ta U {91,92}.

Then for every formula @, possibly using o, we can find a formula ¢', not
using o, such that Tao = iff Ta = ¢'.

This theorem says that for a large class of arithmetic operators that can be
given a recursive definition with terms g and h of the above form we do not
actually have to add any additional formulas to T4 in order to be able to reason
about them. Instead, we can simply rewrite any formula that uses them into a
simpler form where the new operator does not occur any longer. In particular,
this theorem applies to exponentiation: choose g to be s(0) and h to be z X x.

In the above formulation of the theorem, the definition of the function needs
to have precisely one non-recursive argument, namely x. This is not crucial: the
theorem can be generalised to an arbitrary number of non-recursive arguments.
Indeed, one can show that any computable function can be encoded in Peano
Arithmetic. Carefully stating and proving this result is beyond the scope of this
course, however.

9 Limits of first-order logic

While the previous section has shown that first-order logic is very powerful and
can indeed serve as a basis for formalising much of mathematics, it is, in other
respects, surprisingly weak. This weakness stems from the following result,
which seems rather technical at first sight:

Theorem 19 (Compactness Theorem). First-order logic is compact in the
following sense: A set I of formulas is satisfiable iff every finite subset I of T’
is satisfiable.

This theorem can be used to show that many concepts are not formalisable
in first-order logic.

24

Example 13. There is no first-order logic formula ¢ such that M = ¢ iff the
domain D of M is finite.

Indeed, assume such a ¢ were given. For any natural number n we can
define a formula A\, such that M is a model for A\, iff its domain has at least n
elements; for instance, we can choose A3 to be

3331.3332.3.1‘3.(—\331 = To N\ Iy = I3 N 1o = 333).

Let A be the set of all formulas A, .

Clearly, if M = A then the domain of M must be infinite, so AU {p} is
unsatisfiable.

On the other hand, any finite subset A’ of A is satisfiable over a finite do-
main, for there is a mazimal natural number m such that \,, € A/, but no
Amr € N for m’ > m, so that any structure with a domain of size at least m’ is
a model for \'.

Consider now the set AU {p}. Any finite subset of this set either is a finite
subset of A, or it is a finite subset of A together with @; in either case, it
is satisfiable. But then by the compactness theorem A U {¢} would have to be
satisfiable, contradicting our assumption. This shows that such a ¢ cannot exist.

Example 14. Let a signature ¥ with a binary relation symbol R be given. Then
there is mo first-order formula R* with two free variables x and y such that for
any structure M we have M, [z := ¢,y := d] E R* iff (¢,d) € [R]*. Put more
succinctly, there is no formula R* that expresses the reflexive transitive closure
of a relation symbol R.

The proof goes as above, but considering a set built up from formulas 7="
expressing that y cannot be reached from x under R in n or less steps.

Of course, we can express the reflexive transitive closure of R by an infinite
set of formulas, as we did for the induction principle of arithmetic above.

25

