Logic Part I: Propositional Logic

Max Schäfer

Formosan Summer School on Logic, Language, and Computation 2010

Organisation

Lecturer: Max Schäfer (Schaefer) max.schaefer@comlab.ox.ac.uk

Lectures: Monday 28th June, 2:00pm – 5:00pm Wednesday 30th June, 9:30am – 12:30pm Friday 2nd July, 9:30am – 12:30pm

Homework: after every lecture

Exam Friday 9th July, 9:30am – 12:30pm material of first two lectures *only*

What Is Logic?

- this course is about formal logic
- investigate principles of reasoning, independently of particular language, mindset, or philosophy
- different logical systems for different kinds of reasoning
- three basic components of a logical system:
 - 1. formal language
 - 2. semantics
 - 3. deductive system

Principles of Classical Logic

- classical logic aims to model reasoning about truth
- logical formulas represent statements that are either true or false
- proving a formula means showing that it is true
- sometimes this is easy

$$\sqrt{2} \not\in \mathbb{Q}$$

sometimes it is hard

$$\forall n.n > 2 \rightarrow \neg(\exists a, b, c.a^n + b^n = c^n)$$

 proving a formula does not "make" it true, it just demonstrates its truth

Propositional Logic

Principles of Propositional Logic

- propositional logic talks about propositions
- a proposition is a sentence that is either true or false
- some propositions are *atomic*; represented by capital letters *P*, *Q*, *R*, ...
- other propositions are composed from simpler ones using connectives such as ∧, ∨,...

The Formal Language of Propositional Logic

- assume we have an alphabet *R* of *propositional letters*, assumed to contain at least the capital letters *P*, *Q*, *R*, ...
- the language of *formulas* of propositional logic is given by the following grammar:

$$\varphi ::= \mathcal{R} \ | \ \bot \ | \ \varphi \land \varphi \ | \ \varphi \lor \varphi \ | \ \varphi \to \varphi$$

Intuitive Meaning of Propositional Logic

formula	reading	is true if
Р	Р	the proposition represented by
		P is true
\perp	假, falsity, bottom	never true
$P \wedge Q$	P與 Q , conjunction	<i>P</i> is true, and <i>Q</i> is also true
$P \lor Q$	P 或 Q , disjunction	P is true, or Q is true, or both
P ightarrow Q	P 就 Q, implication	it is not the case that <i>P</i> is true and <i>Q</i> is false

Example Formulas

- P, Q
- ⊥
- $P \wedge \bot$
- $P \land Q \lor P$; interpreted as $(P \land Q) \lor P$ not as $P \land (Q \lor P)$
- $P \rightarrow P \lor Q$; interpreted as $P \rightarrow (P \lor Q)$ not as $(P \rightarrow P) \lor Q$

Operator Precedence

 \wedge binds tighter than $\lor;$ \lor tighter than \rightarrow

Example Formulas (ctd.)

- $P \land Q \land R$; interpreted as $(P \land Q) \land R$ not as $P \land (Q \land R)$
- $P \lor Q \lor R$; interpreted as $(P \lor Q) \lor R$ not as $P \lor (Q \lor R)$
- $P \rightarrow P \rightarrow Q$; interpreted as $P \rightarrow (P \rightarrow Q)$ not as $(P \rightarrow P) \rightarrow Q$

Operator Associativity

 \wedge and \vee associate to the left, \rightarrow to the right

Defined Connectives and Syntactic Equality

• other connectives can be defined in terms of the basic ones:

• \neg and \leftrightarrow are not real connectives, but only abbreviations; e.g., $\neg P \equiv P \rightarrow \bot$ (the *same* formula)

Precedence and Associativity

 \neg binds tighter than $\wedge; \leftrightarrow$ less tight than $\lor,$ associates to the left

Truth Value Semantics

- in general, to know whether a formula φ is true, we need to know whether its propositional letters are true
- need a truth value assignment (interpretation) $I : \mathcal{R} \to \mathcal{B}$, where $\mathcal{B} := \{T, F\}$
- given an interpretation *I*, define the semantics [[φ]]_I of a formula φ:

1. for
$$r \in \mathcal{R}$$
: $\llbracket r \rrbracket_l := l(r)$.

