Logic Part II: First-order Logic

Max Schäfer

Formosan Summer School on Logic, Language, and Computation 2010

First-order Logic

一階邏輯

Motivation: First Order Logic

• in mathematics, we want to express propositions about individuals, e.g.

For every
$$x$$
 we have $1 + x > x$

- in the example, the individuals are numbers, ranged over by the individual variable x
- we use constants (like 1) and functions (like +, arity 2) to construct terms
- relations (like >, arity 2) can be used to form atomic propositions about terms
- atomic propositions are used to construct more complex propositions
- first order logic (FOL) formalises such statements in an abstract setting

Principles of First Order Logic (FOL)

- first order logic formalises reasoning about statements that can refer to individuals through *individual variables*
- a fixed set of function symbols acts on the individuals
- a fixed set of relation symbols expresses predicates on the individuals
- more complex statements can be formed by connectives like $\land, \lor, \rightarrow, \lnot$ and the quantifiers \forall, \exists
- first order logic is sufficient to formalise great parts of mathematics, for example arithmetic

The Language of FOL

- a first order signature $\Sigma = \langle \mathtt{F}, \mathcal{R} \rangle$ describes a language with
 - function letters $f \in F$ with arity $\alpha(f) \in \mathbb{N}$
 - relation letters $r \in \mathcal{R}$ with arity $\alpha(r) \in \mathbb{N}$
- terms $T(\Sigma, V)$ over Σ and a set V of *individual variables* are inductively defined:
 - $V \subseteq T(\Sigma, V)$
 - for $f \in F$ of arity $n, t_1, \ldots, t_n \in T(\Sigma, V)$, also $f(t_1, \ldots, t_n) \in T(\Sigma, V)$
- for a 0-ary constant d, we write d() simply as d

Signature $\Sigma_{\rm ar} = \langle F_{\rm ar}, \mathcal{R}_{\rm ar} \rangle$ of arithmetic:

- $F_{ar}=\{\mathbf{0},s,+,\times\}$, where $\alpha(\mathbf{0})=0$, $\alpha(s)=1$, $\alpha(+)=\alpha(\times)=2$
- $\mathcal{R}_{ar} = \{\leq\}$, where $\alpha(\leq) = 2$
- examples for terms from $T(\Sigma_{ar}, \{x, y\})$: $\mathbf{0}, s(\mathbf{0}), s(s(\mathbf{0})), \ldots, s(x), \times (s(x), y), s(\times (x, y)), \ldots$
- but not $\mathbf{0}(\mathbf{0})$ or $\times (s(\mathbf{0}))$
- $\times(x,y)$ usually written $x\times y$, but still $\times(x,y)\equiv x\times y$

Signature $\Sigma_{\rm ar} = \langle F_{\rm ar}, \mathcal{R}_{\rm ar} \rangle$ of arithmetic:

- $\mathbf{F}_{\mathrm{ar}}=\{\mathbf{0},s,+,\times\}$, where $lpha(\mathbf{0})=0$, lpha(s)=1, $lpha(+)=lpha(\times)=2$
- $\mathcal{R}_{ar} = \{\leq\}$, where $\alpha(\leq) = 2$
- examples for terms from $T(\Sigma_{ar}, \{x, y\})$: $\mathbf{0}, s(\mathbf{0}), s(s(\mathbf{0})), \ldots, s(x), \times (s(x), y), s(\times (x, y)), \ldots$
- but not $\mathbf{0}(\mathbf{0})$ or $\times (s(\mathbf{0}))$
- $\times (x, y)$ usually written $x \times y$, but still $\times (x, y) \equiv x \times y$

The Language of FOL (II)

- an atom is either
 - of the form $r(t_1, \ldots, t_n)$, where $r \in \mathcal{R}$, $\alpha(r) = n$, $t_1, \ldots, t_n \in T(\Sigma, \mathcal{V})$
 - or of the form $s \doteq t$, where $s, t \in \mathtt{T}(\Sigma, \mathcal{V})$
- we write r for r() if $\alpha(r) = 0$
- the language of formulas of first-order logic over Σ and $\mathcal V$ is given by the following grammar:

$$\varphi ::= \mathcal{A}(\Sigma, \mathcal{V}) \ | \ \bot \ | \ \varphi \wedge \varphi \ | \ \varphi \vee \varphi \ | \ \varphi \rightarrow \varphi \ | \ \forall \mathcal{V}.\varphi \ | \ \exists \mathcal{V}.\varphi$$

where $\mathcal{A}(\Sigma, \mathcal{V})$ are the atoms over Σ and \mathcal{V}

• \forall and \exists have the lowest precedence

Atoms over Σ_{ar} and $\mathcal{V} = \{x, y, d, d'\}$:

- x ≐ y
- $x + y \doteq y + x$
- $s(s(\mathbf{0})) \times x \leq x + x$

Non-atomic formulas:

- $\neg(x \doteq s(x))$
- $(\exists d.x + d \doteq y) \rightarrow (\exists d'.s(x) + d' \doteq y) \lor s(x) \doteq y$
- $\forall x.x + x \leq x \times x$

Intuitive Semantics of the Quantifiers

- $\forall x. \varphi$ should be understood as "for all values of x, φ holds"
- $\exists x. \varphi$ should be understood as "there is a value of x such that φ holds"
- so the formula

$$\forall x.x \doteq \mathbf{0} \lor \exists y.x \doteq s(y)$$

could be understood as

every x is either equal to zero, or there exists a

number y such that x is its successor

 however, this interpretation relies on an intuitive interpretation of the function symbols s and 0 and the relation symbol =; it is certainly not true for all interpretations of these symbols!

Intuitive Semantics of the Quantifiers

- $\forall x. \varphi$ should be understood as "for all values of x, φ holds"
- $\exists x. \varphi$ should be understood as "there is a value of x such that φ holds"
- so the formula

$$\forall x.x \doteq \mathbf{0} \vee \exists y.x \doteq s(y)$$

could be understood as

every x is either equal to zero, or there exists a

number y such that x is its successor

 however, this interpretation relies on an intuitive interpretation of the function symbols s and 0 and the relation symbol =; it is certainly not true for all interpretations of these symbols!

Intuitive Semantics of the Quantifiers

- $\forall x. \varphi$ should be understood as "for all values of x, φ holds"
- ∃x.φ should be understood as "there is a value of x such that φ holds"
- so the formula

$$\forall x.x \doteq \mathbf{0} \lor \exists y.x \doteq s(y)$$

could be understood as

every x is either equal to zero, or there exists a

number y such that x is its successor

 however, this interpretation relies on an intuitive interpretation of the function symbols s and 0 and the relation symbol =; it is certainly not true for all interpretations of these symbols!

