Temporal Logics

& Model Checking

Farn Wang
Dept. of Electrical Engineering
National Taiwan University

Specifications, descriptions,
& verification

specification:

o The user’s requirement

description (implementation):

o The user’s description of the systems

o No strict line between description and specification.

verification:
o Does the description satisfy the specification ?

Formal specification

& automated verification

formal specificaton:
o specification with rigorous mathematical notations

automated verification:
o verification with support from computer tools.

Why formal specifications ?

to make the engineers/users understand the

system to design through rigorous mathematical
notations.

to avoid ambiguity/confusion/misunderstanding
iIn communication/discussion/reading.

to specify the system precisely.

to generate mathematical models for automated
analysis.

But according to Goedel’s incompleteness theorem, it
IS Impossible to come up with a complete
specification. ’

Why automated verification 7

to somehow be able to verify complexer & larger
systems

to liberate human from the labor-intensive
verification tasks
0 to set free the creativity of human

to avoid the huge cost of fixing early bugs in late
cycles.

to compete with the core verification technology
of the future.

‘ Specification & Verification ?

= Specification - Complete & sound.

= Verfication

- Reducing bugs in a system.
- Making sure there are very few bugs.

Very difficult!

Competitiveness of high-tech industry!
A way to survive for the students!

N d - wE

A way to survive for Taiwan!

$4 billion development effort
> B0 system integration & validation cost

2,500,000+1,500,000 lines of codes (most in Ada)

400 horses
100 microprocessors

Bugs in complex software

They take effects only with special event
sequences.

o the number of event sequences is factorial and
super astronomical!

It is Impossible to check all traces with
test/simulation.

‘ Budget appropriation

Design &
Coding
10%-20%

N
Design & B for
VERIFICATION Coding %ﬁgmeer. in
0 99% aﬂcbiﬂa/ “\MLI

10

» Testing (real wall for real cars)
= Expensive
= Low coverage
= Late in development cycles

Mnulafion(virfual wall for virtual cc
= Economic

= Low coverage
= Don't know what you haven't seen.

o Formal Verification

(virtual car checked)

= Expensive

= Functional completeness
+ 100% coverage

= Aufomated!
+ With algorithms and proofs. 1

Qum of the 3 angles = 180 ?
- \ﬁ gles = 180 *

I

H J

¥
i
l §

|

i

F.

» Testing (check all As you see)
= Expensive

= Low coverage

= Late in development cycles

» Simulation (check all As you draw)

A" ‘ - Economic

= Low coverage
= Don't know what you haven't seen.

» Formal Verification(we prove it.)
= Expensive
= Functional completeness
+ 100% coverage

= Automated!
+ With algorithms and proofs.

12

Model-checking

- a general framework for veritication

of sequential systems
Answer

Yes if the model
— — Is equivalent to
M Od el . the specification
t No if not.

specification

13

‘Models & Specitications

- formalism
Whenever a baby cries, it is hungry.

= Logics:

= Graphs:

(crying = hungry)

crying —crying
hungry hungry

—Crying

—hungry

14

Models & Specitications

- fairness assumptions

Some properties are almost impossible to verify
without assumptions.

Example: C(start > < finish)
To verify that a program halts, we assume
CPU does not burn out.

OS gives the program a fair share of CPU time.
All the drivers do not stuck.

15

Model-checking

- frameworks 1n our lecture

traces
Trees

Linear

= = =

traces Trees Linear Branching
F=0 F0 F=0 F0 F=0 F0 F=0 FzJ

Logics
Branc
hing

v': known; VI: discussed in the lecture

History ot Temporal Logic

Designed by philosophers to study the way that time
IS used In natural language arguments

Reviewed by Prior [PR57, PR67]

Brought to Computer Science by Pnueli [PN77]

Has proved to be useful for specification of
concurrent systems

17

Framework

Temporal Logic is a class of Modal Logic

Allows qualitatively describing and reasoning about
changes of the truth values over time

Usually implicit time representation

Provides variety of temporal operators (sometimes,
always)

Different views of time (branching vs. linear, discrete
vs. continuous, past vs. future, etc.)

18

Outline

Linear

o LPTL (Linear time Propositional Temporal
Logics)

Branching

o CTL (Computation Tree Logics)

o CTL* (the full branching temporal logics)

Kripke structure

A=(S, Sy R, L)
S

o a set of all states of the system
SeCS

o a set of initial states

R < SxS

o a transition relation between states
L:S+— 2P

o a function that associates each state with set of
propositions true in that state

20

Kripke Model

Set of states S

0 {d4,9,,93}
Set of initial states S,
o {94}

Set of atomic
propositions AP

o {a,b}

21

q3

Example ot Kripke Structure

Suppose there is a program

initially x=1 and y=1,
while true do

X:=(x+y) mod 2;
endwhile

where x and y range over D={0,1}

22

‘ Example ot Kripke Structure

= S=DxD
= Sp={(1,1)}

= R={((1,1),(0,1)),((0,1),(1,1)),((1,0),(1,0)),((0,0),(0,0));

= L((1,1))=1x=1,y=1},L((0,1))=1x=0,y=1},
L((1,0))={x=1,y=0},L((0,0))=1x=0,y=0}

-_®

@
@

23

BNF, syntax detinitions
Note!

Be sure how to read BNF !
used for define syntax of context-free language

important for the definition of
o automata predicates and
o temporal logics

Used throughout the lectures!
In exam: violate the syntax rules =» no credit.

Az=c x| (M)]| A+A, | A=A,
M:=c|x|(A)]| MM, | M,/M,
c is an integer
X IS a variable name.

24

'BNF, syntax detinitions

Az=c| x| (M)[A+A, | A=A,
M:=c|x]|(A)| M*M, | M,/M,
c is an integer

X IS a variable name.

25

'BNF, syntax detinitions

- derivation trees (from top down)
Az=c| x| (M)[A+A, | A=A,
M:=c|x]|(A)| M*M, | M,/M,

c is an integer

X IS a variable name.

used In string
generation.

26

'BNF, syntax detinitions

- parsing trees (from bottom up)
Az=c| x| (M)[A+A, | A=A,
M:=c|x]|(A)| M*M, | M,/M,

c is an integer

X IS a variable name.

used in compiler.

27

Temporal Logics : Catalog

propositional <«
global ©
branching <
points <

first-order
compositional
linear-time
intervals

discrete <« continuous
past «& future

28

Temporal Logics

Linear
o LPTL (Linear time Propositional Temporal
Logics)
LTL, PTL, PLTL
Branching

o CTL (Computation Tree Logics)
o CTL* (the full branching temporal logics)

29

‘ Amir Pnueli
1941

["1\‘\\,:-“ r = : 1
] Q‘i’-\t ! s jiT

= Professor, Weizmann D B == u
Institute #3

UL (IR

= Professor, NYU
= Turing Award, 1996

30

LPTL (PTL, LTL)

Linear-Time Propositional Temporal Logic

Conventional notation
propositions: p, q, r, ...
sets:A,B,C,D, ...
states : s
state sequences : S
formulas : @,y
Set of natural number : N={0, 1, 2, 3, ...}
Set of real number : R

31

LPTL

Given P : a set of propositions,

a Linear-time structure : stafe sequence

S=5,5,5,S35,... Sj-----
s, Is a function of P where P
ors, €2F

example: P={a,b}

1aha,bHaHakb}...

{true,false}

32

Syntax definitions
Note!

Be sure how to read BNF !
used for define syntax of context-free language

important for the definition of
o automata predicates and
o temporal logics

Used throughout the lectures!
In exam: violate the syntax rules = no credit.