2.
$$[\![\bot]\!]_I := F$$

- 3. $\llbracket \varphi \land \psi \rrbracket_I := T$ if $\llbracket \varphi \rrbracket_I = T$ and $\llbracket \psi \rrbracket_I = T$, else $\llbracket \varphi \land \psi \rrbracket_I := F$
- 4. $\llbracket \varphi \lor \psi \rrbracket_I := F$ if $\llbracket \varphi \rrbracket_I = F$ and $\llbracket \psi \rrbracket_I = F$, else $\llbracket \varphi \lor \psi \rrbracket_I := T$.
- 5. $\llbracket \varphi \to \psi \rrbracket_I := F$ if $\llbracket \varphi \rrbracket_I = T$ and $\llbracket \psi \rrbracket_I = F$, else $\llbracket \varphi \to \psi \rrbracket_I := T$.

Truth Value Semantics

- in general, to know whether a formula φ is true, we need to know whether its propositional letters are true
- need a truth value assignment (interpretation) $I : \mathcal{R} \to \mathcal{B}$, where $\mathcal{B} := \{T, F\}$
- given an interpretation *I*, define the semantics [[φ]]_I of a formula φ:

1. for
$$r \in \mathcal{R}$$
: $\llbracket r \rrbracket_{I} := I(r)$.
2. $\llbracket \bot \rrbracket_{I} := F$.
3. $\llbracket \varphi \land \psi \rrbracket_{I} := T$ if $\llbracket \varphi \rrbracket_{I} = T$ and $\llbracket \psi \rrbracket_{I} = T$, else $\llbracket \varphi \land \psi \rrbracket_{I} := F$.
4. $\llbracket \varphi \lor \psi \rrbracket_{I} := F$ if $\llbracket \varphi \rrbracket_{I} = F$ and $\llbracket \psi \rrbracket_{I} = F$, else $\llbracket \varphi \lor \psi \rrbracket_{I} := T$.
5. $\llbracket \varphi \to \psi \rrbracket_{I} := F$ if $\llbracket \varphi \rrbracket_{I} = T$ and $\llbracket \psi \rrbracket_{I} = F$, else $\llbracket \varphi \to \psi \rrbracket_{I} := T$.

Derived Truth Values

Lemma

For any interpretation I and formulas φ and ψ we have

•
$$\llbracket \top \rrbracket_I = T.$$

•
$$\llbracket \neg \varphi \rrbracket_I = T$$
 if $\llbracket \varphi \rrbracket_I = F$, else $\llbracket \neg \varphi \rrbracket_I = F$.

• $\llbracket \varphi \leftrightarrow \psi \rrbracket_I = \mathsf{T} \text{ if } \llbracket \varphi \rrbracket_I = \llbracket \psi \rrbracket_I$, else $\llbracket \varphi \leftrightarrow \psi \rrbracket_I = \mathsf{F}$.

Validity and Satisfiability

- $I \models \varphi$ ("*I* is a model for φ "): $\llbracket \varphi \rrbracket_I = T$
- φ is satisfiable: there is I with $I \models \varphi$
- φ is valid: for all I we have $I \models \varphi$
- $\varphi \Rightarrow \psi$ (" φ entails ψ "): whenever $I \models \varphi$ also $I \models \psi$
- $\varphi \Leftrightarrow \psi$ (" φ and ψ are equivalent"): both $\varphi \Rightarrow \psi$ and $\psi \Rightarrow \varphi$

- $P \lor \neg P$ is valid
- $P \rightarrow \neg P$ is satisfiable
- $P \rightarrow Q \Leftrightarrow \neg P \lor Q$

Properties of Validity and Satisfiability

Theorem

 φ is valid iff $\neg \varphi$ is unsatisfiable iff $\varphi \Leftrightarrow \top$; furthermore, $\varphi \Leftrightarrow \psi$ iff $\llbracket \varphi \rrbracket_I = \llbracket \psi \rrbracket_I$ for every interpretation *I*.

