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First-order Logic
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Motivation: First Order Logic

in mathematics, we want to express propositions about
individuals, e.g.

For every x we have 1 + x > x

in the example, the individuals are numbers, ranged over by
the individual variable x

we use constants (like 1) and functions (like +, arity 2) to
construct terms

relations (like >, arity 2) can be used to form atomic
propositions about terms

atomic propositions are used to construct more complex
propositions

first order logic (FOL) formalises such statements in an
abstract setting
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Principles of First Order Logic (FOL)

first order logic formalises reasoning about statements that
can refer to individuals through individual variables

a fixed set of function symbols acts on the individuals

a fixed set of relation symbols expresses predicates on the
individuals

more complex statements can be formed by connectives like
A, V,—, = and the quantifiers V, 3

first order logic is sufficient to formalise great parts of
mathematics, for example arithmetic



The Language of FOL

e a first order signature ¥ = (F,R) describes a language with
e function letters f € F with arity a(f) € N
e relation letters r € R with arity a(r) € N
e terms T(X, V) over X and a set V of individual variables are
inductively defined:
e VCT(X,V)
e for f € Fof arity n, ty,...,t, € T(X,V), also
f(t,...,ty) € T(X,V)

e for a 0-ary constant d, we write d() simply as d
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Example

Signature ¥, = (Far, Rar) of arithmetic:
e For ={0,s,+, x}, where «(0) =0, a(s) =1,
a(+) =a(x) =2
o Rar = {<}, where a(<) =2
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Example

Signature ¥, = (Far, Rar) of arithmetic:

e For ={0,s,+, x}, where «(0) =0, a(s) =1,
a(+) =a(x) =2
Rar = {<}, where (<) =2

examples for terms from T(X,,, {x, y}):

0, s(0), s(s(0)), ..., s(x), x(s(x),y), s(x(x,y)), ---
but not 0(0) or x(s(0))
X (x,y) usually written x x y, but still X(x,y)=xxy
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The Language of FOL (II)

an atom is either
o of the form r(ty,...,t,), where r € R, a(r) = n,
t1,...,th € T(X,V)
e or of the form s = t, where s,t € T(X, V)

we write r for r() if a(r) =0

the language of formulas of first-order logic over & and V is
given by the following grammar:

er=AXV) | L]|onp|eVe o= | We | Ve

where A(X, V) are the atoms over ¥ and V
Vv and 3 have the lowest precedence
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Example

Atoms over ¥, and V = {x, y,d,d'}:
o x=y
e x+y=y+x
* 5(s(0)) x x <x+x

Non-atomic formulas:
o ~(x = 5(x))
e (Fdx+d=y)— (3ds(x)+d =y)Vs(x)=y

o Vx.x+x<xXx
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Intuitive Semantics of the Quantifiers

e Vx.p should be understood as “for all values of x, ¢ holds”

e dx.p should be understood as “there is a value of x such that
© holds”
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Intuitive Semantics of the Quantifiers

e Vx.p should be understood as “for all values of x, ¢ holds”

e dx.p should be understood as “there is a value of x such that
© holds”

e so the formula
Vx.x =0V dy.x =s(y)

could be understood as
every x Is either equal to zero, or there exists a
number y such that x is its successor
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Intuitive Semantics of the Quantifiers

Vx. should be understood as “for all values of x, ¢ holds”
dx.p should be understood as “there is a value of x such that
© holds”

so the formula
Vx.x =0V dy.x =s(y)

could be understood as
every x Is either equal to zero, or there exists a
number y such that x is its successor

however, this interpretation relies on an intuitive
interpretation of the function symbols s and 0 and the
relation symbol =; it is certainly not true for all
interpretations of these symbols!
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Free and Bound Variables

e an appearance of an individual variable is called bound if it is
within the scope of a quantifier, otherwise it is free
e.g. (free variables are red):

x=s(y) Ixx=s(y) Vy.Ixx=s(y)
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Free and Bound Variables

an appearance of an individual variable is called bound if it is
within the scope of a quantifier, otherwise it is free
e.g. (free variables are red):

x=s(y) Ixx=s(y) Vy.Ixx=s(y)

the same variable can appear both free and bound:

