Temporal Logics & Model Checking

Farn Wang
Dept. of Electrical Engineering
National Taiwan University

Specifications, descriptions, & verification

- specification:
 - □ The user's requirement
- description (implementation):
 - The user's description of the systems
 - No strict line between description and specification.
- verification:
 - Does the description satisfy the specification ?

2

Formal specification & automated verification

- formal specification:
 - specification with rigorous mathematical notations
- automated verification:
 - verification with support from computer tools.

Why formal specifications?

- to make the engineers/users understand the system to design through rigorous mathematical notations.
- to avoid ambiguity/confusion/misunderstanding in communication/discussion/reading.
- to specify the system precisely.
- to generate mathematical models for automated analysis.
- But according to Goedel's incompleteness theorem, it is impossible to come up with a complete specification.

Why automated verification?

- to somehow be able to verify complexer & larger systems
- to liberate human from the labor-intensive verification tasks
 - to set free the creativity of human
- to avoid the huge cost of fixing early bugs in late cycles.
- to compete with the core verification technology of the future.

Specification & Verification?

- Specification → Complete & sound.
- Verfication
 - → Reducing bugs in a system.
 - → Making sure there are very few bugs.

Very difficult!

Competitiveness of high-tech industry!

A way to survive for the students!

A way to survive for Taiwan!

Bugs in complex software

- They take effects only with special event sequences.
 - the number of event sequences is factorial and super astronomical!
- It is impossible to check all traces with test/simulation.

9

Budget appropriation The rest VERIFICATION 40%-60% Design & Coding 10%-20% Coding 99% Training in Taiwan College To the rest VERIFICATION 40%-60% The rest VERIFICATION 40%-60% Coding 40%-60% Training in Taiwan College

Thurthnologies in verification

- Testing (real wall for real cars)
 - Expensive
 - Low coverage
 - Late in development cycles

Simulation(virtual wall for virtual co

- Economic
- Low coverage
- Don't know what you haven't seen.

- Formal Verification (virtual car checked)
 - Expensive
 - Functional completeness
 - 100% coverage
- Automated!
 - With algorithms and proofs.

Sum of the 3 angles = 180?

- Testing (check all Δs you see)
- Expensive
- Low coverage
- Late in development cycles
- Simulation (check all Δs you draw)
- Economic
- Low coverage
- Don't know what you haven't seen.
- Formal Verification(we prove it.)
- Expensive
- Functional completeness
 - 100% coverage
- Automated!
 - With algorithms and proofs.

Model-checking

- a general framework for verification of sequential systems

13

Models & Specifications

- formalism

Whenever a baby cries, it is hungry.

- Logics: □(crying → hungry)
- Graphs:

14

Models & Specifications

- fairness assumptions

Some properties are almost impossible to verify without assumptions.

Example: \Box (start \rightarrow \Diamond finish)

To verify that a program halts, we assume

- CPU does not burn out.
- OS gives the program a fair share of CPU time.
- All the drivers do not stuck.

-

Model-checking

- frameworks in our lecture

Spec Model							Logics			
			traces		Trees		Linear		Branching	
IVIOUEI		F=∅	F≠Ø	F=Ø	F≠Ø	F=Ø	F≠Ø	F=Ø	F≠Ø	
o a constant of the constant o	traces	F=Ø	✓	✓			✓	✓		
		F≠Ø	✓	✓			✓	✓		
	Trees	F=∅			\square	✓			\square	✓
		F≠Ø			✓	✓			✓	✓
Logics	Linear	F=∅					\square	☑		
		F≠Ø						\square		
	Branc hing	F=∅							✓	✓
		F≠Ø							✓	✓
✓	☑: discussed in the lecture 16									

History of Temporal Logic

- Designed by philosophers to study the way that time is used in natural language arguments
- Reviewed by Prior [PR57, PR67]
- Brought to Computer Science by Pnueli [PN77]
- Has proved to be useful for specification of concurrent systems

17

Framework

- Temporal Logic is a class of Modal Logic
- Allows qualitatively describing and reasoning about changes of the truth values over time
- Usually implicit time representation
- Provides variety of temporal operators (sometimes, always)
- Different views of time (branching vs. linear, discrete vs. continuous, past vs. future, etc.)

18

Outline

- Linear
 - LPTL (Linear time Propositional Temporal Logics)
- Branching
 - □ CTL (Computation Tree Logics)
 - □ CTL* (the full branching temporal logics)

Kripke structure

$$A = (S, S_0, R, L)$$

- S
- a set of all states of the system
- $S_0\subseteq S$
 - a set of initial states
- \blacksquare R \subset S \times S
 - a transition relation between states
- L: $S \mapsto 2^P$
 - a function that associates each state with set of propositions true in that state

Kripke Model

- Set of states S
- Set of initial states S₀
 - \square {q₁}
- Set of atomic propositions AP
 - □ {a,b}

21

Example of Kripke Structure

Suppose there is a program

initially x=1 and y=1; while true do x:=(x+y) mod 2; endwhile

where x and y range over $D=\{0,1\}$

22

Example of Kripke Structure

- S=DxD
- $S_0 = \{(1,1)\}$
- R={((1,1),(0,1)),((0,1),(1,1)),((1,0),(1,0)),((0,0),(0,0))}
- L((1,1))={x=1,y=1},L((0,1))={x=0,y=1}, L((1,0))={x=1,y=0},L((0,0))={x=0,y=0}

BNF, syntax definitions Note!

Be sure how to read BNF!

- used for define syntax of context-free language
- important for the definition of
 - automata predicates and
 - temporal logics
- Used throughout the lectures!
- In exam: violate the syntax rules → no credit.

A ::= c | x | (M) | $A_1+A_2 | A_1-A_2$ M ::= c | x | (A) | $M_1*M_2 | M_1/M_2$ c is an integer x is a variable name.

Temporal Logics

- Linear
 - LPTL (Linear time Propositional Temporal Logics)
 - LTL, PTL, PLTL
- Branching
 - □ CTL (Computation Tree Logics)
 - □ CTL* (the full branching temporal logics)

Amir Pnueli 1941

- Professor, Weizmann Institute
- Professor, NYU
- Turing Award, 1996

Presentation of a gift at ATVA /FORTE 2005, Taipei

30

29

LPTL (PTL, LTL) Linear-Time Propositional Temporal Logic

Conventional notation:

propositions : *p*, *q*, *r*, ...

sets : A, B, C, D, ...

states : s

state sequences : S

formulas : φ,ψ

Set of natural number : N = {0, 1, 2, 3, ...}

Set of real number : R

LPTL

Given P: a set of propositions,

a Linear-time structure : state sequence

 $S = s_0 s_1 s_2 s_3 s_4 ... s_k$

 s_k is a function of P where P {true, false}

or $s_k \in 2^p$

example: P={a,b} {a}{a,b}{a}{a}{b}...

Syntax definitions Note!

Be sure how to read BNF!

- used for define syntax of context-free language
- important for the definition of
 - automata predicates and

Symbol

in CMU

- temporal logics
- Used throughout the lectures!
- In exam: violate the syntax rules → no credit.

33

35

34

LPTL

Exam.

- syntax

Ор	Хр	<i>p is</i> true on next state
p∪q	p∪q	From now on, <i>p</i> is always true until <i>q</i> is true
♦ p	F <i>p</i>	From now on, there will be a state where <i>p</i> is eventually (sometimes) true
$\Box p$	Gp	From now on, <i>p</i> is always true

LPTL

- syntax

Op Xp p is true on next state

?: don't care

LPTL syntax Two operator for Fairness \$\p^\infty p \infty\$ infinitely many times infinitely often \$\p^\infty p \infty\$ infinitely often \$\p^\infty\$ p will be always true after some time in the future almost everywhere \$\p^\infty\$ \$\p^\infty\$</

LPTL

- semantics

Given a state sequence

$$S = s_0 s_1 s_2 s_3 s_4 ... s_k$$

We define $S \models \psi$ (S satisfies ψ) inductively as :

- S ⊨ true
- $S \models p \Leftrightarrow s_0(p)$ =true, or equivalently $p \in s_0$
- $S \models \neg \psi \Leftrightarrow S \models \psi$ is false
- $S \models \psi_1 \lor \psi_2 \Leftrightarrow S \models \psi_1 \text{ or } S \models \psi_2$
- $S \models \bigcirc \psi \Leftrightarrow S^{(1)} \models \psi$
- $\qquad S \vDash \psi_1 \cup \psi_2 \iff \exists k \geq 0 (S^{(k)} \vDash \psi_2 \land \forall 0 \leq j < k (S^{(j)} \vDash \psi_1))$

41

Branching Temporal Logics

Basic assumption of tree-like structure

- •Every node is a function of $P \rightarrow \{\text{true,false}\}$
- •Every state may have many successors

43

Branching Temporal Logics

Basic assumption of tree-like structure

•Every path is isomorphic as *N*•Correspond to a state sequence

Path : $s_0 \ s_1 \ s_3 \dots$

 $s_0 s_1 s_2 \dots$

 $S_1 S_3 \dots$

 S_4 S_5

Branching Temporal Logic

It can accommodate infinite and dense state successors

- In CTL and CTL*, it can't tell
 - Finite and infinite
 - Is there infinite transitions?
 - Dense and discrete
 - Is there countable (ω) transitions?

