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after every lecture

Friday 9th July, 9:30am — 12:30pm
material of first two lectures only



What Is Logic?

this course is about formal logic

investigate principles of reasoning, independently of particular
language, mindset, or philosophy

different logical systems for different kinds of reasoning

three basic components of a logical system:

1. formal language
2. semantics
3. deductive system
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Principles of Classical Logic

classical logic aims to model reasoning about truth

logical formulas represent statements that are either true or
false

proving a formula means showing that it is true

sometimes this is easy

V2¢Q

sometimes it is hard
Vn.n > 2 — —(3Ja,b,c.a" + b" = ")

proving a formula does not “make” it true, it just
demonstrates its truth
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Propositional Logic

ST

5/39



Principles of Propositional Logic

propositional logic talks about propositions

a proposition is a sentence that is either true or false

some propositions are atomic; represented by capital letters
P,Q,R,...

other propositions are composed from simpler ones using
connectives such as A,V ...

6
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The Formal Language of Propositional Logic

e assume we have an alphabet R of propositional letters,
assumed to contain at least the capital letters P, Q, R, ...

e the language of formulas of propositional logic is given by the
following grammar:

p=R|L]|ohp|eVe|p—p
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Intuitive Meaning of Propositional Logic

formula | reading is true if. ..

P P the proposition represented by
P is true

1 &, falsity, bottom never true

PAQ P $2 Q, conjunction | P is true, and Q is also true

PV Q@ P 2 Q, disjunction | P is true, or Q is true, or both

P — Q | P# Q, implication | it is not the case that P is true

and Q@ is false



Example Formulas

P, Q

1

PAL

P A QV P; interpreted as (P A Q) V P
notas PA(QV P)

P — PV Q; interpreted as P — (P V Q)
not as (P — P) VvV Q

Operator Precedence

A binds tighter than V; V tighter than —
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Example Formulas (ctd.)

e PN QA R; interpreted as (P A Q) AR
not as PA(Q A R)

e PV QV R; interpreted as (PV Q) V R
notas PV (QV R)

e P— P — Q; interpreted as P — (P — Q)
not as (P — P) — @

Operator Associativity

A and V associate to the left, — to the right
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Defined Connectives and Syntactic Equality

e other connectives can be defined in terms of the basic ones:
e i =p— 1
—P: 3EP, negation
s perhi=(p=>Y) AW = @)
P& Q: P B Q, equivalence, bi-implication
o [ =1 — 1

T: &, truth, top

e — and < are not real connectives, but only abbreviations;
e.g., °P = P — L (the same formula)

Precedence and Associativity

— binds tighter than A; <> less tight than V, associates to the left
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Truth Value Semantics

e in general, to know whether a formula ¢ is true, we need to
know whether its propositional letters are true

e need a truth value assignment (interpretation) /: R — B,
where B := {T,F}
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Truth Value Semantics

e in general, to know whether a formula ¢ is true, we need to
know whether its propositional letters are true

e need a truth value assignment (interpretation) /: R — B,
where B := {T,F}

e given an interpretation /, define the semantics [¢]; of a
formula ¢:

1

. for r e R: [r]y = I(r).

. [[J_]]/ =F.

Je ] =Tif [¢]; =T and [¢]; =T, else [¢ A¢]; :==F.
[V :=Fif [¢]; =F and [¢]; =F, else [p V9], :=T.

Je =] =Fif [¢]i =Tand [¢]; =F, else [¢ — ¢]; :=T.
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Derived Truth Values

Lemma

For any interpretation / and formulas ¢ and ¥ we have
o [T];=T.
o [—o]i =Tif [¢]) =F, else [~¢]; =F.
e [p < ¢l =Tif [pli = [¢]1, else [ <> ] =F.
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Validity and Satisfiability

I =@ ("l'is a model for ¢"): [¢]) =T
© is satisfiable: there is [ with | = ¢

@ is valid: for all | we have | = ¢

@ =1 ("¢ entails ¢"): whenever | = also [ =1
v < 1 ("¢ and 1 are equivalent”): both ¢ = ¢ and ¢ = ¢
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Examples

e PV =P is valid
e P — =P is satisfiable
e P Q& -PVQ
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Properties of Validity and Satisfiability

Theorem

@ is valid iff - is unsatisfiable iff ¢ < T;
furthermore, ¢ < v iff [¢]; = [¢]; for every interpretation /.