(Vx.R(x,z) = (Jy.S(y, x))) A T(x)
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The Set of Free Variables

e free variables in a term:
1. FV(x) = {x} for x € V

2. FV(f(t,..., tn)) = Uieqr,....m FV(1)
e free variables in a formula:
L. FV( (1,5 tn)) = Uieq,....m FV(H)
2. FV(s = t) FV(s)UFV(t)
3. FV(1) =
4. FV(p A w) FV(@ V) =FV(p = ) = FV(p) UFV ()
5. FV(Vx.0) = FV(p) \ {x}
6. FV(3x.) = FV(p) \ {x}
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The Set of Free Variables

e free variables in a term:
1. FV(x) = {x} for x € V

2. FV(f(ty,..., ty)) = Uie{1 77777 n} FV(t;)
e free variables in a formula:
LTV ) = Uy PV
2. FV(s = t) FV(s)UFV(t)
3. FV(1) =
4. FV(p A w) FV(@ V) =FV(p = ) = FV(p) UFV ()
5. FV(vx.9) = FV(p) \ {x}
6. FV(3x.) = FV(p) \ {x}

For example:

o FV(x) = {x}, FV(0) = 0, FV(s(y)) = {y}
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e free variables in a term:
1. FV(x) = {x} for x € V
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Substitution in Terms and Formulas
e substituting a term t for a variable x in a term s (s[t/x]):

1. y|t/x] =
vlt/x] {y otherwise

2. f(ty,..., t.)[t/x] = f(tat/x], ..., ta[t/x])

t ifx=y,

r(ty, ..., to)[t/x] = r(ta[t/x],. .., tat/x])

(s1 = 2)[t/x] = (s1[t/x] = s2[t/x])

L[t/x] = L

(pov)[t/x] = (¢[t/x] o [t/x]), where o is either A or V or —

Yy if x=y,
- (Vy@)[t/x] = {w-(s@[t/X]) if x £y, y € FV(t)

A e

(6]

N E2 if x =y,
(Fy-o)[t/x] = {ay-(s@[t/X]) ifx#£y, y €FV(t)
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Example

e x[s(0)/x] = s(0)
° y[s(0)/x] =y
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Example

e x[s(0)/x] = s(0)

e y[s(0)/x] =y
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Example

e x[s(0)/x] = s(0)

e y[s(0)/x] =y
° (x=0Vx=5s(y))[s(0)/x] =s(0) =0Vs(0)=s(y)

o (x =0V(3y.x = 5(y)))[s(0)/x] = 5(0) = 0vV(Jy.s(0) = s(y))
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Example

e x[s(0)/x] = s(0)

e ys(0)/x] =y

e (x=0Vx=s(y))[s(0)/x] = s(0) =0V s(0) =s(y)

e (x=0V(3y.x =s(y)))Is(0)/x] = s(0) = 0vV(3y.s(0) = s(y))
o (x=0Vx=s(y))ls(y)/x] = s(y) =0Vs(y) = s(y)
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Example

* x[s(0)/x] = s(0)

° y[s(0)/x] =y

o (x=0Vx=s(y))[s(0)/x] = s(0) =0V s(0) = s(y)

(x = 0V(3y.x = s(y)))Is(0)/x] = s(0) = 0V(3y.s(0) = s(y))
o (x=0Vx=s(y))ls(y)/x] = s(y) =0V s(y) = s(y)

e (x=0V (3y.x=s(y)))[s(y)/x] is not defined
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Example

e x[s(0)/x] = s(0)
* y[s(0)/x] =y
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Alpha Equivalence

e Vx.p alpha reduces to Vy.¢' if ¢ = ply/x]
dx.¢ alpha reduces to Jy.¢" if ¢’ = [y /x]
e o is called alpha equivalent to ¢ (written ¢ =, ), if ¢