Example: $\neg \neg \varphi \Leftrightarrow \varphi$

Notational Caveat

 $\varphi \equiv \psi$ and $\varphi \Leftrightarrow \psi$ do *not* mean the same!

- \equiv is syntactic equality; different ways of writing, same formula $(P \land Q) \land \neg R \equiv P \land Q \land \neg R \equiv P \land Q \land (R \to \bot)$
- \Leftrightarrow is semantic equality; different formulas, same semantics $\neg \neg P \leftrightarrow P$, but not $\neg \neg P \equiv P$

Propositional Letters in a Formula

- define set $PL(\varphi)$ of propositional letters that occur in a formula φ :
 - $\operatorname{PL}(r) = \{r\}$, for every $r \in \mathcal{R}$
 - $PL(\perp) = \emptyset$
 - $\operatorname{PL}(\varphi \land \psi) = \operatorname{PL}(\varphi \lor \psi) = \operatorname{PL}(\varphi \to \psi) = \operatorname{PL}(\varphi) \cup \operatorname{PL}(\psi)$

Example
$$PL(((P \rightarrow Q) \rightarrow P) \rightarrow P) =$$
 $PL(\top) =$

Propositional Letters in a Formula

- define set $PL(\varphi)$ of propositional letters that occur in a formula φ :
 - $\operatorname{PL}(r) = \{r\}$, for every $r \in \mathcal{R}$
 - $PL(\perp) = \emptyset$
 - $\operatorname{PL}(\varphi \land \psi) = \operatorname{PL}(\varphi \lor \psi) = \operatorname{PL}(\varphi \to \psi) = \operatorname{PL}(\varphi) \cup \operatorname{PL}(\psi)$

Example
$$PL(((P \rightarrow Q) \rightarrow P) \rightarrow P) = \{P, Q\}$$
 $PL(\top) =$

Propositional Letters in a Formula

- define set $PL(\varphi)$ of propositional letters that occur in a formula φ :
 - $\operatorname{PL}(r) = \{r\}$, for every $r \in \mathcal{R}$
 - $PL(\perp) = \emptyset$
 - $\operatorname{PL}(\varphi \land \psi) = \operatorname{PL}(\varphi \lor \psi) = \operatorname{PL}(\varphi \to \psi) = \operatorname{PL}(\varphi) \cup \operatorname{PL}(\psi)$

Example
$$PL(((P \rightarrow Q) \rightarrow P) \rightarrow P) = \{P, Q\}$$
 $PL(\top) = \emptyset$

Agreement Lemma

Lemma

For every formula φ and interpretations I_1, I_2 such that $I_1(P) = I_2(P)$ for every $P \in PL(\varphi)$, we have $\llbracket \varphi \rrbracket_{I_1} = \llbracket \varphi \rrbracket_{I_2}$

Propositional letters that don't occur in a formula do not matter when determining its semantics.

Truth Tabling

- for every formula φ , $\operatorname{PL}(\varphi)$ is finite, say $|\operatorname{PL}(\varphi)| = n$
- every one of these *n* variables could be either true or false; this gives 2^{*n*} combinations
- to know whether φ is valid, we only need to try them all out!

We can use truth tables to show:

$$\bullet \models P \land Q \leftrightarrow P \lor Q \leftrightarrow (P \leftrightarrow Q)$$

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P\leftrightarrow Q$	$P \land Q \leftrightarrow P \lor Q$	$P \land Q \leftrightarrow P \lor Q$
						$\leftrightarrow (P \leftrightarrow Q)$
F	F					
F	Т					
Т	F					
Т	Т					

We can use truth tables to show:

$$\bullet \models P \land Q \leftrightarrow P \lor Q \leftrightarrow (P \leftrightarrow Q)$$