A= (M) | A1+ A2 | A1 —A2
M = (A) | M1 * M2 | M1/ M2

33

ILPTL syntax definition

in BNF

- Syntax /

P =true | p |-y |[g,vy, | Oy |p,Uy,

abbreviation
false = — true
YiAY, = — ((—|l|J1)V (—|l|12))
Y-y, = (@)Y,
Oy = true Uy
Y = —|O—|lp

34

LPTL

- syntax
Exam. Symbol
in CMU
Op Xp p is true on next state
pUqg pUqg From now on, p is always
true until g is true
<p Fp From now on, there will be a
state where p is eventually
(sometimes) true
p Gp From now on, p is always true

35

? - don’t care

36

LPTL

- syntax

pUq

pUq

From now on, p is always
true until g is true

From now on, there will be a
state where p is eventually
(sometimes) true

38

LPTL

- syntax

Two operator for Fairness

s O®p = Op ; p will happen infinitely
many times
infinitely often

; p will be always true
after some time in the
future
almost everywhere

]
8
Lo
1
&
O

39

LPTL

- semantics
suffix path :

S=57515,5354Sc -
0)—
SO0)=15,5,5,535,Sc

S=15,5,535,S:Sgvve.

40

LPTL

- semantics
Given a state sequence

S=5,5,5,5;S,... S--.-..
We define S Fy (S satisfies) inductively as :
S F true
= p < Sy(p)=true, or equivalently p € s,
= Y < S F yis false
= Yy, < SE Y, or SE Y,
= Oy < SHEy
S E y,Uy, < Ik>0(SK Ey, AVO<j<k(SY EyY,))

O oo mw

41

LPTL
- semantics

If a state sequence S satisfies ¢ (SFQ)
then S is a model of .

If there is a state sequence S saf,
then @ is safisfiable;
else @ is unsatisfiable.

If for all state sequence SF ¢ -

then @ is valid. (Fo)
A formula ¢ characterizes its set of models.

42

Branching Temporal Logics

Basic assumption of tree-like structure

*Every node Is a function
of P—{true,false}

*Every state may have many
SUCCesSOors

43

Branching Temporal Logics

Basic assumption of tree-like structure

*Every path is isomorphic as N
«Correspond to a state sequence

44

Branching Temporal Logic

It can accommodate infinite and dense state
SUCCesSsors

In CTL and CTL*, it can't tell

o Finite and infinite
Is there infinite transitions

o Dense and discrete
|s there countable (®) transitions ?

45

Branching Temporal Logic

Get by flattening a finite state machine

46

CTL(Computation Tree Logic)

Edmund M. Clarke
Professor, CS & ECE
Carnegie Mellon University

E. Allen Emerson
Professor, CS
The University of Texas at Austin

Chin-Laung Lel
Professor, EE
"~ National Taiwan University

47

CTL(Computation Tree Logic)

- syntax

p:=true|p|—¢|Pve, | IO | VOO
| 3, U, | Vo,Up,

abbreviation :

false

1 AP,
©1—0;

SO0

\

)

v

-

P

— true

= ((=@¢)V (—=P2))
(—P1)vV P,

dtrue Ug
—3—

Vtrue U@
-V

48

CTL

- semantics
example symbol
in CMU
10p EXp there exists a path where p is
true on next state
dpl/ EU from now on, there is a
pU-q PELA ere p Is always
rue unt| q IS true
vOp AXp for all path where p is true on
next state
vpl q pAUQq from now on, for all path where

p is always true until g is true

49

CTL

- semantics

310 EX there exists a path where
P P IS true on nextpstate P

?

50

CTL

- semantics

dpU q pEUqg from now on, there is a path where p
is always true until q is true

51

CTL

- semantics

vOPp AXp for all path where p is true on
next state

52

CTL

- semantics

vpU q pAUq

from now on, for all path
where p is always true until q
is true

53

CTL

- semantic

Assume there are
a tree stucture M,
one state s in M, and

a CTL fomula ¢
M,s=¢@ means s in M satisfy ¢

54

CTL

- semantics

s-path : a pathin M
which stats from s

S, -path:

S, -path:
S, -path:

S;5 -path:

55

CTL

- semantics
M,s F true
M,sEp < pes
M,s F —¢p < it is false that M,s F ¢
M,;s Fo,vp, < MsskE@,or M;sk o,
M,s F 30 < ds-path=5s; s, (M,s, F @)
M,s F VO@ < V s-path =s; s, (M,s, F @)
M,s F Jp,Up, <& T s-path=s;s, , 3k>0

(M,s E @, AVO<|<k(M,s; F @)

M,s EVo,Up, < Vs-path=s; s, , 3k>0

(M,s E @, AVO<|<k(M,s; F @)

56

CTL
- examples (I)

Po:(Po:=0 | Po := Py Vv P1V P,)
Pi:(p1:=0 | py:=py Vv py)
P,:(p2:=0 | py :=pg v Py)

If P, is true, it is possible
that P, can be true

after the next two cycles.

\v,

(Pp — 3O 30O py)

var. Pp
Il 4

57

CTL
- examples (II)

1. If there are dark clouds, it will rain.

v[(dark-clouds— VvV <rain)

2. if a buttefly flaps its wings, the New York stock could
plunder.

VO (buttefly-flap-wings —-3<NY-stock-plunder)

3. if | win the lottery, | will be happy forever.

v LI(win-lottery — VL1 happy)

4. In an execution state, if an interrupt occurs in the next
cycle, the interrupt handler will execute at the 2nd next

cycle.
VL1(exec—VO(intrpt— Vv O(intrpt-handler)))

58

CTL
- examples (III)

In an execution state, if an interrupt occurs in the next
cycle, the interrupt handler will execute at the 2nd
next cycle.

VL(exec—VO(intrpt—> VO (intrpt-handler)))

Some possible mistakes:
VL(exec—((VO) intrpt)>V(Ointrpt-handler))
VLl(exec — (VO intrpt) >vOVQO intrpt-handler))

59

CTL
- examples (I1Ia)

Please draw a Kripke structure that tells
VO (intrpt—> Vv O(intrpt-handler))

from
(VO intrpt)—>VOintrpt-handler
and
(VO intrpt) >VOVQ) intrpt-handler

60

CTL

- important classes
V[In : safety properties
0 n is always true in all computations from now.

3<n: reachability properties

0 n is eventually true in some computation from
now.

0 Vn = -3

v <n: inevitabilities

o m is eventually true in all computations from now.
Alin
0 VO = —-30-n

CTL
- syntax
CTL* fomula (state-fomula)

=true | p| =@ | Qv | FW |V
path-fomula
= | =w, lwovw, | Ow, | w,U

CTL* is the set of all state-fomulas!

62

CTL*

- examples (1/4)

In a fair concurrent environment, jobs will
eventually finish.

V((

or

Oexecute,) A(

Oexecute,)) — Ofinish)

V(((C~execute,) A(O execute,)) — finish)

63

CTL*
- examples (2/4)

No matter what, infinitely many comets will
hit earth.

v OO <& comet-hit-earth
Why not CTL?

= VO YOV comet-hit-eart

= YOVO3O comet-hit-eart
Exercise, please construct a
—model thattells the last

from the firet

e
e

>
64

CTL*
- examples (2/4)

No matter what, infinitely many comets will
hit earth.

v [1< comet-hit-earth

Or
v O° comet-hit-eart

Why not CTL?

= VO V & comet-hit-earth

s V[4 & comet-hit-earth

65

CTL*

The same

- WOkaUt according to

lemma

= (1) YOO comet-hit-earth
= (2) vOO Vv & comet-hit-earth

= (3) v 3 & comet-hit-earth

Please draw Kripke structures that tell
= (1) from (2) and (3)

= (2) from (1) and (3)

= (3) from (1) and (2)

66

CTL*

- examples (3/4)

If you never have a lover, | will marry you.

V((

you-have-no-lover) - <marry-you)

Why not CTL ?
(v you-have-no-lover) - Vv < marry-you

(V[you-have-no-lover) - 3 <& marry-you

(30 you-have-no-lover) - vV <& marry-you

67

CTL*

you-have-no-lover) - <&marry-you)

- Workout
(1)V((
(2) (VLI you-
(3) (VL you-
(4) (301 you-

nave-no-

nave-no-

Nave-no-

over) —» V < marry-you
over) —» 1 < marry-you

over) —» V < marry-you

Please draw trees that tell
(1) from (2)
(2) from (3)
(3) from (4)
(4) from(1)

68

CTL*
- examples (4/4)

If | buy lottory tickets infinitely many times,
eventually | will win the lottery.