results from ¢ by any number of alpha reductions on
subformulas of ¢
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dx.¢ alpha reduces to Jy.¢" if ¢’ = [y /x]
e o is called alpha equivalent to ¢ (written ¢ =, ), if ¢

results from ¢ by any number of alpha reductions on
subformulas of ¢

e Examples:
e (Yx.R(x,x)) =a (Vy.R(y,y))
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dx.¢ alpha reduces to Jy.¢" if ¢’ = [y /x]

e o is called alpha equivalent to ¢ (written ¢ =, ), if ¢
results from ¢ by any number of alpha reductions on
subformulas of ¢

e Examples:

* (Yx.R(x,x)) =a (Vy.R(y,y))
o (Vx.3x.5(x)) =4 (Vy.3x.5(x)) =a (Vy.32.5(2))
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Alpha Equivalence

e Vx.p alpha reduces to Vy.¢' if ¢ = ply/x]
dx.¢ alpha reduces to Jy.¢" if ¢’ = [y /x]

e o is called alpha equivalent to ¢ (written ¢ =, ), if ¢
results from ¢ by any number of alpha reductions on
subformulas of ¢

e Examples:

o (%R(x, X)) Za (-R(y,¥))
o (Vx.3x.5(x)) =4 (Vy.3x.5(x)) =a (Vy.32.5(2))
o (Vx.3y.T(x,y)) Za (Vx.3x.T(x, x))

Notice that alpha reduction never changes the names of free
variables.
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Renaming Away

e we do not distinguish between alpha equivalent formulas

e hence, we can use alpha reduction to rename problematic
bound variables such that substitution is always defined
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Renaming Away

e we do not distinguish between alpha equivalent formulas

e hence, we can use alpha reduction to rename problematic
bound variables such that substitution is always defined

e example:
(x =0V 3y.x=s(y))ls(y)/x]

is not defined,
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Renaming Away

e we do not distinguish between alpha equivalent formulas

e hence, we can use alpha reduction to rename problematic
bound variables such that substitution is always defined

e example:
(x =0V 3y.x=s(y))[s(y)/x]
is not defined, but

x=0VIyx=s(y)=ax=0VIz.x =5s(z)
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Renaming Away

e we do not distinguish between alpha equivalent formulas

e hence, we can use alpha reduction to rename problematic
bound variables such that substitution is always defined

e example:
(x =0V 3y.x=s(y))[s(y)/x]
is not defined, but

x=0VIyx=s(y)=ax=0VIz.x =5s(z)
thus we can define

(x =0V 3yx=s(y))ls(y)/x] = (x=0V3Izx=s(2))[s(y)/x]
=s(y) =0V 3zs(y) = s(z)

15 /37



Motivation: Semantics of FOL

e the function and relation symbols in & have no predefined
meaning

e thus, we do not know if Vx.x = 0 is true
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Motivation: Semantics of FOL

the function and relation symbols in ¥ have no predefined
meaning

thus, we do not know if Vx.x = 0 is true

but some sentences are true no matter how the symbols are
interpreted, e.g.:

(Yx.Vy.R(x,y) = R(y,x)) — R(a, b) = R(b, a)

how do we evaluate, e.g., Vx.=R(x, x)?
e we need to know what x can stand for, and for which of these
values R is true
e then we would like to evaluate =R(x, x), where x is bound to
any of its possible values

16
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Motivation: Semantics of FOL

the function and relation symbols in ¥ have no predefined
meaning

thus, we do not know if Vx.x = 0 is true

but some sentences are true no matter how the symbols are
interpreted, e.g.:

(Yx.Vy.R(x,y) = R(y,x)) — R(a, b) = R(b, a)

how do we evaluate, e.g., Vx.=R(x, x)?

e we need to know what x can stand for, and for which of these
values R is true

e then we would like to evaluate =R(x, x), where x is bound to
any of its possible values

thus, we need to consider not only the interpretation of the
function and relation symbols, but also variable bindings