Free and Bound Variables

 an appearance of an individual variable is called bound if it is within the scope of a quantifier, otherwise it is free
 e.g. (free variables are red):

$$\mathbf{x} \doteq s(\mathbf{y}) \qquad \exists x. x \doteq s(\mathbf{y}) \qquad \forall y. \exists x. x \doteq s(y)$$

• the same variable can appear both free and bound:

$$(\forall x.R(x,\mathbf{z}) \to (\exists y.S(y,x))) \land T(\mathbf{x})$$

Free and Bound Variables

 an appearance of an individual variable is called bound if it is within the scope of a quantifier, otherwise it is free
 e.g. (free variables are red):

$$\mathbf{x} \doteq s(\mathbf{y}) \qquad \exists x.x \doteq s(\mathbf{y}) \qquad \forall y.\exists x.x \doteq s(y)$$

the same variable can appear both free and bound:

$$(\forall x.R(x, \mathbf{z}) \rightarrow (\exists y.S(y, x))) \land T(\mathbf{x})$$

- free variables in a term:
 - 1. $FV(x) = \{x\}$ for $x \in \mathcal{V}$
 - 2. $FV(f(t_1,...,t_n)) = \bigcup_{i \in \{1,...,n\}} FV(t_i)$
- · free variables in a formula:
 - 1. $FV(r(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} FV(t_i)$
 - 2. $FV(s = t) = FV(s) \cup FV(t)$
 - 3. $FV(\bot) = \emptyset$
 - 4. $FV(\varphi \wedge \psi) = FV(\varphi \vee \psi) = FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi)$
 - 5. $FV(\forall x.\varphi) = FV(\varphi) \setminus \{x\}$
 - 6. $FV(\exists x.\varphi) = FV(\varphi) \setminus \{x\}$

- $FV(x) = \{x\}, FV(\mathbf{0}) = \emptyset, FV(s(y)) = \{y\}$
- $FV(x \doteq \mathbf{0} \lor x \doteq s(y)) = \{x, y\}$
- $FV(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \{x\}$
- $FV(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \emptyset$

- free variables in a term:
 - 1. $FV(x) = \{x\}$ for $x \in \mathcal{V}$
 - 2. $FV(f(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} FV(t_i)$
- free variables in a formula:
 - 1. $FV(r(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} FV(t_i)$
 - 2. $FV(s \doteq t) = FV(s) \cup FV(t)$
 - 3. $FV(\bot) = \emptyset$
 - 4. $FV(\varphi \wedge \psi) = FV(\varphi \vee \psi) = FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi)$
 - 5. $FV(\forall x.\varphi) = FV(\varphi) \setminus \{x\}$
 - 6. $FV(\exists x.\varphi) = FV(\varphi) \setminus \{x\}$

- $FV(x) = \{x\}, FV(\mathbf{0}) = \emptyset, FV(s(y)) = \{y\}$
- $FV(x \doteq \mathbf{0} \lor x \doteq s(y)) = \{x, y\}$
- $FV(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \{x\}$
- $FV(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \emptyset$

- free variables in a term:
 - 1. $FV(x) = \{x\}$ for $x \in \mathcal{V}$
 - 2. $FV(f(t_1,...,t_n)) = \bigcup_{i \in \{1,...,n\}} FV(t_i)$
- free variables in a formula:
 - 1. $FV(r(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} FV(t_i)$
 - 2. $FV(s \doteq t) = FV(s) \cup FV(t)$
 - 3. $FV(\bot) = \emptyset$
 - 4. $FV(\varphi \wedge \psi) = FV(\varphi \vee \psi) = FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi)$
 - 5. $FV(\forall x.\varphi) = FV(\varphi) \setminus \{x\}$
 - 6. $FV(\exists x.\varphi) = FV(\varphi) \setminus \{x\}$

- $FV(x) = \{x\}, FV(\mathbf{0}) = \emptyset, FV(s(y)) = \{y\}$
- $FV(x \doteq \mathbf{0} \lor x \doteq s(y)) = \{x, y\}$
- $FV(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \{x\}$
- $FV(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \emptyset$

- free variables in a term:
 - 1. $FV(x) = \{x\}$ for $x \in \mathcal{V}$
 - 2. $FV(f(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} FV(t_i)$
- free variables in a formula:
 - 1. $FV(r(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} FV(t_i)$
 - 2. $FV(s = t) = FV(s) \cup FV(t)$
 - 3. $FV(\bot) = \emptyset$
 - 4. $FV(\varphi \wedge \psi) = FV(\varphi \vee \psi) = FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi)$
 - 5. $FV(\forall x.\varphi) = FV(\varphi) \setminus \{x\}$
 - 6. $FV(\exists x.\varphi) = FV(\varphi) \setminus \{x\}$

- $FV(x) = \{x\}, FV(\mathbf{0}) = \emptyset, FV(s(y)) = \{y\}$
- $FV(x \doteq \mathbf{0} \lor x \doteq s(y)) = \{x, y\}$
- $FV(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \{x\}$
- FV($\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \emptyset$

- free variables in a term:
 - 1. $FV(x) = \{x\}$ for $x \in \mathcal{V}$
 - 2. $FV(f(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} FV(t_i)$
- free variables in a formula:
 - 1. $FV(r(t_1,\ldots,t_n)) = \bigcup_{i\in\{1,\ldots,n\}} FV(t_i)$
 - 2. $FV(s \doteq t) = FV(s) \cup FV(t)$
 - 3. $FV(\bot) = \emptyset$
 - 4. $FV(\varphi \wedge \psi) = FV(\varphi \vee \psi) = FV(\varphi \rightarrow \psi) = FV(\varphi) \cup FV(\psi)$
 - 5. $FV(\forall x.\varphi) = FV(\varphi) \setminus \{x\}$
 - 6. $FV(\exists x.\varphi) = FV(\varphi) \setminus \{x\}$

- $FV(x) = \{x\}, FV(\mathbf{0}) = \emptyset, FV(s(y)) = \{y\}$
- $FV(x \doteq \mathbf{0} \lor x \doteq s(y)) = \{x, y\}$
- $FV(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \{x\}$
- $FV(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y))) = \emptyset$

Substitution in Terms and Formulas

• substituting a term t for a variable x in a term s (s[t/x]):

1.
$$y[t/x] = \begin{cases} t & \text{if } x = y, \\ y & \text{otherwise} \end{cases}$$

2.
$$f(t_1,...,t_n)[t/x] = f(t_1[t/x],...,t_n[t/x])$$

- on formulas, the definition is
 - 1. $r(t_1,...,t_n)[t/x] = r(t_1[t/x],...,t_n[t/x])$
 - 2. $(s_1 \doteq s_2)[t/x] = (s_1[t/x] \doteq s_2[t/x])$
 - 3. $\bot[t/x] = \bot$
 - 4. $(\varphi \circ \psi)[t/x] = (\varphi[t/x] \circ \psi[t/x])$, where \circ is either \wedge or \vee or \rightarrow

5.
$$(\forall y.\varphi)[t/x] = \begin{cases} \forall y.\varphi & \text{if } x = y, \\ \forall y.(\varphi[t/x]) & \text{if } x \neq y, \ y \notin \text{FV}(t) \end{cases}$$

$$(\exists y.\varphi)[t/x] = \begin{cases} \exists y.\varphi & \text{if } x = y, \\ \exists y.(\varphi[t/x]) & \text{if } x \neq y, \ y \notin \text{FV}(t) \end{cases}$$

- $x[s(\mathbf{0})/x] \equiv s(\mathbf{0})$
- $y[s(\mathbf{0})/x] \equiv y$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor s(\mathbf{0}) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor (\exists y.s(\mathbf{0}) \doteq s(y))$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(y)/x] \equiv s(y) \doteq \mathbf{0} \lor s(y) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(y)/x]$ is not defined
- $(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x]$ $\equiv (\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))$