Branching Temporal Logic

Get by flattening a finite state machine

CTL(Computation Tree Logic)

Edmund M. Clarke
Professor, CS & ECE
Carnegie Mellon University

E. Allen Emerson Professor, CS The University of Texas at Austin

FIRST

Chin-Laung Lei Professor, EE National Taiwan University

47

CTL(Computation Tree Logic)

- syntax

 $\phi ::= true \mid p \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \exists \bigcirc \phi \mid \forall \bigcirc \phi \\ \mid \exists \phi_1 \mathbb{U} \phi_2 \mid \forall \phi_1 \mathbb{U} \phi_2$

abbreviation:

false → true $\neg ((\neg \varphi_1) \lor (\neg \varphi_2))$ $\varphi_1 \wedge \varphi_2$ $(\neg \phi_1) \lor \phi_2$ $\phi_1 \rightarrow \phi_2$ \equiv ∃true Uo $\Diamond \Diamond \vdash$ $\neg \exists \Diamond \neg \varphi$ $\forall \Box \mathbf{0}$ $\forall \diamondsuit \varphi$ ∀true Uφ \equiv $\neg \forall \Diamond \neg \mathbf{0}$ $\varphi \sqcup \exists$

CTL

- semantics

example symbol in CMU

 $\exists \bigcirc p$ EXp there exists a path where p is true on next state

 $\exists p \ U \ q$ $p \in Uq$ from now on, there is a path where p is always true until q is true

 $\forall \bigcirc p$ AXp for all path where p is true on next state

 $\forall p U \ q$ pAUq from now on, for all path where p is always true until q is true

CTL

- semantic

Assume there are

- a tree stucture **M**,
- one state s in M, and
- a CTL fomula φ

M,*s*⊨*φ* means *s* in *M* satisfy φ

54

CTL

- semantics
- M,s ⊨ true
- M,s \models p \Leftrightarrow p \in s
- M,s $\vDash \neg \phi \Leftrightarrow$ it is false that M,s $\vDash \phi$
- $M,s \models \phi_1 \lor \phi_2 \Leftrightarrow M,s \models \phi_1 \text{ or } M,s \models \phi_2$
- $M,s \models \exists \bigcirc \phi \Leftrightarrow \exists s-path = s_0 s_1 \ldots (M,s_1 \models \phi)$
- $M,s \models \forall \bigcirc \phi \Leftrightarrow \forall s$ -path = $s_0 s_1 \ldots (M,s_1 \models \phi)$
- M,s $\vDash \exists \phi_1 U \phi_2 \Leftrightarrow \exists s\text{-path} = s_0 s_1 \dots, \exists k \ge 0$ $(M,s_k \vDash \phi_2 \land \forall 0 \le j < k(M,s_i \vDash \phi_1))$
- M,s $\vDash \forall \phi_1 U \phi_2 \Leftrightarrow \forall s\text{-path} = s_0 s_1 \dots, \exists k \geq 0$ $(M,s_k \vDash \phi_2 \land \forall 0 \leq j \leq k(M,s_i \vDash \phi_1))$

CTL

- examples (I)

 $P_0:(p_0:=0 \mid p_0:=p_0 \lor p_1 \lor p_2)$ $P_1:(p_1:=0 \mid p_1:=p_0 \lor p_1)$ $P_2:(p_2:=0 \mid p_2:=p_1 \lor p_2)$

If P_0 is true, it is possible that P_2 can be true after the next two cycles. P_0 var: p_0

 $\forall \Box (p_0 \rightarrow \exists \bigcirc \exists \bigcirc p_2)$

CTL

- examples (II)
- 1. If there are dark clouds, it will rain.

 $\forall \Box (dark\text{-clouds} \rightarrow \forall \Diamond rain)$

2. if a buttefly flaps its wings, the New York stock could plunder.

 $\forall \Box$ (buttefly-flap-wings $\rightarrow \exists \Diamond NY$ -stock-plunder)

3. if I win the lottery, I will be happy forever.

$$\forall \Box (win\text{-lottery} \rightarrow \forall \Box happy)$$

4. In an execution state, if an interrupt occurs in the next cycle, the interrupt handler will execute at the 2nd next cycle.

$$\forall \Box (exec \rightarrow \forall \bigcirc (intrpt \rightarrow \forall \bigcirc (intrpt-handler)))$$

58

CTL

- examples (III)

In an execution state, if an interrupt occurs in the next cycle, the interrupt handler will execute at the 2nd next cycle.

$$\forall \Box (exec \rightarrow \forall \bigcirc (intrpt \rightarrow \forall \bigcirc (intrpt-handler)))$$

Some possible mistakes:

 $\forall \Box (exec \rightarrow ((\forall \bigcirc intrpt) \rightarrow \forall \bigcirc intrpt-handler))$

 $\forall \Box (exec \rightarrow ((\forall \bigcirc intrpt) \rightarrow \forall \bigcirc \forall \bigcirc intrpt-handler))$

59

CTL

- examples (IIIa)

Please draw a Kripke structure that tells

 $\forall \bigcirc (intrpt \rightarrow \forall \bigcirc (intrpt-handler))$

from

 $(\forall \bigcirc intrpt) \rightarrow \forall \bigcirc intrpt-handler$

and

 $(\forall \bigcirc \text{ intrpt}) \rightarrow \forall \bigcirc \forall \bigcirc \text{ intrpt-handler}$

CTL

- important classes
- ∀□η : safety properties
- ∃◇η: reachability properties
 - $\ \ \ \ \eta$ is eventually true in some computation from now.
- ∀◊η: inevitabilities
- ∃□η

$$\Box$$
 $\forall \Diamond \eta \equiv \neg \exists \Box \neg \eta$

```
CTL*
```

- syntax
- CTL* fomula (state-fomula)

```
\phi::= true | p | \neg \phi_1 | \phi_1 \lor \phi_2 | \exists \psi | \forall \psi
```

path-fomula

$$\Psi ::= \varphi \mid \neg \psi_1 \mid \psi_1 \lor \psi_2 \mid \bigcirc \psi_1 \mid \psi_1 U \psi_2$$

CTL* is the set of all state-fomulas!

CTL*
- examples (1/4)

In a fair concurrent environment, jobs will eventually finish.

∀(((□◊execute₁) ∧(□◊execute₂)) → ◊finish) or
∀(((◊∞execute₁) ∧(◊∞execute₂)) → ◊finish)

CTL* - Workout according to (1) ∀□♦comet-hit-earth ■ (2) ∀□ ∀ ♦ comet-hit-earth (3) ∀□ ∃ ♦ comet-hit-earth Please draw Kripke structures that tell (1) from (2) and (3) (2) from (1) and (3) (3) from (1) and (2)

CTL*
- examples (3/4)

If you never have a lover, I will marry you.

∀((□you-have-no-lover) → ♦ marry-you)

Why not CTL?

• (∀□ you-have-no-lover) → ∀ ♦ marry-you

• (∀□ you-have-no-lover) → ∃ ♦ marry-you

• (∃□ you-have-no-lover) → ∀ ♦ marry-you

CTL*
- Workout
(1)∀((□you-have-no-lover) → \$\infty\$ marry-you)
(2) (∀□ you-have-no-lover) → \$\infty\$ marry-you
(3) (∀□ you-have-no-lover) → \$\infty\$ marry-you
(4) (∃□ you-have-no-lover) → \$\infty\$ marry-you
Please draw trees that tell
(1) from (2)
(2) from (3)
(3) from (4)

(4) from (1)

CTL*
- examples (4/4)

If I buy lottory tickets infinitely many times, eventually I will win the lottery.