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P \leftrightarrow Q$	$P \land Q \leftrightarrow P \lor Q$	$P \land Q \leftrightarrow P \lor Q$
						$\leftrightarrow (P \leftrightarrow Q)$
F	F	F				
F	Т	F				
Т	F	F				
Т	Т	Т				

We can use truth tables to show:

$$\bullet \models P \land Q \leftrightarrow P \lor Q \leftrightarrow (P \leftrightarrow Q)$$

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P \leftrightarrow Q$	$P \land Q \leftrightarrow P \lor Q$	$P \land Q \leftrightarrow P \lor Q$
						$\leftrightarrow (P \leftrightarrow Q)$
F	F	F	F			
F	Т	F	Т			
Т	F	F	Т			
Т	Т	Т	Т			

We can use truth tables to show:

$$\bullet \models P \land Q \leftrightarrow P \lor Q \leftrightarrow (P \leftrightarrow Q)$$

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P \leftrightarrow Q$	$P \land Q \leftrightarrow P \lor Q$	$P \land Q \leftrightarrow P \lor Q$
						$\leftrightarrow (P \leftrightarrow Q)$
F	F	F	F	Т		
F	Т	F	Т	F		
Т	F	F	Т	F		
Т	Т	Т	Т	Т		

We can use truth tables to show:

$$\bullet \models P \land Q \leftrightarrow P \lor Q \leftrightarrow (P \leftrightarrow Q)$$

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P\leftrightarrow Q$	$P \land Q \leftrightarrow P \lor Q$	$P \land Q \leftrightarrow P \lor Q$
						$\leftrightarrow (P \leftrightarrow Q)$
F	F	F	F	Т	Т	
F	Т	F	Т	F	F	
Т	F	F	Т	F	F	
Т	Т	Т	Т	Т	Т	

We can use truth tables to show:

$$\bullet \models P \land Q \leftrightarrow P \lor Q \leftrightarrow (P \leftrightarrow Q)$$

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P\leftrightarrow Q$	$P \land Q \leftrightarrow P \lor Q$	$P \land Q \leftrightarrow P \lor Q$
						$\leftrightarrow (P \leftrightarrow Q)$
F	F	F	F	Т	Т	Т
F	Т	F	Т	F	F	Т
Т	F	F	Т	F	F	Т
Т	Т	Т	Т	Т	Т	Т

Some Properties of Equivalence

Equivalence is

- reflexive: $\varphi \Leftrightarrow \varphi$
- symmetric: if $\varphi \Leftrightarrow \psi$ then $\psi \Leftrightarrow \varphi$
- transitive: if $\varphi \Leftrightarrow \psi$ and $\psi \Leftrightarrow \chi$ then $\varphi \Leftrightarrow \chi$

 $\begin{array}{l} \text{Connection between} \leftrightarrow \text{and} \Leftrightarrow \\ \models \varphi \leftrightarrow \psi \text{ iff } \varphi \Leftrightarrow \psi \end{array}$

Substitution for Propositional Letters

We substitute a formula ϑ for all occurrences of $r \in \mathcal{R}$ in a formula φ , written as $\varphi[\vartheta/r]$ as follows:

• if φ is some $r' \in \mathcal{R}$, then

•
$$\varphi[\vartheta/r] := \vartheta$$
 if $r = r'$

- $\varphi[\vartheta/r] := r'$ otherwise
- $\perp [\vartheta/r] := \perp$

•
$$(\psi \wedge \chi)[\vartheta/r] := \psi[\vartheta/r] \wedge \chi[\vartheta/r]$$

- $(\psi \lor \chi)[\vartheta/r] := \psi[\vartheta/r] \lor \chi[\vartheta/r]$
- $(\psi \to \chi)[\vartheta/r] := \psi[\vartheta/r] \to \chi[\vartheta/r].$

Tautologies for free!

Substitution in Tautologies If $\models \varphi$ then $\models \varphi[\psi/r]$.