- $x[s(\mathbf{0})/x] \equiv s(\mathbf{0})$
- $y[s(\mathbf{0})/x] \equiv y$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor s(\mathbf{0}) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor (\exists y.s(\mathbf{0}) \doteq s(y))$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(y)/x] \equiv s(y) \doteq \mathbf{0} \lor s(y) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(y)/x]$ is not defined
- $(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x]$ $\equiv (\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))$

- $x[s(\mathbf{0})/x] \equiv s(\mathbf{0})$
- $y[s(\mathbf{0})/x] \equiv y$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor s(\mathbf{0}) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor (\exists y.s(\mathbf{0}) \doteq s(y))$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(y)/x] \equiv s(y) \doteq \mathbf{0} \lor s(y) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(y)/x]$ is not defined
- $(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x]$ $\equiv (\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))$

- $x[s(\mathbf{0})/x] \equiv s(\mathbf{0})$
- $y[s(\mathbf{0})/x] \equiv y$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor s(\mathbf{0}) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor (\exists y.s(\mathbf{0}) \doteq s(y))$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(y)/x] \equiv s(y) \doteq \mathbf{0} \lor s(y) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(y)/x]$ is not defined
- $(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x]$ $\equiv (\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))$

- $x[s(\mathbf{0})/x] \equiv s(\mathbf{0})$
- $y[s(\mathbf{0})/x] \equiv y$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor s(\mathbf{0}) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor (\exists y.s(\mathbf{0}) \doteq s(y))$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(y)/x] \equiv s(y) \doteq \mathbf{0} \lor s(y) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(y)/x]$ is not defined
- $(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x]$ $\equiv (\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))$

- $x[s(\mathbf{0})/x] \equiv s(\mathbf{0})$
- $y[s(\mathbf{0})/x] \equiv y$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor s(\mathbf{0}) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor (\exists y.s(\mathbf{0}) \doteq s(y))$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(y)/x] \equiv s(y) \doteq \mathbf{0} \lor s(y) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(y)/x]$ is not defined
- $(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x]$ $\equiv (\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))$

- $x[s(\mathbf{0})/x] \equiv s(\mathbf{0})$
- $y[s(\mathbf{0})/x] \equiv y$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor s(\mathbf{0}) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x] \equiv s(\mathbf{0}) \doteq \mathbf{0} \lor (\exists y.s(\mathbf{0}) \doteq s(y))$
- $(x \doteq \mathbf{0} \lor x \doteq s(y))[s(y)/x] \equiv s(y) \doteq \mathbf{0} \lor s(y) \doteq s(y)$
- $(x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(y)/x]$ is not defined
- $(\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))[s(\mathbf{0})/x]$ $\equiv (\forall x.x \doteq \mathbf{0} \lor (\exists y.x \doteq s(y)))$

- $\forall x. \varphi$ alpha reduces to $\forall y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$ $\exists x. \varphi$ alpha reduces to $\exists y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$
- φ is called alpha equivalent to ψ (written $\varphi \equiv_{\alpha} \psi$), if ψ results from φ by any number of alpha reductions on subformulas of φ
- Examples:

```
• (\forall x.R(x,x)) \equiv_{\alpha} (\forall y.R(y,y))

• (\forall x.\exists x.S(x)) \equiv_{\alpha} (\forall y.\exists x.S(x)) \equiv_{\alpha} (\forall y.\exists z.S(z))

• (\forall x.\exists y.T(x,y)) \not\equiv_{\alpha} (\forall x.\exists x.T(x,x))
```

- $\forall x. \varphi$ alpha reduces to $\forall y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$ $\exists x. \varphi$ alpha reduces to $\exists y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$
- φ is called alpha equivalent to ψ (written $\varphi \equiv_{\alpha} \psi$), if ψ results from φ by any number of alpha reductions on subformulas of φ
- Examples:
 - $(\forall x.R(x,x)) \equiv_{\alpha} (\forall y.R(y,y))$
 - $(\forall x.\exists x.S(x)) \equiv_{\alpha} (\forall y.\exists x.S(x)) \equiv_{\alpha} (\forall y.\exists z.S(z))$
 - $(\forall x.\exists y.T(x,y)) \not\equiv_{\alpha} (\forall x.\exists x.T(x,x))$

- $\forall x. \varphi$ alpha reduces to $\forall y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$ $\exists x. \varphi$ alpha reduces to $\exists y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$
- φ is called alpha equivalent to ψ (written $\varphi \equiv_{\alpha} \psi$), if ψ results from φ by any number of alpha reductions on subformulas of φ
- Examples:
 - $(\forall x.R(x,x)) \equiv_{\alpha} (\forall y.R(y,y))$
 - $(\forall x. \exists x. S(x)) \equiv_{\alpha} (\forall y. \exists x. S(x)) \equiv_{\alpha} (\forall y. \exists z. S(z))$
 - $(\forall x.\exists y.T(x,y)) \not\equiv_{\alpha} (\forall x.\exists x.T(x,x))$

- $\forall x. \varphi$ alpha reduces to $\forall y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$ $\exists x. \varphi$ alpha reduces to $\exists y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$
- φ is called alpha equivalent to ψ (written $\varphi \equiv_{\alpha} \psi$), if ψ results from φ by any number of alpha reductions on subformulas of φ
- Examples:
 - $(\forall x.R(x,x)) \equiv_{\alpha} (\forall y.R(y,y))$
 - $(\forall x. \exists x. S(x)) \equiv_{\alpha} (\forall y. \exists x. S(x)) \equiv_{\alpha} (\forall y. \exists z. S(z))$
 - $(\forall x.\exists y.T(x,y)) \not\equiv_{\alpha} (\forall x.\exists x.T(x,x))$

- $\forall x. \varphi$ alpha reduces to $\forall y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$ $\exists x. \varphi$ alpha reduces to $\exists y. \varphi'$ if $\varphi' \equiv \varphi[y/x]$
- φ is called alpha equivalent to ψ (written $\varphi \equiv_{\alpha} \psi$), if ψ results from φ by any number of alpha reductions on subformulas of φ
- Examples:
 - $(\forall x.R(x,x)) \equiv_{\alpha} (\forall y.R(y,y))$
 - $(\forall x.\exists x.S(x)) \equiv_{\alpha} (\forall y.\exists x.S(x)) \equiv_{\alpha} (\forall y.\exists z.S(z))$
 - $(\forall x.\exists y.T(x,y)) \not\equiv_{\alpha} (\forall x.\exists x.T(x,x))$

- we do not distinguish between alpha equivalent formulas
- hence, we can use alpha reduction to rename problematic bound variables such that substitution is always defined
- example:

$$(x \doteq \mathbf{0} \lor \exists y.x \doteq s(y))[s(y)/x]$$

is not defined, but

$$x \doteq \mathbf{0} \lor \exists y. x \doteq s(y) \equiv_{\alpha} x \doteq \mathbf{0} \lor \exists z. x \doteq s(z)$$

$$(x \doteq \mathbf{0} \lor \exists y.x \doteq s(y))[s(y)/x] := (x \doteq \mathbf{0} \lor \exists z.x \doteq s(z))[s(y)/x]$$
$$\equiv s(y) \doteq \mathbf{0} \lor \exists z.s(y) \doteq s(z)$$