V((CO < buy-lottery) —» Owin-lottery)
or
V ((<O= buy-lottery) — < win-lottery)

69

[4%]
[]

CTL’

- semantics

suffix path :

S=
S0)=
S(1)=
S(2)=
SB)=
S =

70

CTL*
- semantics

state-fomula

g:=true |p|—@;| Qv |V |V
M.,s F true

M,sEp < pes

M,s E —¢p < M,s F ¢ flfalse

MssE @,vp, < MskE @, orM,s = o,
M,s F Ju < J s-path =S (S F 1)
M,sE VY < Vs-path=S (SF w)

71

CTL*

- semantics
path-fomula
e (p ‘ — ‘ V ‘ O ‘ U
If S=5;8,5,8384.........S Fo &M, sy, F ¢

S:_I <:>S|: ﬂ_false
SEwW, v, < SEW,or SE
SEOuw < SE

S F w,lw,< Fk>0 (S® E W AVO<j<k(SVE w,))

72

Expressiveness

Given a language Z,
what model sets L can express ?
what model sets L cannot ?

model set: a set of behaviors

A formula = a set of models (behaviors)

foranyp e/, [¢] = {M|MFg}
A language = a set of formulas.

Expressiveness: Given a model set F,
F is expressible in L iff 3@ e /([@]=F)

73

Expressiveness

Comparison in expressiveness:

Given two languages L, and L,
Definition: L, is more expressive than L, (L,<L,)

iff voel, ([@] is expressible in Z,)

Definition: L, and L, are expressively equivalent
(L4=L;) iff (Lo<LyA(L4<Ly)

Definition: L, ~ L, are expressively incomparable iff
—((La<Lq)Vv(L4<Ly))

74

‘ Expressiveness
- branching-time logics

What to compare with ?
= finite-state automata on infinite trees.

= 2nd-order logics with monadic prdicate and many
successors (SnS)

= 2nd-order logics with monadic and partial-order
Very little known at the moment,

the fine difference in semantics of branching-structures

75

Expressiveness
- CTL*, example (I)

A tree the distinguishes the following two
formulas.

V((Ceat) »> Ofull)
o Negation: 3((<eat) A L—full)
(VOeat) — (VO Full)

Expressiveness
- CTL*, example (II)

A tree that distinguishes the following two
formulas.

V((Oeat) —» <full)
v (eat — V< full)
o Negation: 3O (eat A full)

Expressiveness

- CTL*

With the abundant semantics in CTL*, we can
compare the subclasses of CTL™.

With restrictions on the modal operations after
4, V, we have many CTL* subclasses.

Example:

B(—,v,O,U): only —,v,O,U after 3, V

B(—,v,0,0®): only —,v,O,O® after 3, V

B(O,) : only O, after 3, V

78

Expressiveness

- CTL*

CTL* subclass expressiveness heirarchy
CTL* > B(—,v,0,0,[0)
> B(O,0,[0)

(
> B(—,v,0,,0)
= B(O,<,)
> B(—,v,0,<)
> B(O,0)
> B()

Expressiveness

- CTL*

Some theorems :
B(—,v,0,O,U) = B(O,O,U)

3<O>°p is inexpressible in B(O,<$,U) .

80

Expressiveness

- CTL*

Comparing PLTL with CTL*
assumption, all ePLTL are interpreted as V¢

Intuition: PLTL Is used to specity all runs of a

system.

B(—|,V,O,<>,[/,<>°°) S

CTL* /
T /

PLTL

PLTL(F)

81

model (system)

‘ Verification

formula specification
formula
= LPTL, validity checking 1 F ¢

o instead, check the satisfiability of { A —¢
o construct a tabelau for {p A —d

= model-checking MEd
o LPTL: M: a Buchi automata, ¢: an LPTL formula

o CTL: M: a finite-state automata, ¢: a CTL
formula

= simulation & bisimulation checking M = M’

82

Satistiability-checking framework

Answer
Yes if the model
model in logics _,.—» Is equivalent to
L, =, v,0,Q.U the specification
t No if not.

specification in logics
y 1y vio1<>1u

83

LPTL
- tableau for satistiability checking

Tableau for ¢
* a finite Kripke structure that fully describes the
behaviors of ¢
» exponential number of states
* An algorithm can explore a fulfilling path in the
tableau to answer the satisfiability.
Bnondeterministic
mwithout construction of the tableau
BPSPACE.

84

1LPTL

- tableau for satistiability checking
Tableau construction
a preprocessing step: push all negations to the literals.
= (Y Ay = (v (=)
= (Y vyp) = ya (= ys)
B OyY=0-vy
oY=y
n —(yUy,) = (L= wo)v (B y)U (B y)A (= y,)))
s o Jy=Oay

85

LPTL
- tableau tfor satistiability checking

Tableau construction

CL(p) (closure) is the smallest set of formulas containing ¢
with the following consistency requirement.

— p € CL(p) iff p eCL(0)

f

v €CL(o), then vy, O

fy, v, , vy Ay, eCl(o), then vy, vy, eCL(¢)
f Oy eCL(p), then v eCL(p)

fy Uy, eCL(p), then v, , v, , O (y4 Uy,) eCL(p)

vy eCL(o)

86

LPTL
- tableau tfor satistiability checking

Tableau (V, E), node consistency condition:

A tableau node v € V is a set v < CL(f) such that
mpeviff—p&v

w fy, vy, ev,then y,evory, ev

w fy, Ay, ev, then y,evand vy, ev

wmifl \wev,thenyevandO| |y ev

= if Owev,thenyevorO Owyev

w if y,Uy,ev, then y,e vor (y,evand O (y,Uy,)ev)

87

LPTL
- tableau tor satistiability checking

Tableau (V, E), arc consisitency condition:
Given an arc (v,v') eE, if Oy e v, then y e V’

= Anodevin (V,E)is initial for ¢ if ¢ ev.

88

LPTL

- tableau tor satistiability checking

CL(pUq) = {pUq, OpUq, p, =P, 4, =}

Example: (p U 0)

tableau (V,E)

Vi {p,q, pUq, OpUqg} {p,q, OpUa} {p,q}
{p, q, pUq}
{p, —q, pUq, OpUa} {p, —q, OpUa} {p, —q}
{=p, g, pUq, OpUq} {-p,q,pUq} {-p.,q}
{=p, g, OpUq}
{=p, =q, OpUQq} {=p, =q}

E: ? 8

LPTL

- tablez 19

¢ IS SF———
the\ nitial de for
such e satisfied:
or 13;‘
there” /oD ?(’)‘;2 5CC)
rel Yiewle from an iimearnode for ¢ sucm that for all
until formula in a node in the SCC, there is
also a node in the SCC containing v, ; or

there is a cycle reachable from an initial node for

SUC

h that the for all until formulas

in the first

cycle node, there Is also a node In the cycle

con

tainina

90

1LPTL

- tableau for satistiability checking
Please use tableau method to show that

pUq =

g is false.

1) Convert to negation: (pUQg)A<—Q

2) CL((pUqg)A<>—0q)
= {(pUg)A<>—q, pUq, OpUq, p, q, <—q, OO—q }

LPTL

- tableau tfor satistiability checking

Please use tableau method to show that
pUq E Oqis true.

1) Convert to negation: (pUQ)Al_|—Q
2) CL((pUg)AL_—q)

= {(pUg)AL_—q, pUq, OpUq, p, q, [_I—q, Ol -9 }

Pf. In each path that is a model of (pUg)Al |—q, g
must always be satisfied. Thus, pUq is never

QED

LPTL

- tableau for satistiability checking
¢ Is satisfiable iff in (V,E),

there exists ...

path+cycle< (|CL(op)[+2)|V]
|CL(op)| flags to
check the

until-formulas from
the first cycle node.
nondeterministic

PSPACE can solve it. 1st

PSPACE-complete. cycle
node

initial

93

CTL model-checking tramework

odel Answer
Yes if the model
_>.—> Is equivalent to
N the specification
i* ! No if not.

94

CTL
- model-checking

Given a finite Kripke structure M and a CTL
formula ¢, 1Is M a model of ¢ ?

usually, M is a finite-state automata.
PTIME algorithm.