- Once we have shown that $\models P \lor \neg P$, we know that $\models \varphi \lor \neg \varphi$ for any φ .
- If $\varphi_1 \Leftrightarrow \varphi_2$, then also $\varphi_1[\psi/r] \Leftrightarrow \varphi_2[\psi/r]$.

Properties of Substitution (II)

Leibniz' Law If $\psi_1 \Leftrightarrow \psi_2$ then $\varphi[\psi_1/r] \Leftrightarrow \varphi[\psi_2/r]$.

- $\varphi \land (\psi \lor \chi) \Leftrightarrow \varphi \land (\neg \psi \to \chi)$
- We can eliminate \lor from any formula!

Truth Functions

- *truth function* of arity *n*: function from \mathcal{B}^n to \mathcal{B}
- formulas give rise to truth functions:
 - for $r_1, \ldots, r_n \in \mathcal{R}$ and $x_1, \ldots, x_n \in \mathcal{B}$, define interpretation

$$I_{r_1:=x_1,\ldots,r_n:=x_n}(r) := \begin{cases} x_i & r=r\\ F & \text{else} \end{cases}$$

• for formula φ with $PL(\varphi) = \{r_1, \ldots, r_n\}$ define truth function $f_{\varphi} \colon \mathcal{B}^n \to \mathcal{B}$ by

$$f_{\varphi}(x_1,\ldots,x_n) := \llbracket \varphi \rrbracket_{I_{r_1:=x_1,\ldots,r_n:=x_n}}$$

Example:
$$f_{P \wedge Q}(x_1, x_2) = \left\{ egin{array}{cc} {\tt T} & {
m if} \; x_1 = x_2 = {\tt T} \\ {\tt F} & {\sf else} \end{array}
ight.$$

Functional Completeness

Functional Completeness

A set *O* of operators is *functionally complete* if, for every $f: \mathcal{B}^n \to \mathcal{B}$, there is a formula φ_f using only operators from *O* such that $f_{\varphi_f} = f$.

- $\{\bot, \rightarrow, \lor, \land\}$ is functionally complete
- so are $\{\bot, \rightarrow, \wedge\}$ and $\{\bot, \rightarrow\}$
- but $\{\perp, \lor\}$ is not

Ρ	Q	R	f
F	F	F	F
F	F	Т	F
F	Т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	Т	Т

$$\begin{array}{rcl} \varphi_{f} & := & \neg P \land Q \land R \\ \lor & P \land \neg Q \land R \\ \lor & P \land Q \land \neg R \\ \lor & P \land Q \land R \end{array}$$

Ρ	Q	R	f
F	F	F	F
F	F	Т	F
F	Т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	Т	Т

$$\begin{array}{rcl}
\varphi_{f} & := & \neg P \land Q \land R \\
\lor & P \land \neg Q \land R \\
\lor & P \land Q \land \neg R \\
\lor & P \land Q \land R \\
\lor & P \land Q \land R
\end{array}$$

Ρ	Q	R	f
F	F	F	F
F	F	Т	F
F	Т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	Т	Т

$$\begin{array}{rcl}
\varphi_{f} & := & \neg P \land Q \land R \\
\lor & P \land \neg Q \land R \\
\lor & P \land Q \land \neg R \\
\lor & P \land Q \land R \\
\lor & P \land Q \land R
\end{array}$$

Ρ	Q	R	f
F	F	F	F
F	F	Т	F
F	Т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	Т	Т

$$\begin{array}{rcl}
\varphi_{f} & := & \neg P \land Q \land R \\
\lor & P \land \neg Q \land R \\
\lor & P \land Q \land \neg R \\
\lor & P \land Q \land R \\
\lor & P \land Q \land R
\end{array}$$

Ρ	Q	R	f
F	F	F	F
F	F	Т	F
F	Т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	Т	Т

$$\begin{array}{rcl}
\varphi_{f} & := & \neg P \land Q \land R \\
\lor & P \land \neg Q \land R \\
\lor & P \land Q \land \neg R \\
\lor & P \land Q \land R \\
\lor & P \land Q \land R
\end{array}$$