- · we do not distinguish between alpha equivalent formulas
- hence, we can use alpha reduction to rename problematic bound variables such that substitution is always defined
- example:

$$(x \doteq \mathbf{0} \lor \exists y.x \doteq s(y))[s(y)/x]$$

is not defined, but

$$x \doteq \mathbf{0} \lor \exists y. x \doteq s(y) \equiv_{\alpha} x \doteq \mathbf{0} \lor \exists z. x \doteq s(z)$$

$$(x \doteq \mathbf{0} \lor \exists y.x \doteq s(y))[s(y)/x] := (x \doteq \mathbf{0} \lor \exists z.x \doteq s(z))[s(y)/x]$$
$$\equiv s(y) \doteq \mathbf{0} \lor \exists z.s(y) \doteq s(z)$$

- · we do not distinguish between alpha equivalent formulas
- hence, we can use alpha reduction to rename problematic bound variables such that substitution is always defined
- example:

$$(x \doteq \mathbf{0} \lor \exists y.x \doteq s(y))[s(y)/x]$$

is not defined, but

$$x \doteq \mathbf{0} \lor \exists y.x \doteq s(y) \equiv_{\alpha} x \doteq \mathbf{0} \lor \exists z.x \doteq s(z)$$

$$(x \doteq \mathbf{0} \lor \exists y.x \doteq s(y))[s(y)/x] := (x \doteq \mathbf{0} \lor \exists z.x \doteq s(z))[s(y)/x]$$
$$\equiv s(y) \doteq \mathbf{0} \lor \exists z.s(y) \doteq s(z)$$

- · we do not distinguish between alpha equivalent formulas
- hence, we can use alpha reduction to rename problematic bound variables such that substitution is always defined
- example:

$$(x \doteq \mathbf{0} \lor \exists y.x \doteq s(y))[s(y)/x]$$

is not defined, but

$$x \doteq \mathbf{0} \lor \exists y.x \doteq s(y) \equiv_{\alpha} x \doteq \mathbf{0} \lor \exists z.x \doteq s(z)$$

$$(x \doteq \mathbf{0} \lor \exists y.x \doteq s(y))[s(y)/x] := (x \doteq \mathbf{0} \lor \exists z.x \doteq s(z))[s(y)/x]$$

$$\equiv s(y) \doteq \mathbf{0} \lor \exists z.s(y) \doteq s(z)$$

Motivation: Semantics of FOL

- \bullet the function and relation symbols in Σ have no predefined meaning
- thus, we do not know if $\forall x.x \doteq \mathbf{0}$ is true
- but some sentences are true no matter how the symbols are interpreted, e.g.:

$$(\forall x. \forall y. R(x,y) \rightarrow R(y,x)) \rightarrow R(a,b) \rightarrow R(b,a)$$

- how do we evaluate, e.g., $\forall x. \neg R(x, x)$?
 - we need to know what x can stand for, and for which of these values R is true
 - then we would like to evaluate $\neg R(x,x)$, where x is bound to any of its possible values
- thus, we need to consider not only the interpretation of the function and relation symbols, but also variable bindings

Motivation: Semantics of FOL

- ullet the function and relation symbols in Σ have no predefined meaning
- thus, we do not know if $\forall x.x \doteq \mathbf{0}$ is true
- but some sentences are true no matter how the symbols are interpreted, e.g.:

$$(\forall x. \forall y. R(x,y) \rightarrow R(y,x)) \rightarrow R(a,b) \rightarrow R(b,a)$$

- how do we evaluate, e.g., $\forall x. \neg R(x, x)$?
 - we need to know what x can stand for, and for which of these values R is true
 - then we would like to evaluate $\neg R(x,x)$, where x is bound to any of its possible values
- thus, we need to consider not only the interpretation of the function and relation symbols, but also variable bindings

Motivation: Semantics of FOL

- \bullet the function and relation symbols in Σ have no predefined meaning
- thus, we do not know if $\forall x.x \doteq \mathbf{0}$ is true
- but some sentences are true no matter how the symbols are interpreted, e.g.:

$$(\forall x. \forall y. R(x,y) \rightarrow R(y,x)) \rightarrow R(a,b) \rightarrow R(b,a)$$

- how do we evaluate, e.g., $\forall x. \neg R(x, x)$?
 - we need to know what x can stand for, and for which of these values R is true
 - then we would like to evaluate $\neg R(x,x)$, where x is bound to any of its possible values
- thus, we need to consider not only the interpretation of the function and relation symbols, but also variable bindings

Semantics: Structures, Interpretations and Assignments

- a (first order) structure $\mathcal{M} = \langle D, I \rangle$ for a signature Σ consists of
 - a non-empty set *D*, the *domain*
 - an interpretation $I = \langle [\![\,]\!]_F, [\![\,]\!]_{\mathcal{R}} \rangle$ such that
 - for every $f \in F$ with $\alpha(f) = n$, $[\![f]\!]_F : D^n \to D$
 - for every $r \in \mathcal{R}$ with $\alpha(r) = n$, $[\![r]\!]_{\mathcal{R}} : D^n \to \mathcal{B}$
- a variable assignment on I is a function $\sigma \colon \mathcal{V} \to D$ We write $\sigma[x := t]$ for the assignment

$$y \mapsto \begin{cases} t & \text{if } x = y \\ \sigma(y) & \text{otherwise} \end{cases}$$

Semantics: Interpreting Terms and Formulas

- interpretation of terms over $\mathcal M$ and σ :
 - $[x]_{\mathcal{M},\sigma} := \sigma(x)$
 - $\llbracket f(t_1,\ldots,t_n) \rrbracket_{\mathcal{M},\sigma} := \llbracket f \rrbracket_{\mathbb{F}}(\llbracket t_1 \rrbracket_{\mathcal{M},\sigma},\ldots,\llbracket t_n \rrbracket_{\mathcal{M},\sigma})$
- interpretation of formulas:
 - $\llbracket r(t_1,\ldots,t_n) \rrbracket_{\mathcal{M},\sigma} := \llbracket r \rrbracket_{\mathcal{R}} (\llbracket t_1 \rrbracket_{\mathcal{M},\sigma},\ldots,\llbracket t_n \rrbracket_{\mathcal{M},\sigma})$
 - $\llbracket s \doteq t \rrbracket_{\mathcal{M},\sigma} := T \text{ if } \llbracket s \rrbracket_{\mathcal{M},\sigma} = \llbracket t \rrbracket_{\mathcal{M},\sigma}, \text{ otherwise } \llbracket s \doteq t \rrbracket_{\mathcal{M},\sigma} := F$
 - $[\![\bot]\!]_{\mathcal{M},\sigma}$, $[\![\varphi \land \psi]\!]_{\mathcal{M},\sigma}$, etc.: as before
 - $\llbracket \forall x. \varphi \rrbracket_{\mathcal{M}, \sigma} := \begin{cases} \mathtt{T} & \text{if, for all } d \in D, \ \llbracket \varphi \rrbracket_{\mathcal{M}, \sigma[x:=d]} = \mathtt{T}, \\ \mathtt{F} & \text{otherwise} \end{cases}$
 - $[\exists x.\varphi]_{\mathcal{M},\sigma} := \begin{cases} \mathsf{T} & \text{if there is } d \in D \text{ with } [\![\varphi]\!]_{\mathcal{M},\sigma[x:=d]} = \mathsf{T}, \\ \mathsf{F} & \text{otherwise} \end{cases}$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}} \rangle \rangle$ for Σ_{ar}