When M is generated from a program with
variables, its size is easily exponential.

95

CTL
- model-checking algorithm

techniques

state-space exploration

o state-spaces represented as finite Kripke structure
directed graph

nodes: states or possible worlds
arcs: state transitions

regular behaviors

Usually the state count is astronomical.

96

Kripke structure
- Least fixpoint in modal logics

Dark-night murder, strategy |I:
A suspect will be in the 2nd round iff
He/she lied to the police in the 1st round; or
He/she is loyal to someone in the 2nd round
What is the minimal solution to 2nd/f] ?
2nd([i] = Liar[i]v F=(2ndfj] Loyal-to]i,j])

97

Kripke structure

- Least fixpoint in modal logics
In a dark night, there was a cruel murder.
n suspects, numbered 0 through n-1.

Liar(i] iff suspect i has lied to the police in the
1st round investigation.

Loyal-to[i,j] iff suspect i is loyal to suspect j in
the same criminal gang.

2nd([i] iff suspect i to be in 2nd round
investigation.

What is the minimal solution to 2nd[] ?

98

Kripke structure

- Greatest fixpoint in modal logics
In a dark night, there was a cruel murder.

n suspects, numbered 0 through n-1.

—Liar[i] iff the police cannot prove suspect i
has lied to the police in the 1st round
investigation.

Loyal-to[i,j] iff suspect i is loyal to j are in the
same criminal gang.

2nd([i] iff suspect i to be in 2nd round
investigation.

What is the maximal solution to — 2nd[] ? .

Kripke structure
- Greatest fixpoint in modal logics

Dark-night murder, strategy ||
A suspect will not be in the 2nd round iff
We cannot prove he/she has lied to the police; and
He/she is loyal to someone not in the 2nd round.
What is the maximal solution to — 2ndJ] ?
— 2nd[i] = =Liar[ij]n F=(=2nd]j]» Loyal-to]i,j])
In comparison:
— 2nd[i] = —Liarfi] Vj=(—2nd[j]» Loyal-to]ij])
—-2ndli] =—lLiatfilrVj=(—2ndfjl-=>Loyal-tofi.ji})
— 2nd[i] = —Liarfi]» Vj=(Loyal-tofij]=® —2nd]j])

Safety analysis

Given M and p (safety predicate), do all states
reachable from initial states in M satisfy p ?

In model-checking:
Is M a model of V

p ?

Or in risk analysis: Is there a state reachable from

initial states in M satisfy p ?

\v4 p = —- <>—|p = —Eltrue U_Ip

101

Reachability analysis: 3On

|s there a state s reachable from another state
S'7?

Encode risk analysis

Encode the complement of safety analysis
Most used in real applications

102

Kripke structure
- safety analysis

Reachability algorithm in graph theory
Given
a Kripke structure A = (S, S,, R, L)
a safety predicate n,
find a path from a state in S, to a state in [-n)].

Solutions in graph theory
Shortest distance algorithms
spanning tree algorithms

103

Kripke structure
- safety analysis

[* Given A = (S, Sy, R, L)/
safety analysis(n) /* using least fixpoint algorithm */ {

for all s, if —nelL(s), L(s)=L(s){ I

repeat { | A notation for the
for all s, if 3(s,s’)(€Ls)). | possibility of
L(s)=L(s)A I3

} until no more changes to L(s) for any s.
if there is an syeS, with eL(sy),
return ‘unsafe,’
else return ‘safe.’

}

The procedure terminates since S is finite in the Kripke
structure.

104

‘ Kripke structure

- safety analysis

Least fixpoint in modal logics
iterative expansi

Kripke structure
- liveness analysis : V< 1
Given
a Kripke structure A = (S, S,, R, L)
a liveness predicate n,
can n be true eventually ?

Example:
Can the computer be started successfully ?
Will the alarm sound in case of fire ?

106

Kripke structure
- liveness analysis

Strongly connected component algorithm in graph theory
Given

a Kripke structure A = (S, Sj, R, L)
a liveness predicate n,
find a cycle such that
all states in the cycle are —n
there is a —n path from a state in S, to the cycle.

Solutions in graph theory
strongly connected components (SCC)

107

Kripke structure
- liveness analysis

(Turn=0 > < Turn=1)

108

Kripke structure
- liveness analysis

liveness(n) /* using greatest fixpoint algorithm */ {
for all s, if =nelL(s), L(s)=L(s){3[1-n};
repeat {
for all s, if 300—n €L(s) and V(s,s’)(300—n €L(s)),
L(s)=L(s) - {3L0—n };
} until no more changes to L(s) for any s.
If there is an s,eS, with eL(sy),
return ‘liveness not true,’
else return ‘liveness true.’

1

The procedure terminates since S is finite in the Kripke
structure.

109

‘Kripke structure

- liveness analysis
Greatest fixpoint in modal logics
iterative elimif

CTL model-checking

The NORMAL form needed in CTL model-
checking:

1. only modal operators
10¢, 3 y,Uy,, 1o
2. No modal operators
VO(P! v \lj'] UWZ! v (P! \V/<>(Pa E|<>(p
3. No double negation: — —¢
4. No implication: y,=v,

111

CTL

- model-checking algorithm (1/6)

Given M and o,
1. Convert © to NORMAL form.
2. list the elements in Cl (¢) according to their sizes
PoP1 Py -.. P,
for all 0<'i<j <n - @; is not a subformula of¢,
2. for 1=0 to n,

4. return Yes!

112

CTL
- model-checking algorithm (2/6)

label(p) {
case p, return;

case —@, for all s, if og L(s), L(s)= L(S) WU{—®}

casepvy, for all s, ifpel(s) orpel(s),
L(s)=L(s)Apvy}

case 7100, for all s, if 3(s,s’) with pelL(s’),
L(s)=L(s) {309}

case 3 v, Uy, Ifp(yy, v,);

case 3L1g, gfp(®);

}

113

CTL
- model-checking algorithm (3/6)

Ifp(vy ., v,) /* least fixpoint algorithm */ {
for all s, if vy, eL(s), L(s)=L(s) {3y Uy, };
repeat {
for all s, if v, elL(s) and 3(s,s’)(Jy Uy, €eL(s’)),
L(s)=L(s) {3y Uy, }
} until no more changes to L(s) for any s.

}

The procedure terminates since S is finite in the
Kripke structure.

114

CTL
- model-checking algorithm (4/6)

Least fixpoint in modal logics

iterative expansi @

CTL

- model-checking algorithm (5/6)
gfp(y) /* greatest fixpoint algorithm */ {

for all s, if v eL(s), L(s)=L(s)u{d
repeat {

U

for all s, if Iy eLl(s) and V(s,s)FOw&L(s)),

L(s)=L(s) - {300y };

} until no more changes to L(s) for any s.

}

The procedure terminates since S is finite in the

Kripke structure.

116

CTL
- model-checking algorithm (6/6)

Greatest fixpoint in modal logics
iterative elip

| (303pUq) A 300p
Labeling funciton:
label the subforu
state.

ae frue In each

Nl

‘ (FO3plg) A ILp
Evaluating ~pUq using least fixpoint

@

lteration O

| (30:

plQ) A =

1%

Evaluating ~pUq using least fixpoint

lteration 1

\

(e \

@

- (302

plQ) A =

1%

Evaluating 7pUq using least fixpoint

lteration 2

lteration 1

lteration 0

lteration 2

- (303ple) A 300p
Evaluating 7O g

- (303ple) A 300p
Evaluating 7/ [p using greatest fixpoint
Iteration O

123

Evaluating

Iteration 1
103pUq

lteration 1

P.g
IpUq
103pUq

124

| (30°

plQ) A =

1%

Evaluating 7/ [p using greatest fixpoint

Result:

N2

| (30°

plQ) A =

1%

Finally, evaluating (7O 7plig) A T Jp

-

Workout: labelling 3 (pA Jq)

CTL

- model-checking problem complexities

The PLTL model-checking problem is PSPACE-
complete.

a definition: Is there a run that satisfies the formula ?
The PLTL without O (modal operator “next”)
model-checking problem is NP-complete.