∀((□♦buy-lottery) → ♦win-lottery)

or

∀ ((♦∞ buy-lottery) → ♦ win-lottery)

CTL*

- semantics

suffix path:

$$S = s_0 s_1 s_2 s_3 s_5 \dots$$

$$S^{(0)} = s_0 s_1 s_2 s_3 s_5 \dots S^{(1)} = s_0 s_1 s_2 s_3 s_5 \dots$$

$$S^{(1)} = S_1 S_2 S_3 S_5 \dots$$

$$S^{(2)} = s_2 s_3 s_5 \dots$$

$$S^{(3)} = s_3 s_5 \dots S^{(4)} = s_5 \dots S^{(4)}$$

$$S = s_0 s_1 s_6 s_7 s_8 \dots$$

$$S^{(2)} = s_6 s_7 s_8 \dots$$

$$S = s_0 s_{11} s_{12} s_{13} s_{15} \dots S^{(3)} = s_{13} s_{15} \dots S^{(3)} = s_{13} s_{15} \dots S^{(3)}$$

 s_{1} s_{2} s_{3} s_{7} s_{9} s_{4} s_{5} s_{8} s_{10} s_{10}

CTL*

- semantics

state-fomula

$$\phi$$
::= true | p | $\neg \phi_1$ | $\phi_1 \lor \phi_2$ | $\exists \psi$ | $\forall \psi$

- M,s ⊨ true
- $M,s \models p \Leftrightarrow p \in s$
- M,s $\vDash \neg \phi \Leftrightarrow$ M,s $\vDash \phi$ \rightleftarrows false
- M,s $\models \phi_1 \lor \phi_2 \Leftrightarrow M,s \models \phi_1 \text{ or } M,s \models \phi_2$
- M,s $\models \exists \psi \Leftrightarrow \exists$ s-path = S (S $\models \psi$)
- M,s $\vDash \forall \psi \Leftrightarrow \forall$ s-path = S (S $\vDash \psi$)

1

CTL*

- semantics

path-fomula

$$\Psi ::= \phi \mid \neg \psi_1 \mid \psi_1 \lor \psi_2 \mid \bigcirc \psi \mid \psi_1 U \psi_2$$

- If $S = s_0 s_1 s_2 s_3 s_4 \dots S \neq \varphi \Leftrightarrow M, s_0 \neq \varphi$
- $S \models \neg \psi_1 \Leftrightarrow S \models \psi_1$ 是false
- $S \models \psi_1 \lor \psi_2 \Leftrightarrow S \models \psi_1 \text{ or } S \models \psi_1$
- $S \models O \psi \Leftrightarrow S^{(1)} \models \psi$
- $S \models \psi_1 U \psi_2 \Leftrightarrow \exists k \geq 0 \ (S^{(k)} \models \psi_2 \land \forall 0 \leq j \leq k (S^{(j)} \models \psi_1))$

Expressiveness

Given a language L,

- what model sets L can express ?
- what model sets L cannot ?

model set: a set of behaviors

A formula = a set of models (behaviors)

• for any $\phi \in \mathcal{L}$, $\phi \triangleq \{M \mid M \models \phi\}$

A language = a set of formulas.

Expressiveness: Given a model set F,

F is expressible in L iff $\exists \phi \in L([\phi]=F)$

Expressiveness

Comparison in expressiveness:

Given two languages L_1 and L_2

<u>Definition</u>: L_1 is *more expressive than* $L_2(L_2 < L_1)$

iff $\forall \varphi \in L_2$ ([φ] is expressible in L_1)

<u>Definition</u>: L_1 and L_2 are expressively equivalent $(L_1 \equiv L_2)$ iff $(L_2 < L_1) \land (L_1 < L_2)$

<u>Definition</u>: $L_1 \cdot L_2$ are expressively incomparable iff $\neg ((L_2 < L_1) \lor (L_1 < L_2))$

7

Expressiveness

- branching-time logics

What to compare with?

- finite-state automata on infinite trees.
- 2nd-order logics with monadic prdicate and many successors (SnS)
- 2nd-order logics with monadic and partial-order

Very little known at the moment,

the fine difference in semantics of branching-structures

5

Expressiveness

- CTL*, example (I)

A tree the distinguishes the following two formulas.

■ $\forall ((\Diamond eat) \rightarrow \Diamond full)$

□ Negation: $\exists ((\diamondsuit eat) \land \Box \neg full)$

• $(\forall \diamondsuit eat) \rightarrow (\forall \diamondsuit full)$

Expressiveness

- CTL*, example (II)

A tree that distinguishes the following two formulas.

■ \forall ((\square eat) $\rightarrow \Diamond$ full)

■ $\forall \Box$ (eat $\rightarrow \forall \Diamond$ full)

□ Negation: ∃♦(eat ∧∃♦¬full)

Expressiveness

- CTL*

With the abundant semantics in CTL*, we can compare the subclasses of CTL*.

With restrictions on the modal operations after \exists , \forall , we have many CTL* subclasses.

Example:

 $\mathsf{B}(\neg,\vee,\bigcirc,\boldsymbol{U})$: only $\neg,\vee,\bigcirc,\boldsymbol{U}$ after \exists, \forall

 $B(\neg,\lor,\bigcirc,\diamondsuit^{\infty})$: only $\neg,\lor,\bigcirc,\diamondsuit^{\infty}$ after \exists, \forall

 $B(\bigcirc, \diamondsuit)$: only \bigcirc, \diamondsuit after \exists, \forall

78

Expressiveness

- CTL*

CTL* subclass expressiveness heirarchy

 $CTL^* > B(\neg, \lor, \bigcirc, \diamondsuit, U, \diamondsuit^{\infty})$

 $> B(\bigcirc, \diamondsuit, U, \diamondsuit^{\infty})$

> B(¬,∨,O,♦,*U*)

 $= B(\bigcirc, \diamondsuit, U)$

 $> B(\neg, \lor, \bigcirc, \diamondsuit)$

> B(○,♦)

> B(�)

9

Expressiveness

- CTL*

Some theorems:

- $\blacksquare \mathsf{B}(\neg,\vee,\bigcirc,\diamondsuit,\boldsymbol{U}) \equiv \mathsf{B}(\bigcirc,\diamondsuit,\boldsymbol{U})$
- $\exists \diamondsuit^{\infty} p$ is inexpressible in $B(O, \diamondsuit, U)$.

Expressiveness

- CTL*

Comparing PLTL with CTL*
assumption, all φ∈PLTL are interpreted as ∀φ
Intuition: PLTL is used to specify all runs of a system.

Verification

model (system) formula

specification formula

- LPTL, validity checking $\psi \models \phi$
 - $\ \square$ instead, check the satisfiability of $\psi \land \neg \varphi$
 - \Box construct a tabelau for $\psi \land \neg \phi$
- model-checking M⊨
 - □ LPTL: M: a Büchi automata, φ: an LPTL formula
 - CTL: M: a finite-state automata, φ: a CTL formula
- simulation & bisimulation checking M ⊨ M'

Satisfiability-checking framework

Answer
Yes if the model
is equivalent to
the specification
No if not.

specification in logics \Box , \neg , \lor , \bigcirc , \diamondsuit , U

83

LPTL

- tableau for satisfiability checking

Tableau for φ

- a finite Kripke structure that fully describes the behaviors of $\boldsymbol{\phi}$
- exponential number of states
- An algorithm can explore a fulfilling path in the tableau to answer the satisfiability.
 - **■**nondeterministic
 - ■without construction of the tableau
 - ■PSPACE.

LPTL

- tableau for satisfiability checking

Tableau construction

a preprocessing step: push all negations to the literals.

$$\neg (\psi_1 \lor \psi_2) \equiv (\neg \psi_1) \land (\neg \psi_2)$$

$$\blacksquare \neg \bigcirc \psi \equiv \bigcirc \neg \psi$$

$$\neg \neg \psi \equiv \psi$$

$$\blacksquare \neg \Box \psi \equiv \Diamond \neg \psi$$

LPTL

- tableau for satisfiability checking

Tableau construction

 $CL(\phi)$ (closure) is the smallest set of formulas containing ϕ with the following consistency requirement.

- $\neg p \in CL(\varphi) \text{ iff } p \in CL(\varphi)$
- If $\psi_1 \vee \psi_2$, $\psi_1 \wedge \psi_2 \in CL(\varphi)$, then $\psi_1, \psi_2 \in CL(\varphi)$
- If $\bigcirc \psi \in CL(\varphi)$, then $\psi \in CL(\varphi)$
- If $\psi_1 \mathbf{U} \psi_2 \in CL(\varphi)$, then ψ_1 , ψ_2 , $\bigcirc (\psi_1 \mathbf{U} \psi_2) \in CL(\varphi)$
- If $\square \psi \in CL(\varphi)$, then ψ , $\bigcirc \square \psi \in CL(\varphi)$

86

LPTL

- tableau for satisfiability checking

Tableau (V, E), *node consistency condition*:

A tableau node $v \in V$ is a set $v \subseteq CL(f)$ such that

- $p \in V$ iff $\neg p \notin V$
- If $\psi_1 \vee \psi_2 \in V$, then $\psi_1 \in V$ or $\psi_2 \in V$
- If $\psi_1 \wedge \psi_2 \in V$, then $\psi_1 \in V$ and $\psi_2 \in V$
- if $\square \psi \in V$, then $\psi \in V$ and $\bigcirc \square \psi \in V$
- if $\Diamond \psi \in V$, then $\psi \in V$ or $\Diamond \Diamond \psi \in V$
- if $\psi_1 \cup \psi_2 \in V$, then $\psi_2 \in V$ or $(\psi_1 \in V \text{ and } \bigcirc (\psi_1 \cup \psi_2) \in V)$

7

LPTL

- tableau for satisfiability checking

Tableau (V, E), arc consisitency condition:

Given an arc $(v,v') \in E$, if $\bigcirc \psi \in V$, then $\psi \in V'$

• A node v in (V,E) is initial for φ if $\varphi \in V$.