Example: =—p < ¢
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Notational Caveat

@ =1 and ¢ < 1 do not mean the same!

e = is syntactic equality; different ways of writing, same formula
(PANQ)AN-R=PAQA-R=PAQA(R— 1)

e & is semantic equality; different formulas, same semantics
—=P < P, but not —P =P
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Propositional Letters in a Formula

e define set PL(y) of propositional letters that occur in a
formula ¢:
o PL(r) ={r}, forevery r e R
e PL(L)=10
 PL(¢p A9) =PL(p V¢) = PL(¢ = ¥) = PL(¢) UPL(¢)

Example
PL(((P—> Q) —P)—P) =
PL(T) =
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Propositional Letters in a Formula

e define set PL(y) of propositional letters that occur in a
formula ¢:
o PL(r) ={r}, forevery r e R
e PL(L)=10
 PL(¢p A9) =PL(p V¢) = PL(¢ = ¥) = PL(¢) UPL(¢)

Example
PL((P—>Q)—P)—P) = {P,Q}
PL(T) =

=
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Agreement Lemma

Lemma

For every formula ¢ and interpretations /1, /> such that
L (P) = k(P) for every P € PL(y), we have

[eln = [#]s

Propositional letters that don't occur in a formula do not matter
when determining its semantics.
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Truth Tabling

e for every formula ¢, PL(¢p) is finite, say |PL(¢)| = n

e every one of these n variables could be either true or false;
this gives 2" combinations

e to know whether ¢ is valid, we only need to try them all out!
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Example

We can use truth tables to show:

e EPAQR+PVQ« (P+ Q)

P

Q

PAQ

PV @

P+ Q

PANQRQ+ PVQ

PAQ+ PVQ
< (P+ Q)

=3 m o

= om o

e PVQR&-P—=Q
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Example

We can use truth tables to show:

e EPAQR+PVQ« (P+ Q)

P

Q

PAQ

PV @

P+ Q

PANQRQ+ PVQ

PAQ+ PVQ
< (P+ Q)

=3 m o

= om o

= oo

HH=HAamT

e PVQR&-P—=Q

- omom e
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Example

We can use truth tables to show:

e EPAQR+PVQ« (P+ Q)

P QIPANR|PVR|P+-Q|PANR+—PVQR|PAR+—PVQ
< (P+ Q)

F F F F T T

F T F T F F

T F F T F F

T T T T T T

e PVQR&-P—=Q
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Example

We can use truth tables to show:

e EPAQR+PVQ« (P+ Q)

P QIPANR|PVR|P-QRQ|PANR+—PVQR|PAR+— PVQ
< (P+ Q)

F F F F T T T

F T F T F F T

T F F T F F T

T T T T T T T

e PVQR&-P—=Q
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Some Properties of Equivalence

Equivalence is
o reflexive: p & ¢
e symmetric: if ¢ < ¢ then Y < ¢
e transitive: if p < 1 and ¢ < x then p & x

Connection between <+ and <
oo diffpoy

22 /39



Substitution for Propositional Letters

We substitute a formula 1 for all occurrences of r € R in a
formula ¢, written as p[J/r] as follows:
e if pissome r € R, then
o plO/r]:=0ifr=1r
o o[Y/r] :=r’ otherwise
o L[W/r]:=1
o (Y AX)W/r] =/l A x[0/r]
o (v V)] =[/r]V x[0/r]
o (v =)0/l =y[/r] = x[9/r].
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Tautologies for free!