•
$$[\![\mathbf{0}]\!]_F = 0$$

•
$$[s]_{F}(n) = n + 1$$

•
$$[+]_F(m, n) = m + n$$

•
$$\llbracket \times \rrbracket_{\mathbb{F}}(m,n) = m \times n$$

•
$$\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$$

•
$$[x]_{\mathcal{M},\sigma} = 0$$
, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$

•
$$[\![\bot]\!]_{\mathcal{M},\sigma} = F$$
, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$

•
$$[x \le y]_{\mathcal{M},\sigma} = T$$

•
$$[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_{F}(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathrm{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}} \rangle \rangle$ for Σ_{ar}

- $[0]_F = 0$
- $[s]_{F}(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $\llbracket \times \rrbracket_{\mathbb{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}} \rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_{F}(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $\llbracket \times \rrbracket_{\mathbb{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y+y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_{F}(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $\llbracket \times \rrbracket_{\mathbb{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y = s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_F(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathrm{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[0]_F = 0$
- $[s]_F(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathrm{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[\![x]\!]_{\mathcal{M},\sigma} = 0$, $[\![y+y]\!]_{\mathcal{M},\sigma} = 2$, $[\![\mathbf{0}]\!]_{\mathcal{M},\sigma} = 0$, $[\![s(s(\mathbf{0}))]\!]_{\mathcal{M},\sigma} = 2$, $[\![y \doteq s(s(\mathbf{0}))]\!]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_F(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathrm{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = \begin{cases} \mathsf{T} & \text{if } m \leq n \\ \mathsf{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $\llbracket \bot \rrbracket_{\mathcal{M},\sigma} = \mathbb{F}$, $\llbracket \neg (x \doteq y) \rrbracket_{\mathcal{M},\sigma} = \mathbb{T}$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_F(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathbb{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = \begin{cases} \mathsf{T} & \text{if } m \leq n \\ \mathsf{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}} \rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_F(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathbb{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_F(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathrm{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[0]_F = 0$
- $[s]_F(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathrm{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_{F}(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathbb{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = \mathbb{F}$

A structure $\mathcal{M}=\langle \mathbb{N},\langle [\![\,]\!]_F,[\![\,]\!]_{\mathcal{R}}\rangle \rangle$ for Σ_{ar}

- $[\![\mathbf{0}]\!]_F = 0$
- $[s]_{F}(n) = n + 1$
- $[+]_F(m, n) = m + n$
- $[\![\times]\!]_{\mathrm{F}}(m,n) = m \times n$
- $\llbracket \leq \rrbracket_{\mathcal{R}}(m,n) = egin{cases} \mathtt{T} & \text{if } m \leq n \\ \mathtt{F} & \text{otherwise} \end{cases}$

- $[x]_{\mathcal{M},\sigma} = 0$, $[y + y]_{\mathcal{M},\sigma} = 2$, $[0]_{\mathcal{M},\sigma} = 0$, $[s(s(0))]_{\mathcal{M},\sigma} = 2$, $[y \doteq s(s(0))]_{\mathcal{M},\sigma} = F$
- $[\![\bot]\!]_{\mathcal{M},\sigma} = F$, $[\![\neg(x \doteq y)]\!]_{\mathcal{M},\sigma} = T$
- $[x \le y]_{\mathcal{M},\sigma} = T$
- $[\exists x. \forall y. \neg (x \doteq y) \land x \leq y]_{\mathcal{M}, \sigma} = F$

Satisfiability and Validity

For a structure \mathcal{M} , an assignment σ , a formula φ and a set Γ of formulas, we define

- $\mathcal{M}, \sigma \models \varphi \colon \llbracket \varphi \rrbracket_{\mathcal{M}, \sigma} = \mathsf{T}$
- $\mathcal{M} \models \varphi$ ("M is a model for φ "): $\mathcal{M}, \sigma \models \varphi$ for any σ
- $\varphi \Rightarrow \psi$: if $\mathcal{M}, \sigma \models \varphi$ then also $\mathcal{M}, \sigma \models \psi$
- $\models \varphi$ (" φ is valid"): $\mathcal{M} \models \varphi$ for any structure \mathcal{M}
- $\mathcal{M}, \sigma \models \Gamma$: for all $\gamma \in \Gamma$ we have $\mathcal{M}, \sigma \models \gamma$
- $\Gamma \models \varphi$: for any \mathcal{M} and σ with $\mathcal{M}, \sigma \models \Gamma$ we also have $\mathcal{M}, \sigma \models \varphi$

Example: $\models \exists x. D(x) \rightarrow (\forall y. D(y))$ ("Drinker Paradox")

Proof of $\models \exists x. D(x) \rightarrow (\forall y. D(y))$

Take the signature $\Sigma_D = \langle \emptyset, \{D\} \rangle$ with $\alpha(D) = 1$ and the set $\mathcal{V}_D = \{x,y\}$ of variables; the Drinker Paradox is clearly a formula over Σ_D and \mathcal{V}_D .

Proof of
$$\models \exists x. D(x) \rightarrow (\forall y. D(y))$$

• $\Sigma_D = \langle \emptyset, \{D/1\} \rangle, \ \mathcal{V}_D = \{x, y\}$

Now assume we are given an arbitrary structure $\mathcal{M}=\langle E,\langle \llbracket \rrbracket_F, \llbracket \rrbracket_{\mathcal{R}} \rangle \rangle$ and a variable assignment $\sigma\colon \mathcal{V}_D \to E$. By our definition of semantics, E is a non-empty set; pick an element $e_0 \in E$.

Proof of $\models \exists x.D(x) \rightarrow (\forall y.D(y))$

- $\Sigma_D = \langle \emptyset, \{D/1\} \rangle$, $\mathcal{V}_D = \{x, y\}$
- structure \mathcal{M} , domain E, assignment σ ; choose $e_o \in E$

Proof of $\models \exists x. D(x) \rightarrow (\forall y. D(y))$

- $\Sigma_D = \langle \emptyset, \{D/1\} \rangle, \ \mathcal{V}_D = \{x, y\}$
- structure \mathcal{M} , domain E, assignment σ ; choose $e_o \in E$

Observe that $[\![D]\!]_{\mathcal{R}}$ is a function from E to \mathcal{B} , i.e. $[\![D]\!]_{\mathcal{R}}(e)$ is either T or F for every $e \in E$.