LPTL

- tableau for satisfiability checking

 $CL(pUq) = \{pUq, \bigcirc pUq, p, \neg p, q, \neg q \}$

Example: (p U q)

tableau (V,E)

V: $\{p, q, pUq, \bigcirc pUq\}$ $\{p, q, \bigcirc pUq\}$ $\{p, q\}$

{p, q, pUq}

 $\{p, \neg q, pUq, \bigcirc pUq\} \quad \{p, \neg q, \bigcirc pUq\} \quad \{p, \neg q\}$

 $\{\neg p, q, pUq, \bigcirc pUq\} \quad \{\neg p, q, pUq\} \quad \{\neg p, q\}$

 $\{\neg p, q, \bigcirc pUq\}$

 $\{\neg p, \neg q, \bigcirc pUq\} \qquad \{\neg p, \neg q\}$

E: ?

there is a cycle reachable from an initial node for o such that the for all until formulas $\psi_1 U \psi_2$ in the first cycle node, there is also a node in the cycle containing wa

LPTL - tableau for satisfiability checking Please use tableau method to show that $pUq \models \Box q$ is false. 1) Convert to negation: (pUq)∧♦¬q 2) CL((pUq)∧♦¬q) $= \{(pUq) \land \lozenge \neg q, pUq, \bigcirc pUq, p, q, \lozenge \neg q, \bigcirc \lozenge \neg q \}$ (pUa)∧⇔¬a (pUq)∧⇔¬q pUq pUq pUq **○pUq**

LPTL

- tableau for satisfiability checking

Please use tableau method to show that $pUq \models \Diamond q$ is true.

- 1) Convert to negation: (pUq)∧□¬q
- 2) CL((pUq)∧□¬q)

 $= \{(pUq) \land \Box \neg q, pUq, \bigcirc pUq, p, q, \Box \neg q, \bigcirc \Box \neg q \}$

Pf: In each path that is a model of (pUq)∧ □¬q, q must always be satisfied. Thus, pUq is never fulfilled in the model.

QED

CTL model-checking framework

CTL

- model-checking

Given a finite Kripke structure M and a CTL formula φ , is M a model of φ ?

- usually, M is a finite-state automata.
- PTIME algorithm.
- When M is generated from a program with variables, its size is easily exponential.

95

CTL

- model-checking algorithm

techniques

- state-space exploration
 - state-spaces represented as finite Kripke structure
 - directed graph
 - nodes: states or possible worlds;
 - arcs: state transitions
- regular behaviors

Usually the state count is astronomical.

Kripke structure

- Least fixpoint in modal logics

Dark-night murder, strategy I:

A suspect will be in the 2nd round iff

- He/she lied to the police in the 1st round; or
- He/she is loyal to someone in the 2nd round

What is the minimal solution to 2nd[]?

 $2nd[i] \equiv Liar[i] \lor \exists j \neq i (2nd[j] \land Loyal-to[i,j])$

Kripke structure

- Least fixpoint in modal logics

In a dark night, there was a cruel murder.

- n suspects, numbered 0 through n-1.
- Liar[i] iff suspect i has lied to the police in the 1st round investigation.
- Loyal-to[i,j] iff suspect i is loyal to suspect j in the same criminal gang.
- 2nd[i] iff suspect i to be in 2nd round investigation.

What is the minimal solution to 2nd[]?

98

Kripke structure

- Greatest fixpoint in modal logics

In a dark night, there was a cruel murder.

- n suspects, numbered 0 through n-1.
- ¬Liar[i] iff the police cannot prove suspect i has lied to the police in the 1st round investigation.
- Loyal-to[i,j] iff suspect i is loyal to j are in the same criminal gang.
- 2nd[i] iff suspect i to be in 2nd round investigation.

What is the maximal solution to -2nd[]?

99

Kripke structure

- Greatest fixpoint in modal logics

Dark-night murder, strategy II

A suspect will not be in the 2nd round iff

- We cannot prove he/she has lied to the police; and
- He/she is loyal to someone not in the 2nd round.

What is the maximal solution to -2nd[]?

 \neg 2nd[i] $\equiv \neg$ Liar[i] $\land \exists j \neq i (\neg 2nd[j] \land Loyal-to[i,j])$

In comparison:

- $\neg 2nd[i] \equiv \neg Liar[i] \land \forall j \neq i (\neg 2nd[j] \land Loyal-to[i,j])$
- \rightarrow 2nd[i] = \rightarrow Liar[i] $\land \forall j \neq i (\rightarrow 2nd[i] \rightarrow Loyal-to[i,j])$
- $\neg 2nd[i] \equiv \neg Liar[i] \land \forall j \neq i(Loyal-to[i,j] \rightarrow \neg 2nd[j])$

Safety analysis

Given M and p (safety predicate), do all states reachable from initial states in M satisfy p?

In model-checking:

Is M a model of $\forall \Box p$?

Or in risk analysis: Is there a state reachable from initial states in M satisfy p?

$$\forall \Box p \equiv \neg \exists \Diamond \neg p \equiv \neg \exists true \ U \neg p$$

Reachability analysis: ∃♦η

Is there a state s reachable from another state s'?

- Encode risk analysis
- Encode the complement of safety analysis
- Most used in real applications

```
Kripke structure
```

- safety analysis

Reachability algorithm in graph theory Given

- a Kripke structure A = (S, S₀, R, L)
- a safety predicate n,

find a path from a state in S_0 to a state in $[\neg \eta]$.

Solutions in graph theory

- Shortest distance algorithms
- spanning tree algorithms

Kripke structure

- safety analysis

structure.

```
/* Given A = (S, S_0, R, L)*/
safety analysis(n) /* using least fixpoint algorithm */ {
   for all s, if \neg n \in L(s), L(s) = L(s) \cup \{\exists \lozenge \neg n\}:
   repeat {
                                                        A notation for the
      for all s, if \exists (s,s')(\exists \diamondsuit \neg \eta \in L(s')),
                                                        possibility of -n
         L(s)=L(s)\cup\{\exists \diamondsuit \neg n\};
   } until no more changes to L(s) for any s.
    if there is an s_0 \in S_0 with \exists \diamondsuit \neg \eta \in L(s_0),
       return 'unsafe,'
       else return 'safe.'
The procedure terminates since S is finite in the Kripke
```


Kripke structure

- liveness analysis : $\forall \diamondsuit \eta$

Given

- a Kripke structure A = (S, S₀, R, L)
- a liveness predicate η,
 can η be true eventually?

Example:

Can the computer be started successfully?
Will the alarm sound in case of fire?

106

Kripke structure

- liveness analysis

Strongly connected component algorithm in graph theory Given

- a Kripke structure A = (S, S₀, R, L)
- a liveness predicate η,

find a cycle such that

- all states in the cycle are ¬n
- there is a $\neg \eta$ path from a state in S_0 to the cycle.

Solutions in graph theory

strongly connected components (SCC)

107

Kripke structure

- liveness analysis

Kripke structure

structure.

- liveness analysis

```
liveness(\eta) /* using greatest fixpoint algorithm */ { for all s, if \neg \eta \in L(s), L(s)=L(s)\cup \{\exists \Box \neg \eta\}; repeat { for all s, if \exists \Box \neg \eta \in L(s) and \forall (s,s')(\exists \Box \neg \eta \not\in L(s)), L(s)=L(s)-\{\exists \Box \neg \eta\}; } until no more changes to L(s) for any s. if there is an s_0 \in S_0 with \exists \Box \neg \eta \in L(s_0), return 'liveness not true,' else return 'liveness true.' } The procedure terminates since S is finite in the Kripke
```

108

CTL model-checking

The NORMAL form needed in CTL model-checking:

1. only modal operators

$$\exists \bigcirc \varphi, \ \exists \ \psi_1 \ \mathbf{U} \psi_2, \ \exists \Box \varphi$$

2. No modal operators

$$\forall \bigcirc \varphi, \ \forall \ \psi_1 \ \mathbf{U} \psi_2, \ \forall \Box \varphi, \ \forall \diamondsuit \varphi, \ \exists \diamondsuit \varphi$$

- 3. No double negation: $\neg \neg \varphi$
- 4. No implication: $\psi_1 \Rightarrow \psi_2$

111

CTL

- model-checking algorithm (1/6)

Given M and φ,

- 1. Convert φ to NORMAL form.
- 2. list the elements in CI (ϕ) according to their sizes

$$\varphi_0 \varphi_1 \varphi_2 \dots \varphi_n$$

for all $0 \le i < j \le n$, φ_j is not a subformula of φ_i See

2. for i=0 to n,

label (φ_i)

next page!