16
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Semantics: Structures, Interpretations and Assignments

e a (first order) structure M = (D, I) for a signature ¥ consists
of

e a non-empty set D, the domain
e an interpretation / = ([]¢, [ =) such that

e for every f € F with a(f) = n, [f]g: D" = D
e for every r € R with a(r) = n, [r]r: D" — B

e a variable assignment on [ is a function 0: V — D
We write o[x := t] for the assignment

t if x=y
y= .
o(y) otherwise
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Semantics: Interpreting Terms and Formulas

e interpretation of terms over M and o:
o [XImo = 0o(x)
o [f(ts, .- tn)lmeo = [fle([ti] Moy - - - [t Moo)
e interpretation of formulas:
o [r(tr,- o )Mo = [rlr([a] Mmoo, - - [0 mio)
o [s=tlme :=Tif [sm,o = [t]m.0, Otherwise
[[S = t]]/vl,o =F
o [Llm,o, [ AY]m,o. etc.: as before

T if, forall d € D, [¢]am,op=d) = Ts
V . o = 5 :
* [Pxela, {F otherwise
[Bx.¢] T if there is d € D with [o] s opx=a] = T,
° X. o = ]
PiM. F otherwise
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Example
A structure M = (N, ([ ], [[r)) for Zar
e [0]r=0
o [sle(m) = n+ 1
o [+e(m,n) = m+ n
o [X]Jg(m,n)=mxn
o [<[r(m, n) = {T if m<n

F otherwise
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Satisfiability and Validity

For a structure M, an assignment o, a formula ¢ and a set I' of
formulas, we define

e Moo=t [plme =T

M E ¢ ("M is a model for ¢"): M, o = ¢ for any o
o = if M,o = ¢ then also M,o =1

E ¢ ("pisvalid"): M = ¢ for any structure M
Mo =T: for all v € I we have M, o =~

I = ¢: for any M and o with M, o =T we also have
Mo ‘: ¥

Example: = 3x.D(x) — (Vy.D(y)) (“Drinker Paradox")
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Proof of = Ix.D(x) — (Vy.D(y))

Take the signature Xp = (0, {D}) with «(D) =1 and the set
Vp = {x,y} of variables; the Drinker Paradox is clearly a formula
over ~p and Vp.
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Proof of = dx.D(x) — (Vy.D(y))
o Yp=(0,{D/1}), Vp = {x,y}

Now assume we are given an arbitrary structure

M = (E,([]r,[]r)) and a variable assignment o: Vp — E. By
our definition of semantics, E is a non-empty set; pick an element
e € E.
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Proof of = dx.D(x) — (Vy.D(y))
o Yp=(0,{D/1}), Vp = {x,y}

e structure M, domain E, assignment o; choose ¢, € E

21/37



Proof of = dx.D(x) — (Vy.D(y))
o Yp=(0,{D/1}), Vp = {x,y}

e structure M, domain E, assignment o; choose ¢, € E

Observe that [D]x is a function from E to B, i.e. [D]r(e) is
either T or F for every e € E.
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Proof of = dx.D(x) — (Vy.D(y))
o Yp=(0,{D/1}), Vp = {x,y}

e structure M, domain E, assignment o; choose ¢, € E
o [D]jr: E— B
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Proof of = dx.D(x) — (Vy.D(y))
Yp=(0,{D/1}), Vp = {x,y}

structure M, domain E, assignment o; choose e, € E
[[D]]RZ E—B
We now distinguish two cases:
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Proof of = dx.D(x) — (Vy.D(y))
Yp=(0,{D/1}), Vb ={x,y}

structure M, domain E, assignment o; choose e, € E
[[D]]'RZ E—B
We now distinguish two cases:
o If [D]r(e) =T for all e € E, then
[DY)]m,opx=elly=e] = [Plr(e) =T
for all e € E, hence
[Vy-D(y)IMmolx=e) = T
Certainly also
[D(X) M ofx=e) = T
and thus
[D(x) = (Vy.DyDIm,opc=e) =T
This shows that