Proof of $\models \exists x.D(x) \rightarrow (\forall y.D(y))$

- $\Sigma_D = \langle \emptyset, \{D/1\} \rangle$, $\mathcal{V}_D = \{x, y\}$
- structure \mathcal{M} , domain E, assignment σ ; choose $e_o \in E$
- $\llbracket D \rrbracket_{\mathcal{R}} \colon E \to \mathcal{B}$

Proof of $\models \exists x.D(x) \rightarrow (\forall y.D(y))$

- $\Sigma_D = \langle \emptyset, \{D/1\} \rangle, \ \mathcal{V}_D = \{x, y\}$
- structure \mathcal{M} , domain E, assignment σ ; choose $e_o \in E$
- $\llbracket D \rrbracket_{\mathcal{R}} \colon E \to \mathcal{B}$
- We now distinguish two cases:

Proof of $\models \exists x. D(x) \rightarrow (\forall y. D(y))$

- $\Sigma_D = \langle \emptyset, \{D/1\} \rangle, \ \mathcal{V}_D = \{x, y\}$
- structure \mathcal{M} , domain E, assignment σ ; choose $e_o \in E$
- $\llbracket D \rrbracket_{\mathcal{R}} \colon E \to \mathcal{B}$
- We now distinguish two cases:
 - If $\llbracket D \rrbracket_{\mathcal{R}}(e) = \mathtt{T}$ for all $e \in E$, then

$$[\![D(y)]\!]_{\mathcal{M},\sigma[x:=e_0][y:=e]}=[\![D]\!]_{\mathcal{R}}(e)=\mathtt{T}$$

for all $e \in E$, hence

$$[\![\forall y.D(y)]\!]_{\mathcal{M},\sigma[x:=e_0]} = T$$

Certainly also

$$\llbracket D(x) \rrbracket_{\mathcal{M}, \sigma[x:=e_0]} = \mathtt{T}$$

and thus

$$\llbracket D(x) \to (\forall y.D(y)) \rrbracket_{\mathcal{M}, \sigma[x:=e_0]} = \mathsf{T}$$

This shows that

$$[\![\exists x.D(x) \to (\forall y.D(y))]\!]_{\mathcal{M},\sigma} = \mathtt{T}.$$

Proof of $\models \exists x. D(x) \rightarrow (\forall y. D(y))$

- $\Sigma_D = \langle \emptyset, \{D/1\} \rangle$, $\mathcal{V}_D = \{x, y\}$
- structure \mathcal{M} , domain E, assignment σ ; choose $e_o \in E$
- $\llbracket D \rrbracket_{\mathcal{R}} \colon E \to \mathcal{B}$
- We now distinguish two cases:
 - $[D]_{\mathcal{R}}(e) = T$ for all $e: [\exists x. D(x) \to (\forall y. D(y))]_{\mathcal{M}, \sigma} = T$.
 - Otherwise, $[\![D]\!]_{\mathcal{R}}(e_1)$ is F for some e_1 , hence

$$[\![D(x)]\!]_{\mathcal{M},\sigma[x:=e_1]} = F$$

But then,

$$[\![D(x) \rightarrow (\forall y.D(y))]\!]_{\mathcal{M},\sigma[x:=e_1]} = T$$

and consequently

$$[\![\exists x.D(x) \rightarrow (\forall y.D(y))]\!]_{\mathcal{M},\sigma} = \mathtt{T}.$$

Proof of
$$\models \exists x. D(x) \rightarrow (\forall y. D(y))$$

- $\Sigma_D = \langle \emptyset, \{D/1\} \rangle, \ \mathcal{V}_D = \{x, y\}$
- structure \mathcal{M} , domain E, assignment σ ; choose $e_o \in E$
- $\llbracket D \rrbracket_{\mathcal{R}} \colon E \to \mathcal{B}$
- We now distinguish two cases:
 - $[D]_{\mathcal{R}}(e) = T$ for all $e: [\exists x. D(x) \to (\forall y. D(y))]_{\mathcal{M}, \sigma} = T$.
 - Otherwise, too.

In conclusion, we have shown that $\models_{\mathcal{M},\sigma} \exists x.D(x) \to (\forall y.D(y))$ for arbitrary \mathcal{M} and σ , thus establishing

$$\models \exists x. D(x) \rightarrow (\forall y. D(y)).$$

Basic Results

Fix some signature Σ and a set $\mathcal V$ of variables.

Lemma (agreement lemma)

Let \mathcal{M} be a structure for Σ , φ a formula, and σ , σ' variable assignments such that $\sigma(x) = \sigma'(x)$ for all $x \in \mathrm{FV}(\varphi)$. Then $\mathcal{M}, \sigma \models \varphi$ iff $\mathcal{M}, \sigma' \models \varphi$.

Corollary

The interpretation of a closed formula is independent of variable assignments.

Lemma (alpha equivalent formulas are semantically equivalent)

Alpha equivalent formulas evaluate to the same truth value.

Basic Results

Fix some signature Σ and a set $\mathcal V$ of variables.

Lemma (agreement lemma)

Let \mathcal{M} be a structure for Σ , φ a formula, and σ , σ' variable assignments such that $\sigma(x) = \sigma'(x)$ for all $x \in \mathrm{FV}(\varphi)$. Then $\mathcal{M}, \sigma \models \varphi$ iff $\mathcal{M}, \sigma' \models \varphi$.

Corollary

The interpretation of a closed formula is independent of variable assignments.

Lemma (alpha equivalent formulas are semantically equivalent)

Alpha equivalent formulas evaluate to the same truth value.

Basic Results

Fix some signature Σ and a set $\mathcal V$ of variables.

Lemma (agreement lemma)

Let \mathcal{M} be a structure for Σ , φ a formula, and σ , σ' variable assignments such that $\sigma(x) = \sigma'(x)$ for all $x \in \mathrm{FV}(\varphi)$. Then $\mathcal{M}, \sigma \models \varphi$ iff $\mathcal{M}, \sigma' \models \varphi$.

Corollary

The interpretation of a closed formula is independent of variable assignments.

Lemma (alpha equivalent formulas are semantically equivalent)

Alpha equivalent formulas evaluate to the same truth value.

Some Equivalences of FOL

- $(\forall x.\varphi) \Leftrightarrow \neg(\exists x.\neg\varphi)$
- $(\forall x. \varphi \land \psi) \Leftrightarrow (\forall x. \varphi) \land (\forall x. \psi)$
- $(\exists x. \varphi \lor \psi) \Leftrightarrow (\exists x. \varphi) \lor (\exists x. \psi)$
- $(\forall x. \forall y. \varphi) \Leftrightarrow (\forall y. \forall x. \varphi)$
- $(\exists x. \exists y. \varphi) \Leftrightarrow (\exists y. \exists x. \varphi)$
- $(\exists x. \forall y. \varphi) \rightarrow (\forall y. \exists x. \varphi)$, but *not* vice versa

Truth Tables for FOL?

- for $\varphi \in PF$, we can always find out whether $\models \varphi$ by drawing a truth table
- how about $\varphi \in FOL$?
 - we need to consider all possible structures
 - in particular, all possible domains, all possible functions over them
 - but domains could be infinite...
- unfortunate truth:

Theorem (Undecidability of First Order Logic)

Given an arbitrary first order formula φ , it is undecidable whether $\models \varphi$.