- 3. for all initial states s_0 of M, if $\phi \notin L(s_0)$, return `No!'
- 4. return 'Yes!'

CTL

- model-checking algorithm (2/6)

```
label(\phi) { case p, return; case \neg \phi, for all s, if \phi \notin L(s), L(s) = L(s) \cup \{\neg \phi\} case\phi \lor \psi, for all s, if\phi \in L(s) or\psi \in L(s), L(s) = L(s) \cup \{\phi \lor \psi\} case \exists \bigcirc \phi, for all s, if \exists (s,s') with \phi \in L(s'), L(s) = L(s) \cup \{\exists \bigcirc \phi\} case \exists \psi_1 \ U \psi_2, If\phi \in L(s'); case \exists \Box \phi, gf\phi \in L(s');
```

CTL - model-checking algorithm (3/6) Ifp (ψ_1, ψ_2) /* least fixpoint algorithm */ { for all s, if $\psi_2 \in L(s)$, $L(s)=L(s) \cup \{\exists \psi_1 \bigcup \psi_2 \}$; repeat { for all s, if $\psi_1 \in L(s)$ and $\exists (s,s')(\exists \psi_1 \bigcup \psi_2 \in L(s'))$, $L(s)=L(s)\cup\{\exists\psi_1U\psi_2\};$ } until no more changes to L(s) for any s. The procedure terminates since S is finite in the Kripke structure.

- model-checking algorithm (5/6)

for all s, if $\psi \in L(s)$, $L(s)=L(s)\cup\{\exists \Box \psi\}$;

} until no more changes to L(s) for any s.

The procedure terminates since S is finite in the

 $gfp(\psi)$ /* greatest fixpoint algorithm */ {

 $L(s)=L(s) - \{\exists \Box \psi \};$

Kripke structure.

CTL

repeat {

for all s, if $\exists \Box \psi \in L(s)$ and $\forall (s,s')(\exists \Box \psi \not\in L(s'))$,

CTL

- model-checking problem complexities
- The PLTL model-checking problem is PSPACEcomplete.
 - definition: Is there a run that satisfies the formula?
- The PLTL without O (modal operator "next") model-checking problem is NP-complete.
- The model-checking problem of CTL is PTIMEcomplete.
- The model-checking problem of CTL* is PSPACEcomplete.

CTL

- symbolic model-checking with BDD
- System states are described with binary variables.

$$n \text{ binary variables} \rightarrow 2^n \text{ states}$$

 x_1, x_2, \dots, x_n

we can use a BDD to describe legal states.

a Boolean function with n binary variables state(x_1, x_2, \dots, x_n)

CTL - symbolic model-checking with Propositioal logics Example:

$$X_1$$
 X_2 X_3

$$state(x_1, x_2, x_3) = (x_1 \land \neg x_2 \land x_3)$$

$$\lor (\neg x_1 \land \neg x_2 \land x_3)$$

$$\lor (\neg x_1 \land x_2 \land \neg x_3)$$

130

CTL - symbolic model-checking with Propositioal logics

State transition relation as a logic funciton with <u>2n parameters</u>

transition(
$$x_1, x_2,, x_n, y_1, y_2,, y_n$$
)

131

CTL - symbolic model-checking with Propositioal logics

CTL - symbolic model-checking with Propositioal logics

Path relation also as a logic funciton with <u>2n parameters</u>

reach
$$(x_1, x_2,, x_n, y_1, y_2,, y_n)$$

CTL - symbolic model-checking with Propositioal logics

Symbolic safety analysis

I: initial condition with parameters

$$X, X_2,, X_n$$

• η : safe condition with parameters

$$y_1, y_2, \ldots, y_n$$

- If $I \land \neg \eta \land \operatorname{reach}(x_1, x_2, \dots, x_n, y_1, y_2, \dots, y_n)$ is not false.
 - a risk state is reachable.
 - □ the system is not safe.

.35

Symbolic safety analysis (backward)

Encode the states with variables $x_0, x_1, ..., x_n$.

- the state set as a proposition formula: $s(x_0, x_1, ..., x_n)$
- the risk state set as $r(x_0, x_1, ..., x_n)$
- the initial state set as $i(x_0, x_1, ..., x_n)$
- the transition set as $t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n)$

$$b_0 = r(x_0, x_1, ..., x_n) \land s(x_0, x_1, ..., x_n); k = 1;$$

repeat

$$b_{k} = b_{k-1} \vee \exists x'_{0} \exists x'_{1} ... \exists x'_{n} (t(x_{0}, x_{1}, ..., x_{n}, x'_{0}, x'_{1}, ..., x'_{n}) \wedge (b_{k-1} \uparrow));$$

k = k + 1;

a least fixpoint procedure

until $b_k \equiv b_{k-1}$;

if $(b_k \land i(x_0, x_1, ..., x_n)) \equiv false$, return 'safe'; else return 'risky';

change all umprimed variable in b_{k-1} to primed.

136

states:
$$s(x,y,z) \equiv (\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land y \land \neg z)$$

 $\lor (\neg x \land y \land z) \lor (x \land \neg y \land \neg z) \lor (x \land \neg y \land z)$
 $\equiv (\neg x) \lor (x \land \neg y)$

initial state: i(x,y,z)≡¬x∧¬y ∧¬z risk state: r(x,y,z)≡ x∧¬y ∧¬z

Symbolic safety analysis (backward)

$$b_0 = r(x,y,z) \equiv x \land \neg y \land \neg z$$

$$b_1 = b_0 \lor \exists x' \exists y' \exists z' (t(x,y,z,x',y',z') \land b_0 \uparrow)$$

$$= (x \land \neg y \land \neg z) \lor \exists x' \exists y' \exists z' (t(x,y,z,x',y',z') \land x' \land \neg y' \land \neg z')$$

$$= (x \land \neg y \land \neg z) \lor \exists x' \exists y' \exists z' (((\neg x \land y \land \neg z) \lor (\neg x \land y \land z)) \land x' \land \neg y' \land \neg z')$$

$$= (x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land z) \lor (\neg x \land y \land z')$$

$$= (x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land z)$$

$$b_2 = b_1 \lor \exists x' \exists y' \exists z' (t(x,y,z,x',y',z') \land b_1 \uparrow)$$

$$= (\neg x \land \neg y \land \neg z) \lor (\neg x \land y \land z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land z)$$

$$b_3 = b_2 \lor \exists x' \exists y' \exists z' (t(x,y,z,x',y',z') \land b_2 \uparrow)$$

$$= (\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land z)$$

$$b_4 = b_3 \lor \exists x' \exists y' \exists z' (t(x,y,z,x',y',z') \land b_3 \uparrow)$$

$$= (\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land y \land z)$$

$$b_4 \land i(x,y,z) = (\neg x \land \neg y \land \neg z)$$

$$\text{non-empty intersection with the initial condition}$$

$$\Rightarrow \text{ risk detected.}$$

Symbolic safety analysis (backward)

One assumption for the correctness!

- Two states cannot be with the same proposition labeling.
- Otherwise, the collapsing of the states may cause problem. may need a few propositions

for the names of the states

Symbolic safety analysis (forward)

Encode the states with variables $x_0, x_1, ..., x_n$.

- the state set as a proposition formula: $s(x_0, x_1, ..., x_n)$
- the risk state set as r $(x_0, x_1, ..., x_n)$
- the initial state set as $i(x_0, x_1, ..., x_n)$
- the transition set as $t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n)$

$$f_0 = i(x_0, x_1, ..., x_n) \land s(x_0, x_1, ..., x_n); k = 1;$$
repeat

 $f_k = f_{k-1} \lor (\exists x_0 \exists x_1 ... \exists x_n (t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n) \land f_{k-1})) \downarrow;$ k = k + 1:

until
$$f_k \equiv f_{k-1}$$
;

if $(f_k \land r(x_0, x_1, ..., x_n)) \equiv false$, return 'safe'; else return 'risky';

change all variable to umprimed.