Calculational Logic

Principles of Calculational Logic

- calculational logic is a deductive system for propositional logic
- *not* a "new" logic
- idea: calculate with formulas to establish their truth
- avoid case distinctions, truth tables
- make use of a set of *laws*: tautologies of the form

 $\varphi \leftrightarrow \psi$

replace equivalent formulas

Laws:

- Associativity of \leftrightarrow : $((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R))$
- Symmetry of \leftrightarrow : $P \leftrightarrow Q \leftrightarrow Q \leftrightarrow P$
- Unfolding $\neg: \neg P \leftrightarrow P \leftrightarrow \bot$

$$\neg (P \leftrightarrow Q)$$

Laws:

- Associativity of \leftrightarrow : $((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R))$
- Symmetry of \leftrightarrow : $P \leftrightarrow Q \leftrightarrow Q \leftrightarrow P$
- Unfolding $\neg: \neg(P \leftrightarrow Q) \leftrightarrow ((P \leftrightarrow Q) \leftrightarrow \bot)$

$$\neg (P \leftrightarrow Q)$$

Laws:

- Associativity of \leftrightarrow : $((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R))$
- Symmetry of \leftrightarrow : $P \leftrightarrow Q \leftrightarrow Q \leftrightarrow P$
- Unfolding $\neg: \neg(P \leftrightarrow Q) \leftrightarrow ((P \leftrightarrow Q) \leftrightarrow \bot)$

Laws:

- Associativity of \leftrightarrow : $((P \leftrightarrow Q) \leftrightarrow \bot) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow \bot))$
- Symmetry of \leftrightarrow : $P \leftrightarrow Q \leftrightarrow Q \leftrightarrow P$
- Unfolding $\neg: \neg P \leftrightarrow P \leftrightarrow \bot$

Laws:

- Associativity of \leftrightarrow : $((P \leftrightarrow Q) \leftrightarrow \bot) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow \bot))$
- Symmetry of \leftrightarrow : $P \leftrightarrow Q \leftrightarrow Q \leftrightarrow P$
- Unfolding $\neg: \neg P \leftrightarrow P \leftrightarrow \bot$

$$\begin{array}{l} \neg (P \leftrightarrow Q) \\ \Leftrightarrow \qquad \{ \text{ Unfolding } \neg \ \} \\ (P \leftrightarrow Q) \leftrightarrow \bot \\ \Leftrightarrow \qquad \{ \text{ Associativity of } \leftrightarrow \ \} \\ P \leftrightarrow (Q \leftrightarrow \bot) \end{array}$$

Laws:

- Associativity of \leftrightarrow : $((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R))$
- Symmetry of \leftrightarrow : $P \leftrightarrow Q \leftrightarrow Q \leftrightarrow P$
- Unfolding $\neg: \neg Q \leftrightarrow Q \leftrightarrow \bot$

$$\begin{array}{l} \neg (P \leftrightarrow Q) \\ \Leftrightarrow \qquad \{ \text{ Unfolding } \neg \ \} \\ (P \leftrightarrow Q) \leftrightarrow \bot \\ \Leftrightarrow \qquad \{ \text{ Associativity of } \leftrightarrow \ \} \\ P \leftrightarrow (Q \leftrightarrow \bot) \end{array}$$

Laws:

- Associativity of \leftrightarrow : $((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R))$
- Symmetry of \leftrightarrow : $P \leftrightarrow Q \leftrightarrow Q \leftrightarrow P$
- Unfolding $\neg: \neg Q \leftrightarrow Q \leftrightarrow \bot$

$$\begin{array}{l} \neg (P \leftrightarrow Q) \\ \Leftrightarrow \qquad \{ \text{ Unfolding } \neg \ \} \\ (P \leftrightarrow Q) \leftrightarrow \bot \\ \Leftrightarrow \qquad \{ \text{ Associativity of } \leftrightarrow \ \} \\ P \leftrightarrow (Q \leftrightarrow \bot) \\ \Leftrightarrow \qquad \{ \text{ Folding } \neg \ \} \\ P \leftrightarrow \neg Q \end{array}$$