Sequent Calculus

相繼式演算

Principles of Sequent Calculus

- sequent: $\Gamma \vdash \Delta$ where Γ and Δ are finite sets of formulas
- intuitive meaning: if every formula in Γ is true, then one formula in Δ is true
- sequent calculus LK: system of derivation rules
- allows us to derive sequents that are correct according to the intuitive interpretation

basic sequent

$$(\land R) \xrightarrow{P, Q \vdash P} \xrightarrow{P, Q \vdash Q} \xrightarrow{(\neg R)} \xrightarrow{P, Q \vdash P \land Q} \xrightarrow{P \vdash P \land Q, \neg Q} \xrightarrow{(\neg L)} \xrightarrow{(\neg L)} \xrightarrow{P \vdash P \land Q, \neg P, \neg Q} \xrightarrow{\neg (P \land Q) \vdash \neg P, \neg Q} \xrightarrow{\neg (P \land Q) \vdash \neg P \lor \neg Q}$$

basic sequent

$$(\land R) \xrightarrow{P, Q \vdash P} \xrightarrow{P, Q \vdash Q} \leftarrow \text{ derivation step}$$

$$(\lnot R) \xrightarrow{P, Q \vdash P \land Q} \xrightarrow{P \vdash P \land Q, \lnot Q} \xrightarrow{(\lnot R)} \xrightarrow{P \vdash P \land Q, \lnot Q} \xrightarrow{(\lnot L)} \xrightarrow{\neg (P \land Q) \vdash \lnot P, \lnot Q} \xrightarrow{\neg (P \land Q) \vdash \lnot P \lor \lnot Q}$$

$$(\neg L) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} \quad (\neg R) \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta}$$
$$(\land R) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta}$$
$$\neg (P \land Q) \vdash \neg P \lor \neg Q$$
$$(\lor R) \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi \lor \psi, \Delta}$$

$$(\vee R) \frac{\neg (P \land Q) \vdash \neg P, \neg Q}{\neg (P \land Q) \vdash \neg P \lor \neg Q}$$

$$(\neg L) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} \qquad (\neg R) \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta}$$
$$(\land R) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta}$$
$$(\lor R) \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi, \psi, \Delta}$$

$$(\neg L) \frac{ \vdash P \land Q, \neg P, \neg Q}{\neg (P \land Q) \vdash \neg P, \neg Q} \frac{}{\neg (P \land Q) \vdash \neg P \lor \neg Q}$$

$$(\neg L) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} \qquad (\neg R) \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta}$$
$$(\land R) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta}$$
$$(\lor R) \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi \lor \psi, \Delta}$$

$$(\neg R) \frac{P \vdash P \land Q, \neg Q}{\vdash P \land Q, \neg P, \neg Q}$$
$$(\lor R) \frac{\neg (P \land Q) \vdash \neg P, \neg Q}{\neg (P \land Q) \vdash \neg P \lor \neg Q}$$

$$(\neg L) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} \qquad (\neg R) \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta}$$
$$(\land R) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta}$$
$$(\lor R) \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi \lor \psi, \Delta}$$

$$(\neg R) \frac{P, Q \vdash P \land Q}{P \vdash P \land Q, \neg Q} \\ (\neg R) \frac{P \vdash P \land Q, \neg Q}{\vdash P \land Q, \neg P, \neg Q} \\ (\neg L) \frac{\neg (P \land Q) \vdash \neg P, \neg Q}{\neg (P \land Q) \vdash \neg P \lor \neg Q}$$

$$(\neg L) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} \quad (\neg R) \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta}$$
$$(\land R) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta}$$
$$(\lor R) \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta}$$

$$(\land R) \frac{P, Q \vdash P \qquad P, Q \vdash Q}{P, Q \vdash P \land Q}$$

$$(\lnot R) \frac{P, Q \vdash P \land Q}{P \vdash P \land Q, \lnot Q}$$

$$(\lnot L) \frac{\vdash P \land Q, \lnot P, \lnot Q}{\lnot (P \land Q) \vdash \lnot P, \lnot Q}$$

$$(\lor R) \frac{\neg (P \land Q) \vdash \lnot P, \lnot Q}{\lnot (P \land Q) \vdash \lnot P \lor \lnot Q}$$

$$(\neg L) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} \qquad (\neg R) \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta}$$
$$(\land R) \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta}$$
$$(\lor R) \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi, \psi, \Delta}$$

Inference Rules for the Propositional Connectives

$$\begin{array}{lll} \text{Basic sequents: } \Gamma, \varphi \vdash \varphi, \Delta & \Gamma, \varphi \vdash \Delta \\ \Gamma, \bot \vdash \Delta & (\text{\tiny CUT}) & \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \Delta} & \Gamma, \varphi \vdash \Delta \\ \hline \\ (\neg \text{L}) & \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \neg \varphi \vdash \Delta} & (\neg \text{R}) & \frac{\Gamma, \varphi \vdash \Delta}{\Gamma \vdash \neg \varphi, \Delta} \\ \hline \\ (\land \text{L}) & \frac{\Gamma, \varphi, \psi \vdash \Delta}{\Gamma, \varphi \land \psi \vdash \Delta} & (\land \text{R}) & \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \varphi \land \psi, \Delta} \\ \hline \\ (\lor \text{L}) & \frac{\Gamma, \varphi \vdash \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta} & (\lor \text{R}) & \frac{\Gamma \vdash \varphi, \psi, \Delta}{\Gamma \vdash \varphi \lor \psi, \Delta} \\ \hline \\ (\to \text{L}) & \frac{\Gamma \vdash \varphi, \Delta}{\Gamma, \varphi \lor \psi \vdash \Delta} & (\to \text{R}) & \frac{\Gamma, \varphi \vdash \psi, \Delta}{\Gamma \vdash \varphi \to \psi, \Delta} \\ \hline \end{array}$$

$$\vdash ((P \to Q) \to P) \to P$$

$$(\rightarrow \mathbf{R}) \; \frac{ \left(P \to Q \right) \to P \vdash P }{ \vdash \left(\left(P \to Q \right) \to P \right) \to P }$$

$$(\rightarrow L) \frac{\vdash P \to Q, P \qquad P \vdash P}{(P \to Q) \to P \vdash P} \\ (\rightarrow R) \frac{\vdash P \to Q, P \to P}{\vdash ((P \to Q) \to P) \to P}$$

$$(\rightarrow R) \frac{P \vdash Q, P}{\vdash P \to Q, P} \qquad P \vdash P$$

$$(\rightarrow R) \frac{(P \to Q) \to P \vdash P}{\vdash ((P \to Q) \to P) \to P}$$

$$(\neg L) \frac{\ \vdash \neg P, P}{\ \neg \neg P \vdash P}$$

$$(\vee L) \; \frac{P \vdash P \qquad \bot \vdash P}{P \lor \bot \vdash P}$$

Inference Rules for the Quantifiers

$$(\forall \mathbf{L}) \ \frac{\Gamma, \varphi[t/x] \vdash \Delta}{\Gamma, \forall x. \varphi \vdash \Delta} \qquad (\forall \mathbf{R}) \ \frac{\Gamma \vdash \varphi, \Delta}{\Gamma \vdash \forall x. \varphi, \Delta} \ \text{if} \ x \not\in \mathrm{FV}(\Gamma, \Delta)$$

$$(\exists \mathbf{L}) \ \frac{\Gamma, \varphi \vdash \Delta}{\Gamma, \exists x. \varphi \vdash \Delta} \ \text{if} \ x \not\in \mathrm{FV}(\Gamma, \Delta) \qquad (\exists \mathbf{R}) \ \frac{\Gamma \vdash \varphi[t/x], \Delta}{\Gamma \vdash \exists x. \varphi, \Delta}$$

