Logic Homework for Lecture II

Max Schäfer

Please answer as many of the following questions as you can, in Chinese or English, on the provided answer sheet and hand it to me on or before **July 7**, **2008**. No delayed submissions will be accepted.

Do not feel pressured to complete *all* questions. The grading of your homework will not be based on how many questions you solve, but on how well you do compared with your classmates.

1 Sequent Calculus for Propositional Logic

Give derivations of the following sequents:

$$\begin{split} 1. \ \vdash (P \land Q \to R) \to (P \to Q \to R) \\ 2. \ \vdash P \to \neg \neg P \\ 3. \ \vdash (P \to Q) \lor (Q \to P) \\ 4. \ \vdash P \lor \neg P \\ 5. \ \vdash \neg (P \land Q) \leftrightarrow \neg P \lor \neg Q \end{split}$$

2 Sequent Calculus for First-order Logic

Hint: To solve the problems below, you may make use of the fact that $\varphi[x/x] \equiv \varphi$ for any formula φ and any variable x.

- 1. Give a derivation of $\vdash \varphi \leftrightarrow (\forall x.\varphi)$, where φ is a formula such that $x \notin FV(\varphi)$. Which part of the derivation fails when this condition is not satisfied?
- 2. Can you give a derivation of $\vdash (\forall x.\varphi) \rightarrow (\exists x.\varphi)$ for any formula φ ? Would you accept this inference step in a mathematical proof? Why or why not?
- 3. Show that $\vdash_{\mathrm{LK}} \neg(\exists x.\neg\varphi) \rightarrow (\forall x.\varphi)$ for any formula φ .
- 4. Show that $\vdash_{\mathrm{LK}} (\exists x. \forall y. \varphi) \to (\forall y. \exists x. \varphi)$ for any formula φ .

Give a structure \mathcal{M} and a formula φ with free variables x and y such that $\mathcal{M} \models \forall y. \exists x. \varphi$, but $\mathcal{M} \not\models \exists x. \forall y. \varphi$.