[3x.D(x) = (Vy.D(y))Im,o = T.
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Proof of = dx.D(x) — (Vy.D(y))
Yp=(0,{D/1}), Vb ={x,y}

structure M, domain E, assignment o; choose e, € E
[[D]]RZ E—B
We now distinguish two cases:

e [D]r(e) =T for all e: [3x.D(x) = (Yy.D(y))]m,c =T.
e Otherwise, [D]r(e1) is F for some e, hence

[[D(X)]]M,o[x::el] =F

But then,

[[D(X) - (V.y'D(y))]]M,O'[XZ=61] =T

and consequently
[3x.D(x) = (Vy-D(y))Im,s = T.
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Proof of = dx.D(x) — (Vy.D(y))
Yp=(0,{D/1}), Vb ={x,y}

structure M, domain E, assignment o; choose e, € E
[[D]]RZ E—B
We now distinguish two cases:

e [D]r(e) =T for all e: [3x.D(x) = (Yy.D(y))]m,c =T.
e Otherwise, too.

In conclusion, we have shown that =, 3x.D(x) — (Vy.D(y))
for arbitrary M and o, thus establishing

= 3x.D(x) = (Vy.D(y)).
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Basic Results

Fix some signature ¥ and a set V of variables.

Lemma (agreement lemma)

Let M be a structure for ¥, ¢ a formula, and o, o’ variable
assignments such that o(x) = o’(x) for all x € FV(p). Then
Mo = iff Mo’ E .
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Mo = iff Mo’ E .

Corollary

The interpretation of a closed formula is independent of variable
assignments.



Basic Results

Fix some signature ¥ and a set V of variables.

Lemma (agreement lemma)

Let M be a structure for ¥, ¢ a formula, and o, o’ variable
assignments such that o(x) = o’(x) for all x € FV(p). Then
Mo = iff Mo’ E .

Corollary

The interpretation of a closed formula is independent of variable
assignments.

Lemma (alpha equivalent formulas are semantically equivalent)

Alpha equivalent formulas evaluate to the same truth value.



Some Equivalences of FOL

* (Vx.0) & =(3x.~¢)
o (Vo A1) (F) A (V1)
o (Ix.p V)< (Ix.p) V (3x.)
o (Vx.Vy.@) & (Vy.Vx.p)
e (Ix.Jy.@) & (Jy.Ix.v)
e (Ix.Vy.¢) — (Yy.3x.p), but not vice versa
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Truth Tables for FOL?

e for ¢ € PF, we can always find out whether |= ¢ by drawing a
truth table

e how about ¢ € FOL?

e we need to consider all possible structures

e in particular, all possible domains, all possible functions over
them

e but domains could be infinite...

e unfortunate truth:
Theorem (Undecidability of First Order Logic)

Given an arbitrary first order formula o, it is undecidable whether

k2
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Sequent Calculus

K AW



Principles of Sequent Calculus

sequent: A
where I and A are finite sets of formulas

intuitive meaning: if every formula in I is true, then one
formula in A is true

sequent calculus LK: system of derivation rules

allows us to derive sequents that are correct according to the
intuitive interpretation

26
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Example Derivation

P.QREFP PQRFQ

(/\R)( o POFPAQ
;) PFPAQ, -Q

((;)’ FPAQ P, Q

ory P AQ)E 2P 2Q

~(PAQ)F =PV -Q
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Example Derivation

(AR) P.QEP P.RFEQ <—{ derivation step

ry P QFPAQ
(; PFPAQ,-Q
- FPAQ,—-P,—
(-L) Q Q

~(PAQ)F =P, =Q
“(PANQ)F-PV-=Q

(VR)
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Example Derivation

P.QFP PQFQ derivati
? ? erivation ste
(/\R)( N POrPAQ <—{ p

) PEPAQ=Q
) FPAQ-P.-Q
oy (PAQ)F-P.-Q

~(PAQ)F =PV -Q

27 /37



Example Derivation

(AR) P.QEP P.RFQ <—{ derivation step|

(=R) P,QFPAQ

W PFPAQ-Q conse

‘R J quent
I R

(i:)) ~(PAQ)F—P,=Q
“(PAQ)F-PV-Q

27 /37



Example Derivation

- P,QEP P.QRFQ —
(AR) PQFPAO <—{ derivation step |

(-R)
PEPA o,ﬂQ\w
((;)R) FPAQ,-P,—Q
ory P AQE P A0

~(PAQ)F-PV-Q
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Example Derivation