Symbolic safety analysis (forward)

```
f_0 = i(x,y,z) \equiv \neg x \land \neg y \land \neg z
f_1 = f_0 \vee (\exists x \exists y \exists z (t(x,y,z,x',y',z') \land f_0)) \downarrow
         = (\neg x \land \neg y \land \neg z) \lor (\exists x \exists y \exists z (t(x,y,z,x',y',z') \land \neg x \land \neg y \land \neg z)) \downarrow
         = (\neg x \land \neg y \land \neg z) \lor (\exists x \exists y \exists z (\neg x' \land \neg y' \land z' \land \neg x \land \neg y \land \neg z)) \downarrow
         = (\neg x \land \neg v \land \neg z) \lor (\neg x' \land \neg v' \land z') \downarrow
                                                                                                                                           fixpoint
         = (\neg x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z) = \neg x \land \neg y
f_2 = f_1 \lor (\exists x \exists y \exists z (t(x,y,z,x',y',z') \land f_1) \downarrow = (\neg x \land \neg y) \lor (\neg x \land y \land \neg z)
f_3 = f_2 \lor (\exists x \exists y \exists z (t(x,y,z,x',y',z') \land f_2) \downarrow = (\neg y) \lor (\neg x \land y \land \neg z)
f_4 = f_3 \lor (\exists x \exists y \exists z (t(x,y,z,x',y',z') \land f_3) \downarrow = (\neg y) \lor (\neg x \land y \land \neg z')
f_4 \wedge r(x,y,z) = ((\neg y) \vee (\neg x \wedge y \wedge \neg z)) \wedge (x \wedge \neg y \wedge \neg z) = (x \wedge \neg y \wedge \neg z)
```

non-empty intersection

with the risk condition > risk detected.

Bounded model-checking

The value of x_n at state k.

Encode the states with variables $x_{0,k}, x_{1,k}, \dots, x_{n,k}$.

- the state set as a proposition formula: $s(x_{0,k}, x_{1,k},...,x_{n,k})$
- the risk state set as $r(x_{0k}, x_{1k}, ..., x_{nk})$
- the initial state set as $i(x_{0.0}, x_{1.0}, \dots, x_{n.0})$
- the transition set as $t(x_{0.k-1}, x_{1.k-1}, ..., x_{n.k-1}, x_{0,k}, x_{1,k}, ..., x_{n,k})$

$$\begin{split} f_0 &= i(x_{0,0}, x_{1,0}, \dots, x_{n,0}) \land s(x_{0,0}, x_{1,0}, \dots, x_{n,0}); \ k = 1; \\ repeat \\ f_k &= t(x_{0,k-1}, x_{1,k-1}, \dots, x_{n,k-1}, x_{0,k}, x_{1,k}, \dots, x_{n,k}) \land f_{k-1}; \\ k &= k + 1; \\ until \ f_k \land r(x_{0,k}, x_{1,k}, \dots, x_{n,k}) \neq false \end{split}$$

change all umprimed

variable in b⊾

to primed.

Bounded model-checking

```
f_0 = i(x,y,z) \equiv \neg x_0 \land \neg y_0 \land \neg z_0
f_1 = t(x_0, y_0, z_0, x_1, y_1, z_1) \land f_0 = \neg x_0 \land \neg y_0 \land \neg z_0 \land \neg x_1 \land \neg y_1 \land z_1
f_2 = t(x_1, y_1, z_1, x_2, y_2, z_2) \wedge f_1
     = \neg X_0 \land \neg Y_0 \land \neg Z_0 \land \neg X_1 \land \neg Y_1 \land Z_1 \land ((\neg X_2 \land \neg Y_2 \land \neg Z_2) \lor (\neg X_2 \land Y_2 \land \neg Z_2))
f_3 = t(x_2, y_2, Z_2, X_3, y_3, Z_3) \wedge f_2
  = \neg x_0 \land \neg y_0 \land \neg z_0 \land \neg x_1 \land \neg y_1 \land z_1
    \wedge ( (\neg X_2 \land \neg Y_2 \land \neg Z_2 \land \neg X_3 \land \neg Y_2 \land Z_3)
         \vee (\neg X_2 \wedge Y_2 \wedge \neg Z_2 \wedge ((X_3 \wedge \neg Y_3 \wedge \neg Z_3) \vee (X_3 \wedge \neg Y_3 \wedge Z_3)))
  = \neg X_0 \land \neg Y_0 \land \neg Z_0 \land \neg X_1 \land \neg Y_1 \land Z_1
    \wedge ((\neg X_2 \land \neg V_2 \land \neg Z_2 \land \neg X_3 \land \neg V_2 \land Z_3) \lor (\neg X_2 \land V_2 \land \neg Z_2 \land X_2 \land \neg V_3))
f_3 \wedge r(x_3, y_3, z_3) = (x_3 \wedge \neg y_3 \wedge \neg z_3)
                                                                                                                                                       144
```

Symbolic liveness analysis

Encode the states with variables x0,x1,...,xn.

- the state set as a proposition formula: $s(x_0, x_1, ..., x_n)$
- the non-liveness state set as $b(x_0, x_1, ..., x_n)$
- the initial state set as $i(x_0, x_1, ..., x_n)$
- the transition set as $t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n)$

 $b_0 = b(x_0, x_1, ..., x_n) \land s(x_0, x_1, ..., x_n); k = 1;$

repeat

$$b_k = b_{k-1} \wedge \exists x'_0 \exists x'_1 \dots \exists x'_n (t(x_0, x_1, \dots, x_n, x'_0, x'_1, \dots, x'_n) \wedge b_{k-1} \uparrow);$$

$$k = k + 1;$$

$$until \ b_k \equiv b_{k-1};$$
if $(b_k \wedge i(x_0, x_1, \dots, x_n)) \equiv false$, return 'live'; else return 'not live';

Symbolic liveness analysis $b0 = b(x,y,z) \equiv (\neg x) \lor (x \land \neg y \land z)$ $b1 = b0 \land \exists x' \exists y' \exists z' (T(x,y,z,x',y',z') \land b0')$ $= ((\neg x) \lor (x \land \neg y \land z))$ $\wedge \exists x' \exists y' \exists z' (T(x,y,z,x',y',z') \wedge ((\neg x') \vee (x' \wedge \neg y' \wedge z')))$ $= ((\neg x) \lor (x \land \neg y \land z)) \land$ $\exists x' \exists y' \exists z' (((\neg x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land \neg y \land z))$ \wedge ((\neg X') \vee (X' \wedge \neg Y' \wedge Z'))) fixpoint $= (\neg x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land \neg y \land z)$ $b2 = b1 \wedge \exists x' \exists y' \exists z' (T(x,y,z,x',y',z') \wedge b1')$ non-empty $= (\neg x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z)$ intersection with $b3 = b2 \wedge \exists x' \exists y' \exists z' (T(x,y,z,x',y',z') \wedge b2')$ the initial condition → non-liveness $= (\neg x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z)$

detected.

CTL

- symbolic model-checking algorithm

Symbolic model-checking

- with real-world programs

Consider guarded commands with modes (GCM)

Guard → Actions

- Guard is a propositional formula of state variables.
- Actions is a command of the following syntax.

```
C ::= ACT | \{C\} | C C | if (B) C else C | while (B) C ACT ::= ; | goto name; | x = E;
```

15

Guarded commands with modes (GCM)

guarded commands

151

A state-transition

- represented as a GCM

8 rules in total:

```
(a1) → w = 0; goto a2;

(a2) → x = 0; goto a3;

(a3) → y = z*z; goto a4;

(a4&&x>=y) → goto a8;

(a4&&x < y) → goto a5;

(a5) → w=w+x*z; goto a6;

(a6) → x=x+1; goto a4;

(a8) → if (w>z*z*z) w= z*z*z; }
```

A state-transition
- represented as a GCM

(a1) \Rightarrow w = 0;
(a2) \Rightarrow x = 0:

(a3) \Rightarrow y = z*z;
(a4 \land x>=y) \Rightarrow ;
(a4 \land x>=y) \Rightarrow ;
(a4 \land x>=y) \Rightarrow ;
(a8) \Rightarrow if(w>z*z*z)w = z*z*z;
a0

Transition relation

- from state-transition graphs

Given a set of rules $r_1, r_2, ..., r_m$ of the form

$$r_k: (\tau_k) \rightarrow y_{k,0} = d_0; y_{k,1} = d_1; ...; y_{k,nk} = d_{nk};$$

$$\begin{split} t(x_0, & x_1, \dots, x_n, x'_0, x'_1, \dots, x'_n) \\ &\equiv \bigvee\nolimits_{k \in [1, m]} \left(\begin{array}{c} \tau_k \wedge y'_{k, 0} = = d_0 \wedge y'_{k, 1} = = d_1 \wedge \dots \wedge y'_{k, nk} = = d_{nk} \\ & \wedge \bigwedge\nolimits_{h \in [1, n]} \left(x_h \notin \{y_{k, 0}, y_{k, 1}, \dots, y_{k, nk}\} = > x_h = = x'_h \right) \\ & \end{pmatrix} \end{split}$$

154

Transition relation from GCM rules.