$$\forall x. P(x) \land Q(x) \vdash (\forall x. P(x)) \land (\forall x. Q(x))$$

$$(\wedge R) \frac{\forall x. P(x) \land Q(x) \vdash \forall x. P(x) \quad \forall x. P(x) \land Q(x) \vdash \forall x. Q(x)}{\forall x. P(x) \land Q(x) \vdash (\forall x. P(x)) \land (\forall x. Q(x))}$$

$$\frac{\forall x. P(x) \land Q(x) \vdash P(x)}{\forall x. P(x) \land Q(x) \vdash \forall x. P(x)} \qquad \forall x. P(x) \land Q(x) \vdash \forall x. Q(x)}{\forall x. P(x) \land Q(x) \vdash (\forall x. P(x)) \land (\forall x. Q(x))}$$

$$(\forall L) \frac{P(x) \land Q(x) \vdash P(x)}{\forall x. P(x) \land Q(x) \vdash P(x)} \frac{\forall x. P(x) \land Q(x) \vdash P(x)}{\forall x. P(x) \land Q(x) \vdash \forall x. P(x)} \quad \forall x. P(x) \land Q(x) \vdash \forall x. Q(x)}{\forall x. P(x) \land Q(x) \vdash (\forall x. P(x)) \land (\forall x. Q(x))}$$

$$(\land L) \frac{P(x), Q(x) \vdash P(x)}{P(x) \land Q(x) \vdash P(x)} \\ (\forall L) \frac{P(x) \land Q(x) \vdash P(x)}{\forall x. P(x) \land Q(x) \vdash P(x)} \\ (\land R) \frac{(\forall R)}{\forall x. P(x) \land Q(x) \vdash \forall x. P(x)} \qquad \forall x. P(x) \land Q(x) \vdash \forall x. Q(x)}{\forall x. P(x) \land Q(x) \vdash (\forall x. P(x)) \land (\forall x. Q(x))}$$

$$(\land L) \frac{P(x), Q(x) \vdash P(x)}{P(x) \land Q(x) \vdash P(x)} \\ (\forall L) \frac{(\forall L)}{\forall x. P(x) \land Q(x) \vdash P(x)} \\ (\land R) \frac{(\forall R)}{\forall x. P(x) \land Q(x) \vdash \forall x. P(x)} \qquad (\forall R) \frac{\forall x. P(x) \land Q(x) \vdash Q(x)}{\forall x. P(x) \land Q(x) \vdash \forall x. Q(x)} \\ (\forall R) \frac{\forall x. P(x) \land Q(x) \vdash (\forall x. P(x)) \land (\forall x. Q(x))}{\forall x. P(x) \land Q(x) \vdash (\forall x. P(x)) \land (\forall x. Q(x))}$$

$$(\wedge L) \frac{P(x), Q(x) \vdash P(x)}{P(x) \land Q(x) \vdash P(x)}$$

$$(\forall L) \frac{P(x) \land Q(x) \vdash P(x)}{\forall x. P(x) \land Q(x) \vdash P(x)}$$

$$(\forall R) \frac{\forall x. P(x) \land Q(x) \vdash P(x)}{\forall x. P(x) \land Q(x) \vdash \forall x. P(x)}$$

$$(\forall R) \frac{P(x) \land Q(x) \vdash Q(x)}{\forall x. P(x) \land Q(x) \vdash \forall x. Q(x)}$$

$$(\forall R) \frac{\forall x. P(x) \land Q(x) \vdash Q(x)}{\forall x. P(x) \land Q(x) \vdash \forall x. Q(x)}$$

$$(\land L) \frac{P(x), Q(x) \vdash P(x)}{P(x) \land Q(x) \vdash P(x)} \qquad (\land L) \frac{P(x), Q(x) \vdash Q(x)}{P(x) \land Q(x) \vdash P(x)}$$

$$(\forall R) \frac{(\forall R)}{(\land R)} \frac{P(x), Q(x) \vdash P(x)}{\forall x. P(x) \land Q(x) \vdash \forall x. P(x)} \qquad (\forall R) \frac{P(x), Q(x) \vdash Q(x)}{P(x) \land Q(x) \vdash Q(x)}$$

$$(\forall R) \frac{P(x), Q(x) \vdash Q(x)}{\forall x. P(x) \land Q(x) \vdash Q(x)}$$

$$(\forall R) \frac{P(x), Q(x) \vdash Q(x)}{\forall x. P(x) \land Q(x) \vdash Q(x)}$$

$$(\forall R) \frac{P(x), Q(x) \vdash Q(x)}{\forall x. P(x) \land Q(x) \vdash Q(x)}$$

$$(\forall R) \frac{P(x), Q(x) \vdash Q(x)}{\forall x. P(x) \land Q(x) \vdash Q(x)}$$

The following derivation violates a side condition:

$$(\exists L) \frac{P(x) \vdash P(x)}{\exists x. P(x) \vdash P(x)}$$
$$(\rightarrow R) \frac{\exists x. P(x) \vdash \forall x. P(x)}{\exists x. P(x) \vdash \forall x. P(x)}$$
$$\vdash (\exists x. P(x)) \rightarrow (\forall x. P(x))$$

Inference Rules for Equality

Basic sequent:
$$\Gamma \vdash t \doteq t, \Delta$$
 $(SUBST) \frac{s \doteq t, \Gamma[s/x] \vdash \Delta[s/x]}{s \doteq t, \Gamma[t/x] \vdash \Delta[t/x]}$

$$s \doteq t \vdash t \doteq s$$

Inference Rules for Equality

Basic sequent:
$$\Gamma \vdash t \doteq t, \Delta$$
 $(SUBST) \frac{s \doteq t, \Gamma[s/x] \vdash \Delta[s/x]}{s \doteq t, \Gamma[t/x] \vdash \Delta[t/x]}$

$$s \doteq t \vdash \underbrace{t \doteq s}_{\equiv (x \doteq s)[t/x]}$$

Inference Rules for Equality

Basic sequent:
$$\Gamma \vdash t \doteq t, \Delta$$
 $(SUBST)$ $\frac{s \doteq t, \Gamma[s/x] \vdash \Delta[s/x]}{s \doteq t, \Gamma[t/x] \vdash \Delta[t/x]}$

$$(\text{SUBST}) \xrightarrow{\begin{array}{c} \equiv (x \doteq s)[s/x] \\ \hline s \doteq t \vdash \overbrace{s \doteq s} \\ \hline s \doteq t \vdash \underbrace{t \doteq s} \\ \equiv (x \doteq s)[t/x] \end{array}}$$

Soundness and Completeness

We write $\Gamma \vdash_{LK} \Delta$ to mean that there is a derivation of $\Gamma \vdash \Delta$.

Theorem 15 (Soundness of LK)

The system LK is sound: If $\Gamma \vdash_{LK} \varphi$ then $\Gamma \models \varphi$.

Theorem 16 (Consistency of LK)

The system LK is consistent: There is a formula φ such that $\not\vdash_{LK} \varphi$.

Theorem 17 (Completeness of LK)

The system LK is complete: If $\Gamma \models \varphi$ then $\Gamma \vdash_{LK} \varphi$.