Laws:

- Associativity of \leftrightarrow : $((P \leftrightarrow Q) \leftrightarrow R) \leftrightarrow (P \leftrightarrow (Q \leftrightarrow R))$
- Symmetry of \leftrightarrow : $P \leftrightarrow Q \leftrightarrow Q \leftrightarrow P$
- Unfolding $\neg: \neg P \leftrightarrow P \leftrightarrow \bot$

Derivation:

$$\Leftrightarrow \quad \frac{\neg (P \leftrightarrow Q)}{\{ \text{ Unfolding } \neg \}} \\ \Leftrightarrow \quad P \leftrightarrow \underline{Q} \leftrightarrow \bot \\ \{ \text{ Folding } \neg \} \\ P \leftrightarrow \neg Q \end{cases}$$

By transitivity: $\neg(P \leftrightarrow Q) \Leftrightarrow P \leftrightarrow \neg Q$

Laws for \top and \lor

- Unfolding $\top : \top \leftrightarrow P \leftrightarrow P$
- Idempotence of $\lor: P \lor P \leftrightarrow P$
- Symmetry of \lor : $P \lor Q \leftrightarrow Q \lor P$
- Associativity of \lor : $P \lor (Q \lor R) \leftrightarrow (P \lor Q) \lor R$
- Distributivity of $\lor: P \lor (Q \leftrightarrow R) \leftrightarrow P \lor Q \leftrightarrow P \lor R$
- Excluded Middle: $P \lor \neg P \leftrightarrow \top$

Examples: $P \lor \bot \Leftrightarrow P$, $\models P \lor \top$

Law for \land

 $\mathsf{Golden} \; \mathsf{Rule:} \; P \land Q \leftrightarrow P \leftrightarrow Q \leftrightarrow P \lor Q$

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P\leftrightarrow Q$	$P \land Q \leftrightarrow P \lor Q$	$P \land Q \leftrightarrow P \lor Q$
						$\leftrightarrow (P \leftrightarrow Q)$
F	F	F	F	Т	Т	Т
F	Т	F	Т	F	F	Т
Т	F	F	Т	F	F	Т
Т	Т	Т	Т	Т	Т	Т

" $P \land Q$ is true iff $P \leftrightarrow Q$ and $P \lor Q$ have the same truth value."

Example: $P \land (P \lor Q) \Leftrightarrow P$

Law for \land

 $\mathsf{Golden} \; \mathsf{Rule:} \; P \land Q \leftrightarrow P \leftrightarrow Q \leftrightarrow P \lor Q$

Ρ	Q	$P \wedge Q$	$P \lor Q$	$P\leftrightarrow Q$	$P \land Q \leftrightarrow P \lor Q$	$P \land Q \leftrightarrow P \lor Q$
						$\leftrightarrow (P \leftrightarrow Q)$
F	F	F	F	Т	Т	Т
F	Т	F	Т	F	F	Т
Т	F	F	Т	F	F	Т
Т	Т	Т	Т	Т	Т	Т

" $P \land Q$ is true iff $P \leftrightarrow Q$ and $P \lor Q$ have the same truth value."

Example: $P \land (P \lor Q) \Leftrightarrow P$

Law for \rightarrow and Substitution Law

- Unfolding $\rightarrow: P \rightarrow Q \leftrightarrow Q \leftrightarrow P \lor Q$
- Substitution: $(P \leftrightarrow Q) \land \varphi[P/R] \leftrightarrow (P \leftrightarrow Q) \land \varphi[Q/R]$

Example: $\top \rightarrow P \leftrightarrow P$, $P \land (P \rightarrow Q) \Leftrightarrow P \land Q$

The Island of Knights and Knaves (騎士與惡棍之島)

- on an island, there are two kinds of inhabitants: knights and knaves
- knives always speak the truth, knaves always lie
- assume inhabitant A says: "If you ask B, he will say he is a knight."
- what can we infer about A? what about B?