Given a set of rules for X={x,y,z} r_1 : $(x < y & y > 2) \rightarrow y = x + y$; x=3; r_2 : $(z > = 2) \rightarrow y = x + 1$; z=0; r_3 : $(x < 2) \rightarrow x = 0$; $t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n)$ $\equiv (x < y \land y > 2 \land y' = = x + y \land x' = = 3 \land z' = = z)$ $\lor (z > = 2 \land y' = = x + 1 \land z' = = 0 \land x' = = x)$ $\lor (x < 2 \land x' = = 0 \land y' = = y \land z' = = z)$

155

Transition relation

- from state-transition graphs

In gneral, transition relation is expensive to construct.

Can we do the following state-space construction

$$\exists x'_0 \exists x'_1 ... \exists x'_n (t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n) \land (b_{k-1} \uparrow))$$

directly with the GCM rules?

Yes, on-the-fly state space construction.

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_1, r_2, ..., r_m$ of the form

$$r_k: (\tau_k) \rightarrow y_{k,0} = d_0; y_{k,1} = d_1; ...; y_{k,nk} = d_{nk};$$

$$\exists x'_0 \exists x'_1 ... \exists x'_n (t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n) \land (b^{\uparrow}))$$

$$\equiv \bigvee_{k \in [1, m]} (\tau_k \land \\ \exists y_{k,0} \exists y_{k,1} ... \exists y_{k,nk} (b \land \bigwedge_{h \in [0,nk]} y_{k,h} == d_h)$$
)

However, GCM rules are more complex than that.

On-the-fly precondition calculation with GCM rules.

```
Given a set of rules for X=\{x,y,z\}
 r_1: (x < y \& y > 2) \rightarrow y = z; x = 3;
                                                                                В
 r_2: (z>=2) \rightarrow y=x+1; z=7;
 r_3: (x<2) \to z=0;
\exists x'_0 \exists x'_1 ... \exists x'_n (t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n) \land (x < 4 \land z > 5) \uparrow)
\equiv (x < y \land y > 2 \land \exists y \exists x (x < 4 \land z > 5 \land y = = z \land x = = 3))
   \vee(z>=2 \wedge \exists y \exists z (x<4 \wedge z>5 \wedge y==x+1 \wedge z==7))
   \vee(x<2 \wedge \existsz( x<4\wedgez>5 \wedge z==0))
    (x < y \land y > 2 \land z > 5) \lor (z > = 2 \land x < 4) \lor (x < 2 \land \exists z (false))
\equiv (x<y \land y>2 \land z>5) \land (z>=2 \land x<4)
```

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_1, r_2, ..., r_m$ of the form $r_{\nu}: (\tau_{\nu}) \rightarrow s_{\nu};$

$$\exists x'_0 \exists x'_1 ... \exists x'_n (t(x_0, x_1, ..., x_n, x'_0, x'_1, ..., x'_n) \land (b\uparrow))$$

$$\equiv \bigvee_{k \in [1,m]} \left(\tau_k \land pre(s_k, b) \right)$$

precondition procedure

A general propositional formula

What is pre(s,b)?

A GCM statement

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_1, r_2, ..., r_m$ of the form

$$r_k: (\tau_k) \rightarrow s_k;$$

What is pre(s,b)?

new expression obtained from b by replacing every occurrence of x with E

• pre(x = E;, b) = b[x/E]

Ex 1. the precondition to x=x+z;

 $(x==y+2 \land x<4 \land z>5) [x/x+z] = x+z==y+2 \land x+z<4 \land z>5$

Ex 2. the precondition to x=5;

 $(x==y+2 \land x<4 \land z>5) [x/x+z] = 5==y+2 \land 5<4 \land z>5$

Ex 3. the precondition to $x=2^*x+1$;

 $(x==y+2 \land x<4 \land z>5) [x/x+z] \equiv 2*x+1==y+2 \land 2*x+1<4 \land z>5$

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_1, r_2, ..., r_m$ of the form

$$r_k: (\tau_k) \rightarrow s_k;$$

What is pre(s,b)?

new expression obtained from b by replacing every occurrence of x with E.

• pre(x = E;, b) = b[x/E]

Ex. the precondition to x=x+z $(x==y+2 \land x<4 \land z>5) [x/x+z]$

■ $pre(s_1s_2, b) \equiv pre(s_1, pre(s_2, b)) \equiv x+z=y+2 \land x+z<4 \land z>5$

• pre(if (B) s_1 else s_2) = (B \land pre(s_1 , b)) \lor (\neg B \land pre(s_2 ,b))

pre(while (B) s, b) =

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_1, r_2, ..., r_m$ of the form r_k : $(\tau_k) \rightarrow s_k$;

What is pre(s,b)?

pre(while (B) s, b) \equiv formula $L_1 \lor L_2$ for

 L_1 : those states that reach $\neg B \land b$ with finite steps of s through states in B; and

L₂: those states that never leave B with steps of s.

162

On-the-fly precondition calculation with GCM rules.

 L_1 : those states that reach $\neg B \land b$ with finite steps of s through states in B

```
w_0 = \neg B \land b; k = 1;
repeat also a least fixpoint procedure w_k = w_{k-1} \lor (B \land pre(s, w_{k-1})); k = k + 1; until w_k \equiv w_{k-1}; return w_k;
```

163

Precondition to b through while (B) s;

Example: $b = x==2 \land y == 3$ while (x < y) x = x+1;

```
\begin{split} &w_0 = \neg B \wedge b; \ k = 1; \\ &\text{repeat} \\ &w_k = w_{k-1} \vee (B \wedge \text{pre}(s, \ w_{k-1})); \\ &k = k + 1; \\ &\text{until} \ w_k \equiv w_{k-1}; \\ &\text{return} \ w_k; \end{split}
```

L1 computation.

```
w_0 \equiv x \ge y \land x = 2 \land y = 3 \equiv false ; k = 1;

w_1 \equiv false \lor (x < y \land pre(x = x + 1, false));

\equiv false \lor (x < y \land false);

\equiv false;
```

On-the-fly precondition calculation with GCM rules.

Given a set of rules $r_1, r_2, ..., r_m$ of the form pre(while (B) s, b)

L₂: those states that never leave B with steps of s.

```
w_0 = B; k = 1; repeat
```

a greatest fixpoint procedure

```
\begin{aligned} w_k &= w_{k-1} \land pre(s, w_{k-1}); \\ k &= k + 1; \\ until \ w_k &\equiv w_{k-1}; \\ return \ w_k; \end{aligned}
```

Precondition to b through while (B) s;

Example:

while (x < y && x > 0) x = x + 1;

L2 computation.

```
w_0 \equiv x < y \land x > 0; k = 1;

w_1 \equiv x < y \land x > 0 \land pre(x = x + 1, x < y \land x > 0)

\equiv x < y \land x > 0 \land x + 1 < y \land x + 1 > 0 \equiv x > 0 \land x + 1 < y

w_2 \equiv x + 1 < y \land x > 0 \land pre(x = x + 1, x + 1 < y \land x > 0)

\equiv x + 1 < y \land x > 0 \land x + 2 < y \land x + 1 > 0 \equiv x > 0 \land x + 2 < y
```

 $w_0 = B$; k = 1;

k = k + 1;until $w_k \equiv w_{k-1};$

 $w_0 = \neg B \land b; k = 1;$

k = k + 1;until $W_k \equiv W_{k-1};$

return w_k;

 $w_k = w_{k-1} \vee (B \wedge pre(s, w_{k-1}));$

repeat

return w_k;

 $W_k = W_{k-1} \land pre(s, W_{k-1});$

repeat

non-terminating for algorithms and protocols!

166

Precondition to b through while (B) s;

Example:

while (x>y && x>0) x = x+1;

L2 computation.

$$w_0 \equiv x>y \land x>0$$
; k = 1;
 $w_1 \equiv x>y \land x>0 \land pre(x=x+1, x>y \land x>0)$
 $\equiv x>y \land x>0 \land x+1>y \land x+1>0 \equiv x>y \land x>0$
terminating for algorithms and protocols!

 $w_0 = B$; k = 1;

k = k + 1:

return w_k;

until $W_k \equiv W_{k-1}$;

 $w_k = w_{k-1} \land pre(s, w_{k-1});$

repeat

16/

Precondition to b through while (B) s;

Example: $b = x==2 \land y==3$

while (x>y && x>0) x = x+1;

L1 computation.

```
w_0 \equiv (x \le y \lor x \le 0) \land x = 2 \land y = 3 \equiv x = 2 \land y = 3;
w_1 \equiv (x = 2 \land y = 3) \lor (x > y \land x > 0 \land pre(x = x + 1, x = 2 \land y = 3));
\equiv (x = 2 \land y = 3) \lor (x > y \land x > 0 \land x = 1 \land y = 3);
\equiv (x = 2 \land y = 3) \lor false
\equiv x = 2 \land y = 3
```

Symbolic weakest precondition

Assume program with rules

x=3∧y=6 → x:=2; z:=7;

 x, y, z are discrete variables with range declarations

What is the weakest precondition of η for those states before the transitions?

