
Flolac 2010
Operational Semantics

Assignment 1, Due date: July 1

1. Prove that “S1; (S2; S3)” and “(S1; S2); S3” are semantically equivalent.
Note that one direction of proof is good enough.

2. Specify the semantics of the construct “repeat S until b” in the style of natural
semantics. The semantics of the repeat-construct is not allowed to rely on the existence
of a while-construct in the language.

3. (Bonus) Prove that “repeat s until b” and
“s;if b then skip else repeat s until b end” are semantically equivalent.

Programming Exercise: due date: July 6
Write an interpreter for While in OCaml based on the natural semantics of While.
Note that you need to define an “exception” type to model the errors in interpreting
While programs. Please name your interpreter as NS, as shown in the following ode
skelton:

type num = string

type var = string

type aexp = Num of num

 | Var of var

 | Add of aexp * aexp

 | Mult of aexp * aexp

 | Sub of aexp * aexp

type bexp = True

 | False

 | ...

type stm = Ass of var * aexp

 | Skip

 | Seq of stm * stm

 | ...

type state = var -> int

(* n : num -> int *)

let n m = int_of_string m

(* a: aexp -> state -> int *)

let rec a e s = match e with

 Num m -> n m

 | Var x -> s x

 | Add (e1, e2) -> a e1 s + a e2 s

 | ...

type config = Inter of stm * state

 | Final of state

(* state update : to get a new state *)

let update x e s = fun y -> if y=x then a e s else s y

let ns c = match c with

 Inter (Ass (x, e), s) -> Final (update x e s)

 | Inter (Skip, s) -> Final s

 | ...

exception NotFound of string

let default_state x = (* 0, default value? *)

 raise (NotFound “undefined variable”)

(* example of an initial state with x = 1 *)

let x1_state = update "x" (Num "1") default_state

(* test case of a While statement: "skip; x = 5" *)

let test1 = Seq (Skip, Ass ("x", Num "5"))

let new_state = ns (Inter (test1, x1_state))

 in new_state “x”