(/\R) P, Q;’l; - P’j\’g Q <—{ derivation step|

(=R)
P P10.0 " L]
R ) t
Pz
ory P AQE P A0

“(PAQE-PV-Q

conclusion
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Example Derivation (ctd.)

I Fes o LelA
M-pkEA MNE=p, A
M=, A M=y, A

(AR) oA A

Ee 9, A

A T ESVETN
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Example Derivation (ctd.)

I Fes o LelA
M-pkEA MNE=p, A
M=, A M=y, A

(AR) oA A

~(PAQ)F —-P,-Q

(VR)

M=o, A

A T ESVETN
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Example Derivation (ctd.)

M=, A MpkHA

R =Y N =

-L) FPAQ,-P,—Q R rEp, A THEY,A
(VE) -(PANQ)F-P,-Q FEony, A
“(PAQ)F-PV-Q
M-, A

A T ESVETN
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Example Derivation (ctd.)

I Fes o LelA
Mok A ME—p, A
- PHPAQ,-Q
(ﬁL)’ FPAQ,—P,—-Q . M-, A e, A
ﬁ(P/\Q)F—!P,—\Q ( M- /\1[J,A
(VR) 4
“(PAQ)F-PV-Q
M=o, A

A T ESVETN
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Example Derivation (ctd.)

LT S EL A
=R) P,QFPAQ F-pk-A M--p,A
(-R) PFPAQ,—-Q
(- PAQP.-Q o oA TEGA
(VE) -(PANQ)F-P,-Q FEony, A
“(PAQ)F-PV-Q
(VR) Mo, A

MN=pvy, A
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Example Derivation (ctd.)

o PQEP PQEQ

P,AQFPAQR
PFPAQ,-Q
FPAQ,-P,-Q
~(PAQ)F—-P,-Q

(-R)
(-R)
(-L)

VP A Q) F —PV-Q

(-L)

(AR)

M=o, A
M—-pkFA

M=, A M=, A

(VR)

F=pnAy, A

M=o, A

MN=pvy, A

MpkHA
M=, A
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Inference Rules for the Propositional Connectives

Basic sequents: [, F o, A
Mn1LrEA

M=, A

R Y

Loyt A

M)A EA

oy eEA WA

(cuT)

(AR)

NeVyrEA
M=o, A MykEA

S P

M=o, A MekEA
r=A

Mok A
M-, A

(-R)

M=o, A M=y, A
MN=pAy, A

M=o, A

R ESVETN

Loy, A
F-p—¢,A

(—=R)
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Example Derivations

F(P—=Q)—P)—=P
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Example Derivations

(P—-Q)—PFP
F(P—Q)—P)—P

(=R)
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Example Derivations

FP— QP PEP
(P—-Q)—PFP
F(P—Q)—P)—P

(=L)
(=R)
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Example Derivations

P Q,P
FP—-QP PEP
(P—-Q)—PFP
F(P—Q)—P)—P
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Example Derivations (ctd.)

P+ P
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Example Derivations (ctd.)

- =P, P
~—~PFP
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Example Derivations (ctd.)
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Example Derivations (ctd.)