Substitution in Tautologies

If = then |= o[y/r].

e Once we have shown that = PV =P, we know that = ¢V =
for any ¢.

o If 1 & o, then also p1[Y/r] < wa[yh/r].

24 /39



Properties of Substitution (II)

Leibniz' Law
If 11 < 12 then 1 /r] & @[/ r].

c AW VX) e —X)
e We can eliminate V from any formula!
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Truth Functions

e truth function of arity n: function from B" to B
e formulas give rise to truth functions:

e forr,...,rm € R and xi,...,x, € B, define interpretation
. Xi r=1r;
/r1::x1,...,rn::x,,(r) = { F else

e for formula ¢ with PL() = {n, ..., r,} define truth function
f,: B" = B by

fo(xts s ) = [Pl s

T ifxy=x=T
F

Example: fprq(x1,x2) = { else

26
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Functional Completeness

Functional Completeness

A set O of operators is functionally complete if, for every
f: B" — B, there is a formula ¢ using only operators from
O such that f,, = f.

e {L1,—,V,A} is functionally complete
e soare {L,—,A}and {L,—}
e but {L,V} is not

27 /39



Functional Completeness (ctd.)

2o}

H AT
HHamm AT

R I I I R R
Hhaem»aww*ﬂw

“PANQAR
PA=QAR
PANQA-R
PAQAR

P

<< <
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Functional Completeness (ctd.)
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Functional Completeness (ctd.)
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Functional Completeness (ctd.)
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Functional Completeness (ctd.)
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Calculational Logic

)

‘\'}, )’Q\ A )117 g %a
(RT3
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Principles of Calculational Logic

calculational logic is a deductive system for propositional logic
not a “new” logic

idea: calculate with formulas to establish their truth

avoid case distinctions, truth tables

make use of a set of /aws: tautologies of the form

Py

replace equivalent formulas
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Example Derivation

Laws:
e Associativity of «<3: ((P < Q) <> R) <> (P +< (Q + R))
e Symmetryof «<: P+ Q< Q<+ P
e Unfolding —: =P < P+ L

Derivation:

(P + Q)
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Example Derivation
Laws:
e Associativity of «<3: ((P < Q) <> R) <> (P +< (Q + R))
e Symmetryof «<: P+ Q< Q<+ P
¢ Unfolding =: =(P <> Q) +> (P +» Q) +» 1)

Derivation:

(P + Q)
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Example Derivation

Laws:
e Associativity of «<3: ((P < Q) <> R) <> (P +< (Q + R))
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Example Derivation

Laws:
e Associativity of <»: ((P <> Q) <+ L) <> (P <+ (Q <> 1))
e Symmetry of «<: P+ Q< Q<+ P
e Unfolding —: =P < P+ L
Derivation:
(P + Q)
& { Unfolding — }
(P+ Q)+ L
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Example Derivation

Laws:
e Associativity of <»: ((P <> Q) <+ L) <> (P <+ (Q <> 1))
e Symmetry of «<: P+ Q< Q<+ P
e Unfolding —: =P < P+ L

Derivation:
—\(P <~ Q)
& { Unfolding — }
(P+ Q)+ L
& { Associativity of <> }

P+ (Q«+ 1)
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Example Derivation

Laws:
e Associativity of +3: (P < Q) <> R) <> (P < (Q + R))
e Symmetryof «<: P+ Q< Q<+ P
e Unfolding =1 =Q + Q + L

Derivation:
—\(P <~ Q)
& { Unfolding — }
(P+ Q)+ L
& { Associativity of <> }

P+ (Q«+ 1)
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Example Derivation

Laws:
e Associativity of +3: (P < Q) <> R) <> (P < (Q + R))
e Symmetryof «<: P+ Q< Q<+ P
e Unfolding =1 =Q + Q + L

Derivation:
(P + Q)
& { Unfolding — }
(P+ Q)+ L
& { Associativity of <> }
P+ (Q«+ 1)
& { Folding = }