Knights and Knaves in Propositional Logic

- propositional letters represent identity of inhabitants
- let A mean "A is a knight"; then ¬A is "A is a knave"
- statements about who is a knight or knave become propositional formulas
- assume A says φ :
 - if A is a knight, then φ is true
 - if A is a knave, then φ is false

So whenever A says φ , we have $A \leftrightarrow \varphi$!

• "A says: B says he is a knight." is $A \leftrightarrow B \leftrightarrow B$

- A says he is a knight.
- A says he is a knave.
- A and B are of the same kind.
- A says: "I am of the same kind as B".

- A says he is a knight. $A \leftrightarrow A$
- A says he is a knave.
- A and B are of the same kind.
- A says: "I am of the same kind as B".

- A says he is a knight. $A \leftrightarrow A$
- A says he is a knave. $A \leftrightarrow \neg A$
- A and B are of the same kind.
- A says: "I am of the same kind as B".

- A says he is a knight. $A \leftrightarrow A$
- A says he is a knave. $A \leftrightarrow \neg A$
- A and B are of the same kind. $A \leftrightarrow B$
- A says: "I am of the same kind as B".

- A says he is a knight. $A \leftrightarrow A$
- A says he is a knave. $A \leftrightarrow \neg A$
- A and B are of the same kind. $A \leftrightarrow B$
- A says: "I am of the same kind as B". $A \leftrightarrow (A \leftrightarrow B)$

Legend has it there is a treasure on the island. We want to find out whether that is true.

Let the propositional letter T stand for "there is a treasure". Assume we meet inhabitant A. What question Q should we ask him to find out whether T is true?

- A answers Q with "yes": $A \leftrightarrow Q$
- A answers Q with "yes" iff there is a treasure: $A \leftrightarrow Q \leftrightarrow T$
- this is the same as $Q \leftrightarrow (A \leftrightarrow T)$
- So we should ask "Does 'there is a treasure on this island' equivale that you are a knight?"

Legend has it there is a treasure on the island. We want to find out whether that is true.

Let the propositional letter T stand for "there is a treasure". Assume we meet inhabitant A. What question Q should we ask him to find out whether T is true?

- A answers Q with "yes": $A \leftrightarrow Q$
- A answers Q with "yes" iff there is a treasure: $A \leftrightarrow Q \leftrightarrow T$
- this is the same as $Q \leftrightarrow (A \leftrightarrow T)$
- So we should ask "Does 'there is a treasure on this island' equivale that you are a knight?"

Legend has it there is a treasure on the island. We want to find out whether that is true.

Let the propositional letter T stand for "there is a treasure". Assume we meet inhabitant A. What question Q should we ask him to find out whether T is true?

- A answers Q with "yes": $A \leftrightarrow Q$
- A answers Q with "yes" iff there is a treasure: $A \leftrightarrow Q \leftrightarrow T$
- this is the same as $Q \leftrightarrow (A \leftrightarrow T)$
- So we should ask "Does 'there is a treasure on this island' equivale that you are a knight?"

Legend has it there is a treasure on the island. We want to find out whether that is true.

Let the propositional letter T stand for "there is a treasure". Assume we meet inhabitant A. What question Q should we ask him to find out whether T is true?

- A answers Q with "yes": $A \leftrightarrow Q$
- A answers Q with "yes" iff there is a treasure: $A \leftrightarrow Q \leftrightarrow T$
- this is the same as $Q \leftrightarrow (A \leftrightarrow T)$
- So we should ask "Does 'there is a treasure on this island' equivale that you are a knight?"

Some More Logic Puzzles

Assume A says any of the following things; what can you deduce about A and B?

- If I am a knight, then so is B.
- If B is a knight, then so am I.
- If I am a knave, then B is a knight.
- If I am a knight, then B is a knave.
- If B is a knave, then I am a knave.
- B says one of us is a knight.