The model-checking problem of CTL is PTIME-
complete.

The model-checking problem of CTL* is PSPACE-
complete.

128

CTL
- symbolic model-checking with BDD

System states are described with binary
variables.

n binary variables - 2" states

we can use a BDD to describe legal states.
a Boolean function with n binary variables
state(x,, x,, y X))

129

CTL - symbolic model-checking

with Propositioal logics
Example:

X1 Xy X3

Vo (2XAXA = X)

130

CTL - symbolic model-checking

with Propositioal logics

State transition relation as a logic funciton
with 2n parameters
transition(x,, x,, s Xy Vs Vo weenns , V)

arS <

131

CTL - symbolic model-checking

with Propositioal logics

X1 Xo X3 Y1 Yo V3

transition(Xy, X,, Xz, Y1, Yo, Y3) =

(y A—XoAXATY A—V-AVS)
AV B

V (—lxl/\—lxz/\xg/\—lyl/\yz/\ —Vs)
V (—XTAKA T HgAY AT AYS)

132

CTL - symbolic model-checking with

Propositioal logics

Path relation also as a logic funciton
with 2n parameters

reach(x,, X,, s Xy Vs Vo eeeee , V)

133

CTL - symbolic model-checking with
Propositioal logics

X1 Xo Xz V1 Yo V3

reach(Xy, X5, X3, Y1, Yo, Y3) =
(X A—XoAX AT A—Y HAY)
(Xl/\—|X2/\X3/\—|y1/\y2/\—|y3)
(—|X1/\—|X2/\X3/\—|y1/\y2/\ = y3)
(_'Xl/\XZA — XgAY AYAY)
(—|X1/\—|X2/\X3/\—|yl/\—ly2/\y3)

[R
SASTAY AR RATAN VEVAN DVANn YS)

134

< < K <K KL

Symbolic safety analysis

= [/ : initial condition with parameters

X, X5y e , X,
= n : safe condition with parameters

Vs Vor weenns Vi
m If IA—nA reach(x,, Xx,, s Xy Vs Vo ceeee , V)

IS not false,
o a risk state is reachable.
a the system is not safe.

135

‘ Symbolic safety analysis (backward)

Encode the states with variables x,,x4,...,X..
= the state set as a proposition formula: s(xy,X1,...,X)
the risk state set as r (xy,X4,...,X;) e Al
= the initial state set as i(xy,X4,..-,X;) umprimed
e TN 2N Vvariable in b,
the transition set as t(xy,X4,..., X, X 9:X 1, ,X) ———
by = (Xg,Xq,---5X,) AS(Xg,X1q,---,X,); K=1;
repeat
b, = by 1vIAX ,IX 1. 3IX (1K X5+ X, X 05X 154 X)ADL 4 T);

K=Kk +1; . !
| a least fixpoint procedure
Untll bk = bk-1;

if (b, AI(Xp,Xy4,-..,X,)) = false, return ‘safe’; else return ‘risky’;

136

Kripke structure
- symbolic safety analysis

\

states: s(X,y,z) = (—=XA—Y A=Z)V(=XA=Y AZ)V(—XAY A—Z)
V (4XAY AZ)V(XA—Y A—Z)V(XA—Y AZ)
= (=X)Vv (XA=y)

initial state: i(X,y,z)=—=xA=y A=z

risk state: r(x,y,z)= xA—y A=z 137

Kripke structure
- symbolic safety analysis

\

transitions: T(x,y,z,x,y’,z')=
(—XA=YAZA=X A=Y AZ)V (—XARYAZA—X A=Y A—=Z))
V(aXA=YAZA=X AY A—Z)WV (= XAYA—ZAX A—Y A—Z)

V(SXAYA=ZAX A=Y AZ W(SXAYAZAX A=Y A—=Z)
138

Symbolic safety analysis (backward)

by = r(X,Y,Z) = XA—Y A—Z

b, = b, v IXIY'IZ(t(x,y,2,X,y’,Z’) AbyT)
= (XA—Y A=Z)v XY IZ'(K(X,Y,Z2,X,Y,Z) A X A=Y A—Z)
= (XA—Y A=Z)Vv XY TZ (((AXAYA=Z)V(=XAYAZ))AX A=Y A—Z)
= (XATY A=Z)V(—XAYA=Z)V(=XAYAZ)

b, = b, v IX3IY'IZ(t(x,y,2,X.,y’,Z’) A b, T)

= (—XAYAZ)V(XASYASZ)V(—XAYA—Z)V(—XAYAZ) fixpoint
b, = b, v IXIY'IZ(t(x,y,2,X,y’,Z’) A b,T)
= (=XATYA=Z)V (AXAYAZ)V(XA=YA=Z)V(—XAYA=Z)V(
b, = by v IXIY'IZ(t(X,y,2,X,Y’,Z’) A by T)
= (- XA=YA=Z)V (AXAYAZ)V(XASYA=Z)V(=XAYA=Z)V(—XAYAZ)
non-empty intersection

with the initial condition
- risk detected.

b, AI(XY,Z) = (=XA=YyA=Z)

‘ Symbolic satety analysis (backward)

One assumption for the correctness!

= Two states cannot be with the same
proposition labeling.

= Otherwise, the collapsing of the states may

cause problem. may need a few propositions
\ for the names of the states.

140

‘ Symbolic satety analysis (forward)

Encode the states with variables x,,x4,...,X..
= the state set as a proposition formula: s(xy,X1,...,X)
= the risk state set as r (xy,X,...,X) e Al
= the initial state set as i(xy,X4,..-,X;) primed
= the transition set as t(Xg,X1,...,X,X'g,X 1,+..,X'p,) variable to
fo = 1(XgsX1q,---:X,) AS(XgsXq,---,X0); K= 1;
repeat

fo = f vV(@XIXq. .. 3X (H(Xg, X1, e 01X, X 0, X 1 e, X AT)Y

k=k +1;

until f, =f,_;

if (f, Ar(Xg,X4,...,X,)) = false, return ‘safe’; else return ‘risky’;

umprimed.

141

‘ Symbolic satety analysis (forward)

fo = 1(X,Y,Z2) = = XAy A—Z
f, =, v (Ax3y3Iz(t(x,y,z,X,y,2") Af))V
= (—XA—=Y A=)V (IxTyIzZ(H(X,Y,2,X,Y,Z") A = XA—YA—Z)N
= (—=XA—Y A=Z)V(AXTYIZ(—X A=Y AZ A —XA—YA—Z)) 4
= (—XA—Y A—Z)V(=X A=Y AZ N
= (=XATY A—Z)V(=XATYAZ) = =XA—Y
f,=f v @x3ydz(t(x,y,z,x,y’,2)) A F N = (=XA=Y)V(—=XAY
fo =1, v (@Ax3y3Iz(t(x,y,z,X,Y’,Z)) A TN = (Y (—XAYA—Z
f, = f, v (3x3y3z((X,Y,2,X,Y,2") A F) = (=y)V(=XAyA—zZ

Z)

f4 VAN r(x,y,z) = ((—ly)‘v’(—|X/‘\y/‘\—|Z)) /‘\(X/‘\—|y/‘\—|Z) = (X/‘\—|y/‘\—|Z)

142

The value

‘Bounded model-checking

of x, at

: : state k.
Encode the states with variables Xg ., X4 ,...,X %

= the state set as a proposition formula: s(Xg ., X1 ;- --,X, k)
the risk state set as r(xq i, X4 \,---,X; k)

= the initial state set as i(Xg ¢,X4 g,---,Xn o)
the transition set as t(Xg x_1,X1 k.15- - - Xn k1. X040 X1 ko -+ =X k)

fo = 1(Xg 0:X1 0s---1Xn 0) AS(Xg.0:X1 0s---2Xn o) K= 1;

repeat
fie = t(X0 ke15X1 ket -1 X0 k19X0 kX ko - = =1 X k) A1
K=Kk +1;

: When to stop ?
until fk/\r(xo,k’XLk’ e ,Xn,k) * false 1. diameter of the state graph
2. explosion up to tens of steps.