P& —-Q
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Example Derivation

Laws:
e Associativity of +3: (P < Q) <> R) <> (P < (Q + R))
e Symmetryof «<: P+ Q< Q<+ P
e Unfolding —: =P < P+ L

Derivation:
(P + Q)
& { Unfolding — }
P Qe L
& { Folding — }
P+ -Q

By transitivity: —(P +» Q) & P + —=Q
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Laws for T and V

Unfolding T: T < P+ P

Idempotence of V: PV P < P

Symmetry of V: PV Q < QV P

Associativity of V: PV (QV R) < (PV Q) VR
Distributivity of V: PV (Q <+ R) <> PV Q<+ PV R
Excluded Middle: PV =P < T

Examples: PV L < P, =PV T
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Law for A

Golden Rule: PAQ < P+ Q<+ PV Q

P QI|PANQR|PVQ|P-Q|PAQ-PVQ|PAQ+PVQ
« (P + Q)

F F F F T T T

F T F T F F T

T F F T F F T

T T T T T T T

“PAQ is true iff P < Q and PV Q have the same truth value.”

Example: PA(PV Q) < P
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Law for — and Substitution Law

e Unfolding > P> Q4+ Q<+ PVQ
e Substitution: (P <> Q) A ¢[P/R] <> (P +> Q) N ¢[Q/R]

Example: TP~ P, PA(P—- Q)< PAQ
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The Island of Knights and Knaves (554 $2 £ &)

e on an island, there are two kinds of inhabitants: knights and
knaves

e knives always speak the truth, knaves always lie

e assume inhabitant A says: “If you ask B, he will say he is a
knight.”

e what can we infer about A? what about B?
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Knights and Knaves in Propositional Logic

propositional letters represent identity of inhabitants
let A mean “A is a knight”; then =A is “A is a knave"
statements about who is a knight or knave become
propositional formulas

assume A says :

o if Ais a knight, then ¢ is true
e if Ais a knave, then ¢ is false

So whenever A says ¢, we have A < ¢!
“A says: B says he is a knight.” is A< B+ B

36
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Statements about Knights and Knaves

A says he is a knight.
A says he is a knave.
A and B are of the same kind.

A says: “l am of the same kind as B".
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Statements about Knights and Knaves

A says he is a knight. A A
A says he is a knave.
A and B are of the same kind.
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Statements about Knights and Knaves

A says he is a knight. A A
A says he is a knave. A —A
A and B are of the same kind.

A says: “l am of the same kind as B".
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Statements about Knights and Knaves

A says he is a knight. A A
A says he is a knave. A —A
A and B are of the same kind. A< B

A says: “l am of the same kind as B".
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Statements about Knights and

A says he is a knight. A A
A says he is a knave. A+ —A
A and B are of the same kind. A< B

A says: “l am of the same kind as B".

Knaves

A<+ (A< B)
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Finding a Treasure on the Island

Legend has it there is a treasure on the island. We want to find
out whether that is true.

Let the propositional letter T stand for “there is a treasure”.

Assume we meet inhabitant A. What question @ should we ask
him to find out whether T is true?

e A answers @ with "yes": A+ @
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Legend has it there is a treasure on the island. We want to find
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Assume we meet inhabitant A. What question @ should we ask
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Finding a Treasure on the Island

Legend has it there is a treasure on the island. We want to find
out whether that is true.

Let the propositional letter T stand for “there is a treasure”.
Assume we meet inhabitant A. What question @ should we ask
him to find out whether T is true?

A answers @ with “yes": A<+ Q

A answers @ with “yes” iff there is a treasure: A<> Q < T
this is the same as Q <> (A< T)

So we should ask “Does ‘there is a treasure on this island’
equivale that you are a knight?”

38/39



Some More Logic Puzzles

Assume A says any of the following things; what can you deduce
about A and B?

e If | am a knight, then so is B.
e If B is a knight, then so am |I.

If I am a knave, then B is a knight.

If I am a knight, then B is a knave.

If B is a knave, then | am a knave.

e B says one of us is a knight.
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