PVLEP
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Example Derivations (ctd.)
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Inference Rules for the Quantifiers

M olt/x] A M=o, A .
" T VX FA M) g a X EEVLA)
NokEA . M= [t/x], A
O aora TXEFVILA) R S NN
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Example Derivations

Vx.P(x) A Q(x) F (Vx.P(x)) A (Vx.Q(x))
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Example Derivations

Vx.P(x) A Q(x) F ¥x.P(x) Vx.P(x) A Q(x) F ¥x.Q(x)

(AR) Vx.P(x) A Q(x) F (¥x.P(x)) A (Vx.Q(x))
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Example Derivations

Vx.P(x) A Q(x) F P(x)
Vx.P(x) A Q(x) F Vx.P(x) Vx.P(x) A Q(x) F Vx.Q(x)
Vx.P(x) A Q(x) F (vVx.P(x)) A (Vx.Q(x))

(VR)
(AR)
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Example Derivations

P(x) A Q(x) F P(x)
Vx.P(x) A Q(x) F P(x)
Vx.P(x) A Q(x) F ¥x.P(x) Vx.P(x) A Q(x) F ¥x.Q(x)
Vx.P(x) A Q(x) F (Vx.P(x)) A (Vx.Q(x))

(VL)
(VR)
(AR)
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Example Derivations

P(x), Q(x) F P(x)
P(x) A Q(x) F P(x)
Vx.P(x) A Q(x) F P(x)
Vx.P(x) A Q(x) F ¥x.P(x) Vx.P(x) A Q(x) F ¥x.Q(x)

(AL)

Vx.P(x) A Q(x) F (vVx.P(x)) A (Vx.Q(x))
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Example Derivations

P(x), Q(x) F P(x)

oy PEIA QR P()
) Vx.P(x) A Q(x) F P(x . Vx.P(x) A Q(x) F Q(x
AR Vx.P(x) A Q(x) F Vx.P(x) Vx.P(x) A Q(x) F Vx.Q(x)
Vx.P(x) A Q(x) F (Vx.P(x)) A (vx.Q(x))
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Example Derivations

P(x), Q(x) F P(x)

(AL)
P(x) A Q(x) F P(x) P(x) A Q(x) F Q(x)

(\ﬂ(:)” Vx.P(x) A Q(x) F P(x VSL) Vx.P(x) A Q(x) - Q(x)

) Vx.P(x) A Q(x)  Vx.P(x) Vx.P(x) A Q(x) - Vx.Q(x)

¥x.P(x) A Q(x) = (¥x.P(x)) A (Vx.Q(x))
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Example Derivations

oy P0.QEY F P oy PL.Q0) F Q)
PGNP M PG F Q)
VR) Vx.P(x) A Q(x) F P(x R Vx.P(x) A Q(x) F Q(x)

Vx.P(x) A Q(x) F ¥x.P(x) Vx.P(x) A Q(x) F ¥x.Q(x)

(AR) Vx.P(x) A Q(x) F (Vx.P(x)) A (¥x.Q(x))
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Example Derivations (ctd.)

The following derivation violates a side condition:

P(x) F P(x)
Ix.P(x)  P(x)
Ix.P(x) F Vx.P(x)
F (3x.P(x)) = (Vx.P(x))

(3L)
(VR)
(—R)
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Inference Rules for Equality

s=1t,I[s/x]+ Als/x]

Basic sequent: Tt =1t A
) TIe/x] - A[t/x]

s=tht=s
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Inference Rules for Equality

s=1t,I[s/x]+ Als/x]
s =1t,t/x] - Alt/x]

Basic sequent: Tt =1t A (SUBST)

s=tk t=s
~——

= (x=9)[t/x]
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Inference Rules for Equality

s=1t,I[s/x]+ Als/x]

Basic sequent: Tt =1t A
) TIe/x] - A[t/x]

= (x=s)[s/x]
(suBsT) S%tl_ S%S
s=tk t=s
~——

=(x=9)[t/x]

36
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Soundness and Completeness
We write [ g A to mean that there is a derivation of I F A.

Theorem 15 (Soundness of LK)
The system LK is sound: If [ Frk ¢ then I = o.

Theorem 16 (Consistency of LK)

The system LK is consistent: There is a formula ¢ such
that Kk ¢.

Theorem 17 (Completeness of LK)
The system LK is complete: If ' = ¢ then I Frx ¢.
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