143

Bounded model-checking

fo = 1(X,Y,2) = = XgA—Yy A—Z,
fi = t(X0,Y0,Z0:X1,Y1,Z1) Afg = = XgA—YgA—ZpA—X 4 A—Y 1 AZ,
fy = t(X4,¥1,21,X2,¥2,Z5) A
= —XgAYgAZAXYATYIAZIA((FXoATY S ATZ,)V (—XpAY o A—Z,)
f3 = t(X0,Y0,20,X3,¥3,23) A T,
- —|X0/\—|y0/\—|ZO/\—|X1 /\—|y1 /\Z1
A (FXoAYPAZHA—XgATYAZS)
V(—XoAYoA—ZHA((X3AY3A—Z5)V (X3A—Y3AZS)))
)
— —|X0/‘\—|y0/‘\—|ZO/‘\—|X1 /‘\—|y1 /‘\Z1
A((—XoATYPATZoAXZATYSZAZS IV (—XpAY O ATZoAXZATY)

f3 AT(X3,Y3,23) = (X3A=Y3A—Z3)

‘ Symbolic liveness analysis

Encode the states with variables x0,x1,...,xn.

= the state set as a proposition formula: s(xy,X1,...,X)

= the non-liveness state set as b(xy,X4,...,X;) change all

= the initial state set as i(xg,X4,...,X,) umprimed
y o , variable in by,

= the transition set as t(xg,Xy,..-, X, X0, X1, X)L

by = b(Xg,X1,---,X,) AS(Xg:Xq,---,Xp); K= 1;
repeat
b, = b 4ATX X 1. 3IX (1K s X+ o, X, X s X 150, X)AL 4 T);
k=Kk+1;
until b, = b, 4;
if (b, AI(Xp,Xy4,-..,X,)) = false, return ‘live’; else return ‘not live’;

145

Kripke structure
- symbolic liveness analysis

\

states: s(X,y,z) = (=XA=aY A—Z)V(=XAY AZ)V(=XAY A—Z)
V (4XAY AZ)V(XA—Y A—Z)V(XA—Y AZ)
= (=X)v (XA—y)

initial state: i(X,y,z)=—=xA=y A=z

non-liveness state: b(x,y,z)= (—X)v(XA—y AZ) 146

Kripke structure
- symbolic liveness analysis

\

transitions: T(x,y,z,x’,y’,z')=

(= XA=YA=ZA—X A=Y AZ IV (=XA=YAZA—=X A—Y A—Z)
V(aXA=YAZA=X AY A—Z)WV (= XAYA—ZAX A—Y A—Z)
V(SXAYA=ZAX A=Y AZ W(SXAYAZAX A=Y A—=Z)

147

‘ Symbolic liveness analysis

b0 = b(x,y,z) = (=X)v(XA—y AZ)
b1 =b0 A IX'IYy'IZ'(T(X,y,2,X,y’,Z') ADO’)

= ((=x)v(Xr—y AZ))

A IXAY'3AZ'(T(X,y,z,X,Y,Z2') A (=X)V(X' A=Y 'AZ')))
= ((—=X)v(XA—y AZ))A
AX'AY'IZ(((—XA=YA=Z)V(=XAYA=Z)V(—=XA—YAZ))
AN(=X V(X' A—Y'AZ)))

= (= XATYA—Z)V(—XAYA—Z)V(—XA—=YAZ)
b2 = b1 A IX'IY'IZ'(T(X,y,2,X,y’,Z') ADT’)

= (=XA=YA=Z)V(=XAYA—Z)

b3 = b2 A IXIY'IZ(T(X,Y,Z2,X’, s

148

CTL
- symbolic model-checking algorithm

Assume program with rulesr,, r,, ..., r

label(¢) {
case p, return p;

case —O, return —label(p);
case vy, return label(@) v label(yp),
case 10, return Vv._, pred(r,, label(®));

case 1 vy, Uy, , return Ifp(l abel(y), label(w,));
case IL1g, return gfp(label(®));

}

n

149

Symbolic model-checking

- with real-world programs

Consider guarded commands with modes (GCM)
Guard - Actions

Guard is a propositional formula of state variables.

Actions is a command of the following syntax.

C:=ACT|{C}|CC|if(B)Celse C|while (B)C
ACT ::= ;| gofo name, | x =E ;

150

ol O 1 e oINS

Guarded commands with modes (GCM)

w = 0;

X = 0;

y =27z,

while (x <) {
wW=Ww + X*z;
XxX=x+1:

}

if (w>z"z"z) w

program

— %
— £

—
Z°Z!

guarded commands
(pc==1) > w = 0; pc=2;
(pc==2) = x = 0; pc=3;
(PC==3) 2y =2°Z; pc=4;
(pc==4&&x>=y) = pc=38;
(pc==4&&X < Yy) = pc=9;
(pc==5) 2> w=w+Xx*z; pc=6;
(pc==6) = x=x+1; pc=4;
(pc==8) = if (w>z*z"z) w= z"z*z;

151

A state-transition
- represented as a GCM

8 rules in total:

(a1) 2 w = 0; goto a2;

(a2) 2 x = 0; goto a3;

(a3) 2 y = z*z; goto a4,
(a4&&x>=y) - goto a8;
(a4&&x <y) = goto ab;

(ad) 2 w=w+Xx"z; goto ao;
(ab) = x=x+1; goto a4;

(a8) =2 if (w>z"z*z) w= z*z%z; }

152

A state-transition
- represented as a GCM

(a8)—2if(w>z*z*z)w = z*z*z;

153

Transition relation

- from state-transition graphs
Given a setofrulesr,, r,, ..., r, of the form

e (t) 2 Ye0=90; Yk 1=d45 -5 Y k=i

~
N

X0y X1y« « s XX 95X 1+ X)

ke[1,m] T A Yio==doAY ik 1==dAL A Y T =

N /\he[1,n] (X nE{Yior Yicts -5 Yien=>X p== X’h)

)

154

Transition relation from GCM rules.

Given a set of rules for X={x,y,z}

o (X<y&& y>2) 2 y=x+y; x=3;

r: (z>=2) 2 y=x+1; z=0;

ry: (Xx<2) 2 x=0;

t(Xp,Xqy- s Xy X 05X 155X)

= (XY AY>2 AY==X+HY AX==3 A Z2'==2Z)
Vv(z>=2 A y'==X+1 A Z2==0 A X'==X)

V(X<2 A X'==0 A y'==y A Z2'==2Z)

155

Transition relation

- from state-transition graphs

In gneral, transition relation is expensive to
construct.

Can we do the following state-space
construction

X 3K 43X (1K, X gy X X 9 X e X)ADL 4 T))
directly with the GCM rules ?

Yes, on-the-fly state space construction.

156

‘ On-the-tly precondition calculation

with GCM rules.

Given asetofrulesr,, r,, ..., r, of the form
e () 2 Yeo=d0s Y 1=d45 -5 Vienk=dnis

X (3K 43X (1K gy X g5 X X 9y X 150X)A(DT))
= Vke[1,m] (Tk N\

Y0V 1---FYink (b VAN he[0,nkK] yk,h==dh)

1OWEeVE VI rules are more compilex than tna

157

‘ On-the-tly precondition calculation

with GCM rules.

Given a set of rules for X={x,y,z}
ri: (X<y&& y>2) 2 y=z; x=3;
. (z>=2) 2 y=x+1; z=7;
ry: (x<2) = z=0;
X 3K 43X (UK gy X g5 X X gy X e, X)JAX<AAZ>5)T)
= (XY A Y>2 A JyIAX(X<4AZ>5 A y==Z A X==3))
V(z>=2 A y3dz(X<4Az>5 A y==xX+1 A z==T7))
V(X<2 A Jz(x<4rz>5 A z==0))

(X<Y A Yy>2 A Z2>D) v(Z2>=2 A X<4)v(X<2 A dz(false))
(X<Y A Yy>2 A Z2>D) v(Zz>=2 A X<4)

158

‘ On-the-tly precondition calculation

with GCM rules.

Given asetofrulesr,, r,, ..., r,, of the form
. (t) 2 Si;

X (3K 43X (1K gy X g5 X X 9y X 10, X)ADT))
=V icimi (rk A pre(s, b))

precondition A general propositional formula

procedure

What is pre(s

A GCM statement

159

‘ On-the-tly precondition calculation

with GCM rules.

Given asetofrulesr,, r,, ..., r, of the form
re: (tk) 2 Si
: new expression obtained from b by
What is pre(s) b) ? replacing every occurrence of x with E.

= pre(x=E;, b)= Db[X/E]

Ex 1. the precondition to x=x+z;
[X/X+Z] = Xx+z==y+2 A X+2<4,z>5

Ex 2. the precondition to x=5;
[X/X+2z] = 5==y+2 A 5<4ArZz>D

Ex 3. the precondition to x=2*x+1;

[X/X+Z] = 2"X+1==y+2 A 2*X+1<41rZ>5

‘ On-the-tly precondition calculation

with GCM rules.

Given asetofrulesr,, r,, ..., r,, of the form
. (t) 2 Si;

: new expression obtained from b by
What is pre(s) b) ? replacing every occurrence of x with E.

= pre(x = E;, b) = b[x/E] Ex. the precondition to x=x+z;

[X/x+Z]
= pre(s4S,, b) = pre(s,4, pre(s,, b)) EX+Z==y+2/\X+Z<4/\ZX>)f§ :
= pre(if (B) selse s,) = (Bapre(s,, b))v(—Bapre(s,,b))

= pre(while (B) s, b)=....

161

On-the-tly precondition calculation

with GCM rules.

Given asetofrulesr,, r,, ..., r,, of the form
. (t.) 2 Si;

What is pre(s,b) ?
pre(while (B) s, b) = formula L,vL, for

L,: those states that reach —BADb with finite steps of s

through states in B; and

L,: those states that never leave B with steps of s.

162

‘ On-the-tly precondition calculation

with GCM rules.

L,: those states that reach —BAb with finite steps of

s through states in B
w, = —=BAb; k= 1;
repeat
Wy = Wy qv(Bapre(s, wy4));
k=Kk +1;
until w, = w, ,;
return w,;

163

Precondition to b Wy = —BAb k= 1;

repeat

through while (B) s; = k=i ™=

until w, = w,_4;

Example: b=Xx==2 Ay == return w,;
while (x <vy) X = x+1;

L1 computation.

W, = X>=yAX==2Ay==3 =false ; k = 1;
W, = falsev(x<yapre(x=x+1, false));

= falsev(x<ynafalse);

= false;

164

‘ On-the-tly precondition calculation

with GCM rules.

Given asetofrulesr,, r,, ..., r,, of the form
pre(while (B) s, b)
L,: those states that never leave B with steps of s.
w,=B; k=1;
repeat
Wi = W, 4APre(S, Wi q);
K=k +1,;
until w, = w,_,;
return w,;

165

Precondition to b Wy = B; k= 1;

repeat

through while (B) s; = ¢S ™™
Example: ot "
while (x<y && x>0) x = x+1;
L2 computation.
Wy = X<yAax>0 ; k = 1;
W, = X<yAx>0 A pre(x=x+1, Xx<yax>0)
= X<YAX>0 A X+T1<yAX+1>0 = x>0 A X+1<y
Wy = X+1<yax>0 A pre(x=x+1, x+1<yAx>0)
= X+1<yAX>0 A X+2<yAX+1>0 = x>0 A X+2<y
non-terminating for algorithms and protocols!

166

Precondition to b Wy = B; k= 1;

repeat

through while (B) s; = i ™™™

until w, = w,_4;

Example: return w,;
while (x>y && x>0) x = x+1;
L2 computation.
Wy = X>yAx>0 ; kK = 1;
W, = Xx>yAx>0 A pre(x=x+1, x>yAx>0)

= X>YAX>0 A X+H1>yAx+1>0 = x>y A x>0
terminating for algorithms and protocols!

167

Precondition to b Wy = —BAb k= 1;

repeat

through while (B) s; = k=i ™=

until w, = w,_4;

Example: b = X==2/\y==3 return w,;

while (x>y && x>0) x = x+1;

L1 computation.

Wy = (X<EYVX<=0)AX==2AY==3 = X==2Ay==3;

W, = (X==2AY==3)v(X>yAXx>0Apre(x=x+1,x==2Ay==3));
= (X==2AY==3)v(X>YAX>0AX==1Ay==3);
= (Xx==2Ay==3) v false
= X==2Ay==3

168

‘ Symbolic weakest precondition

Assume program with rules
m X=3AY=0 =2 X:=2; z:=/,
X=3Ay=0
X:=2; Z:=1;

= X, Y, Z are discrete variables with range
declarations

What is the weakest precondition of n for those

___states before the transitions ?

169

‘ Symbolic weakest precondition

Assume program with rules
m I X=3AY=0 2 X:=2; z:=7,
X=3Ay=0
X:=2; Z:=1;

What is the weakest precondition of n for those
States before the transitions ?

pre(r, n) =2 X=3AY=0AIX3z(X=2 A Z=7AN)

170

‘ Symbolic satety analysis

- with Kripke structures as programs
Assume program with rules ry, ry, ..., I

-y I

What charcterizes all states that can reach —n?

Ifp (@, @) /* for IeUy™/ {
Z = false; Z:= y;
while (Z #Z’) {

7' =7 o
£=evionvimpredtn 2)): % predicate
P e PR e

return (Z); nitial

——

e 171

‘ Symbolic liveness analysis

- with Kripke structures as programs

Assume program with rules r, r,, ..., I,

What is the charcterization of all states that may not
reach n?

gfp (¢) /* for I */{
Z = false; Z:= @;

while (Z = Z’) { |
L =7 .t ¢ .
Z:= @ AV, pred(r, Z); i L s Qega Ive
} o i liveness
return (Z); _ G '
1 (Z) Initial .,.E[edlca:c.e._. .

condition ..

‘ Bisimulation Framework

model Answer
Yes if the model
.—» IS equivalent to
the specification
No if not.

cons t|on SpeC| tion

173

Bisimulation-checking

K=(S, Sy R, AP, L)

K'=(S, S;, R, AP, L)

Note K and K’ use the same set of atomic
propositions AP.

BeSxS’ is a bisimulation relation between K and
K" iff for every B(s, s'):

o L(s) = L'(s)

(BSIM 1)

0 IfR(s, s,), then there exists s,’ such that R’(s’, s,’) and

B(s4, s¢). (B
a IfR(s’, s,), t
B(s,, ;). (B

SIM 2)
nen there exists s, such that R(s, s,) and

SIM 3)

174

‘ Bistmulations

175

‘ Bistmulations

176

‘ Bistmulations

177

‘ Bistmulations

178

‘ Examples

179

‘ Examples

Unwinding preserves bisimulation

180

‘ Examples

BT
nn®
"SEmEmmEmmmEnnm asmuee®

182

Bistmulations

K=(S, Sy R, AP, L)
K'=(S’, S,,R’, AP, L")
K and K’ are bisimilar (bisimulation equivalent) iff

there exists a bisimulation relation Bc S x S’
between K and K’ such that:

n For each s, in S, there exists s’ in S;” such that
B(so , So)-

no Foreach s, in Sy’ there exists s, in S, such that
B(so , So)-

188

The Preservation Property.

K=(S, Sy, R, AP, L)
K'=(S’, Sy, R’, AP, L)
B < SxS’, a bisimulation.
Suppose B(s, s’).

FACT: For any CTL formula v (over AP),
K,sky iff K’,s’Fy.

If K* is smaller than K this is worth something.

189

‘ Simulation Framework

model Answer
Yes if the model
.—» satisfies the
specification
No if not.

cons t|on SpeC| tion

190

Simulation-checking

K= (S, Sy R, AP, L)

K=(S, S;, R, AP, L)

Note K and K’ use the same set of atomic
propositions AP.

B € S xS’ Isasimulation relation between

K and K' iff for every B(s, s'):

o L(s)=L'(s’) (BSIM 1)

o If R(s, s4), then there exists s, such that R(s’,
s,) and B(s,, s;). (BISIM 2)

191

Simulations

K= (S, Sy R, AP, L)
K'=(S’, Sy°, R, AP, L’)
K is simulated by (implements or refines) K’ iff there

exists a simulation relation B € SxS’ between K and
K’ such that for each s, in S, there exists s;’ in S’

such that B(s; , sy’).

192

Bisimulation Quotients

K=(S, Sy R, AP, L)

There iIs a maximal simulation Bc S x S.
o Let R be this bisimulation.

a[s]={s’ | sRs’}.

R can be computed “easily”.

K’ = K/ R is the bisimulation quotient of K.

193

Bisimulation Quotient

K=(S, Sy R, AP, L)

[s]={s’ | sRs’}.

K'=K/R=(S", S, R’, AP,L’).

0 S ={s] | s2 S}

0 S’ ={[se] | o2 Sp}

o R*={([s], [s’]) | R(sy, 817) , s1€[s], s¢’€[s’]}
a L’([s]) = L(s).

194

‘ Examples

‘ Examples

196

‘ Examples

Facts About a (B1)Simulation

The empty set is always a (bi)simulation
If R, R’ are (bi)simulations, soisRUR’

Hence, there always exists a maximal (bi)simulation:

o Checking if DB,=DB,: compute the maximal bisimulation R,
then test (root(DB,),root(DB,)) in R

198

Kripke structure
- simulation-checking

[* Given model A = (S, Sy, R, L), spec. A=(S’, S'y, R, L") */
Simulation-checking() /* using greatest fixpoint algorithm */ {
Let B={(s,s) | s€S, s'eS’, L(s)=L'(s")} ;
repeat {
B=B-{(s,s)]|(s,s")eB, 3(s,t)eRV(s',t')eR’((t,t')¢B)};
} until no more changes to B.
If there is an syeS, with Vs',eS'4((Sq,S'p) ¢ B),
return ‘no simulation,’
else return ‘simulation exists.’
h
The procedure terminates since B is finite in the Kripke
structure.

199

Kripke structure
- bisimulation-checking

[* Given model A = (S, Sy, R, L), spec. A=(S’, S'y, R, L") */
Bisimulation-checking() /* using greatest fixpoint algorithm */ {
Let B={(s,s) | s€S, s'eS’, L(s)=L'(s")} ;
repeat {
B=B-{(s,s)]|(s,s")eB, 3(s,t)eRV(s',t')eR’((t,t')¢B)};
B=B-{(s,s)]|(s,s)eB, 3(s’,t'))eR'V(s,t)eR((t,t')¢B)};
} until no more changes to B.
If there is an s;eS, with Vs',eS'y((Sy,S'y)¢ B),
return ‘no simulation,’
If there is an s',eS’y with VsyeS,((Sg,S'g)¢ B),
return ‘no simulation,’
else return ‘simulation exists.’

} 200

(B1)Simulation

- complexities
Bisimulation: O((m+n)log(m+n))
Simulation: O(m n)

In contrast, finding a graph homeomorphism
IS NP-complete.

201

Symbolic simulation-checking

Encode the states with variables
O XgXq,-.-,X, (for the model) and
o YooY, --- Y- (fOr the spec.)
Usually there are shared variables
between {X,,Xq,...,X, } and {Yo,Y1, ---, Y}
L(s)=L’(s’) means that the shared variables are of the same values.

the state sets as proposition formulas:
O S(XgXqs---:%) & S(YorYise--:Ym)

the initial state set as
o 1(XgeXqye-5X4) & 1'(Yo,Y15---:Yim)

the transition set as

0 R(Xp,Xq5- X0 X 05X 15+ -0X) & R'(Yo:Y 15+ :YsY 0¥ 15-++:Y 1)

202

‘ Symbolic simulation-checking

B, = /\L(XO,X1 %) =L(yO.y1,...ym) S(X0:X1s--:Xn) AS(Y0,Y 15+ +5Ym);
for (k =1, B,= false; B, # B,_; k=k+1)
B, =B,y A —=3Xo3X4...3X (
R(Xg,X15-+-:X0y, X 95X 45-+,X 1)
A= 3Yodyy. 3y, (
R'(Yo:Y1r-Yms YooY 1---¥'m) A By T)

)) change all
if (1%, X1, Xn)Z3Yo3Y4- - TYm (By)), umprimed
return ‘no simulation’; variable in By,

to primed.

else return ‘a simulation exists’;

203

‘ Symbolic simulation-checking
- an example

spec
{x,y,z}

= R(X,y, ,y)_ R(xyzxyz)_

204

‘ Symbolic simulation-checking
- an example

spec
{x,y,z}
model

.y} 00 000
01 010 011
10 11 100 110

. R(X,Y,X,Y') = (—XA=YA=X AY) V(—XAYAX AY')
V (A XAYAX'AY') V(XASYA=X ATY) VIXAYA—=X A—Y)
= R(X,y,z,X,y,Z) = (< XAYA—ZA=X AY')
V (—XAY A—ZAX A=Y A—=Z') V(=XAYAZAX AY' A—Z)

V(XA=YA—=Z A=X ATY A=Z') VIXAY AZA—=X A=Y A—=Z))

205

Symbolic simulation-checking
- an example

By = S(X,Y)AS'(X,Y,Z) = =ZV(—=XAYAZ)
B, = (—zv(—XAyAZ)) A = IXTY (
((=XA=YA—=XAY') V(=XAYAX A—Y)
V (A XAYAX'AY') V(XA=YA=X AY) VIXAYA—=X A—Y)
)
A — AXAY'3Z (
((—XA=YA=ZA—X AY)
V (—XAY AmZAX A=Y A=Z) V(—XAYAZAX AY A—Z)
V (XA=YA=Z A=X ATY A—Z) VIXAY A—ZA—X A—Y A—Z)
) A (=ZV(=X'AY'AZ')))
= (=2ZV(—=XAYAZ)) A = AXAY (((=XA=Y AZ AXAY) V (—XAYAX AYY)
V(XA—Y AZ A=X ATY) VIXAY AZ A=X AY)))

= (FZV(=XAYAZ)) A A(FXAZY AZIV(XAYIV(XASY AZ) VIXAY AZ))

Symbolic simulation-checking
- an example

B, = (—zVv(—XAYAZ)) A —((—XA—Y AZ)V(—=XAY)V(XA—Y AZ) V(XAY AZ))
ZV(—XAYAZ)) A =((=XATY AZ)V(=XAY)IV(XATY AZ) V(XAY AZ))

—ZV(—XAYAZ)) A =(ZV(—XAY A—2Z))
—ZV(—XAYAZ)) A —=(Z) A =(=XAY A—Z)

(
()
()
(mzV(=XAYAZ)) A =(2) A =(=XAY A—2Z)
(=XA—=YA=Z)V (XA YASZ)V(XAY A —2Z)

207

Symbolic simulation-checking
- an example

B, = ((—-XA=YA—Z)V (XA— YARZ)V(XAY A —=Z)) A = IXTY (
((=XA=YA=XAY') V(=XAYAX ASY)
V (A XAYAX'AY') V(XASYA=X ATY) VIXAYA=X A—Y)
)
A — IX'IY'3Z (
((—XA=YA=ZA—X AY)
V (—XAY AmZAX ASY AZ) V(—XAYAZAX AY A—Z)
V (XA=YA—=Z A=X ATY A—Z') V(XAY AmZA—X A—Y A—Z)
) A (X AY AZ)V (XKA= Y A=ZIWVXAY A =Z)))
= ((=XA=YA=Z)V (XA= YASZ)V(XAY A —2Z)) A = XY (
((=XA=YA=XAY') VIXASYAZA=X ATY) VIXAYAZA—=X AY')))
= ((=XA=YA=Z)V(XA— YA=Z)V(XAY A=Z))A=((—XA=Y)V(XASYAZ)V(XAYAZ)))

208

Symbolic simulation-checking
- an example

B,
= ((=XA=YA=Z)V(XA—= YA=Z)V(XAY A=Z))A=((—XA=Y)V(XASYAZ)V(XAYAZ)))
= (XA= YA=Z)V(XAY A—Z)

Here, the initial
statepair has been
elimianted.

209