Symbolic weakest precondition

Assume program with rules

• r:
$$x=3 \land y=6 \rightarrow x:=2$$
; z:=7;

What is the weakest precondition of η for those states before the transitions?

$$pre(r, \eta) \stackrel{\text{def}}{=} x=3 \land y=6 \land \exists x\exists z(x=2 \land z=7 \land \eta)$$

Bisimulation-checking

- K = (S, S₀, R, AP, L)
 K'= (S', S₀', R', AP, L')
- Note K and K' use the same set of atomic propositions AP.
- B∈S×S' is a bisimulation relation between K and K' iff for every B(s, s'):
 - \Box L(s) = L'(s') (BSIM 1)
 - □ If R(s, s₁), then there exists s₁' such that R'(s', s₁') and B(s₁, s₁'). (BISIM 2)
 - □ If R(s', s₂'), then there exists s₂ such that R(s, s₂) and B(s₂, s₂'). (BISIM 3)

174

Bisimulations

Bisimulations K' K

Examples

186

Examples

187

Bisimulations

- K = (S, S₀, R, AP, L)
- K'= (S', S₀', R', AP, L')
- K and K' are bisimilar (bisimulation equivalent) iff there exists a bisimulation relation B ⊆ S x S' between K and K' such that:
 - □ For each s_0 in S_0 there exists s_0 ' in S_0 ' such that $B(s_0, s_0)$.
 - □ For each s_0 ' in S_0 ' there exists s_0 in S_0 such that $B(s_0, s_0)$.

The Preservation Property.

- K = (S, S₀, R, AP, L)
 K'= (S', S₀', R', AP, L')
- B ⊆ S×S', a bisimulation.
- Suppose B(s, s').
- FACT: For any CTL formula ψ (over AP), K,s⊨ψ iff K',s'⊨ψ.
- If K' is smaller than K this is worth something.

Simulation Framework

model

Answer
Yes if the model
satisfies the
specification
No if not.

190

Simulation-checking

- K = (S, S₀, R, AP, L)
 K'= (S', S₀', R', AP, L')
- Note K and K' use the same set of atomic propositions AP.
- B ∈ S × S' is a simulation relation between K and K' iff for every B(s, s'):
 - \Box L(s) = L'(s') (BSIM 1)
 - □ If R(s, s_1), then there exists s_1 ' such that R'(s', s_1 ') and B(s_1 , s_1 '). (BISIM 2)

.91

Simulations

- K = (S, S₀, R, AP, L)
- K'= (S', S₀', R', AP, L')
- K is simulated by (implements or refines) K' iff there exists a simulation relation $B \subseteq S \times S'$ between K and K' such that for each s_0 in s_0 there exists s_0 in s_0 such that s_0 in s_0 .

Bisimulation Quotients

- $K = (S, S_0, R, AP, L)$
- There is a maximal simulation $B \subseteq S \times S$.
 - □ Let R be this bisimulation.
 - \Box [s] = {s' | s R s'}.
- R can be computed "easily".
- K' = K / R is the bisimulation quotient of K.

Bisimulation Quotient

- $K = (S, S_0, R, AP, L)$
- $[s] = \{s' \mid s \ R \ s'\}.$
- K' = K / R = (S', S'₀, R', AP,L').
 - \Box S' = {[s] | s 2 S}
 - \Box S'₀ = {[s₀] | s₀ 2 S₀}
 - $\ \ \, \square \ \, \mathsf{R'} = \{([s],\,[s']) \mid \, \mathsf{R}(s_1,\,s_1{}') \,,\, s_1{\in}[s],\, s_1{}'{\in}[s']\}$
 - \Box L'([s]) = L(s).

Examples

195

Examples

Examples

Facts About a (Bi)Simulation

- The empty set is always a (bi)simulation
- If R, R' are (bi)simulations, so is R U R'
- Hence, there always exists a maximal (bi)simulation:
 - Checking if DB₁=DB₂: compute the maximal bisimulation R, then test (root(DB₁),root(DB₂)) in R

198

Kripke structure

- simulation-checking

```
/* Given model A = (S, S<sub>0</sub>, R, L), spec. A'=(S', S'<sub>0</sub>, R', L') */ Simulation-checking(A,A') /* using greatest fixpoint algorithm */ { Let B={(s,s') | s ∈ S, s' ∈ S', L(s)=L'(s')}; repeat { B = B - \{(s,s') | (s,s') ∈ B, \exists (s,t) ∈ R \forall (s',t') ∈ R'((t,t') ∉ B)\}; \} until no more changes to B. if there is an s<sub>0</sub>∈S<sub>0</sub> with <math>\forall s'_0 ∈ S'_0((s_0,s'_0) ∉ B),  return 'no simulation,' else return 'simulation exists.' } The procedure terminates since B is finite in the Kripke
```

199

Kripke structure

- bisimulation-checking

```
/* Given model A = (S, S<sub>0</sub>, R, L), spec. A'=(S', S'<sub>0</sub>, R', L') */ Bisimulation-checking(A,A') /* using greatest fixpoint algorithm */ { Let B={(s,s') | s∈S, s'∈S', L(s)=L'(s')}; repeat { B=B-\{(s,s') | (s,s')\in B, \exists (s,t)\in R\forall (s',t')\in R'((t,t')\not\in B)\}; \\ B=B-\{(s,s') | (s,s')\in B, \exists (s',t')\in R'\forall (s,t)\in R((t,t')\not\in B)\}; \\ \} until no more changes to B. if there is an <math>s_0\in S_0 with \forall s'_0\in S'_0((s_0,s'_0)\not\in B), return 'no simulation,' if there is an s'_0\in S'_0 with \forall s_0\in S_0((s_0,s'_0)\not\in B), return 'no simulation,' else return 'simulation exists.'
```

(Bi)Simulation

structure.

- complexities
- Bisimulation: O((m+n)log(m+n))
- Simulation: O(m n)
- In contrast, finding a graph homeomorphism is NP-complete.

1//

Symbolic simulation-checking

- Encode the states with variables
 - x_0, x_1, \dots, x_n (for the model) and
 - y_0, y_1, \dots, y_m . (for the spec.)

Usually there are shared variables

between $\{x_0, x_1, ..., x_n\}$ and $\{y_0, y_1, ..., y_m\}$.

L(s)=L'(s') means that the shared variables are of the same values.

- the state sets as proposition formulas:
 - \neg $s(x_0, x_1, ..., x_n) & s(y_0, y_1, ..., y_m)$
- the initial state set as
 - \Box $i(x_0,x_1,...,x_n) \& i'(y_0,y_1,...,y_m)$
- the transition set as

202

Symbolic simulation-checking

$$\begin{split} B_0 &= \bigwedge_{L(x_0,x_1,\dots,x_n) = L(y_0,y_1,\dots,y_m)} s(x_0,x_1,\dots,x_n) \wedge s(y_0,y_1,\dots,y_m); \\ \text{for } (k=1,\ B_1 = \text{false};\ B_k \neq B_{k-1};\ k = k+1) \\ B_k &= B_{k-1} \wedge \neg \exists x'_0 \exists x'_1 \dots \exists x'_n (\\ R(x_0,x_1,\dots,x_n,\ x'_0,x'_1,\dots,x'_n) \\ \wedge \neg \ \exists y'_0 \exists y'_1 \dots \exists y'_m \ (\\ R'(y_0,y_1,\dots,y_m,\ y'_0,y'_1,\dots,y'_m) \wedge (B_{k-1}\ \uparrow) \\ \end{pmatrix}) : \end{split}$$

if $(i(x_0,x_1,...,x_n)\neq \exists y_0\exists y_1...\exists y_m (B_k))$, return 'no simulation';

else return 'a simulation exists';

change all umprimed variable in B_{k-1} to primed.

203

Symbolic simulation-checking

- an example

- s(x,y)=true, $s'(x,y,z) = \neg z \lor (\neg x \land y \land z)$
- $i(x,y) \equiv \neg x \land \neg y$, $i'(x,y,z) \equiv \neg x \land \neg y \land \neg z$
- $R(x,y,x',y') \equiv \dots, R'(x,y,z,x',y',z') \equiv \dots$

Symbolic simulation-checking

- an example

- $R(x,y,x',y') \equiv (\neg x \land \neg y \land \neg x' \land y') \lor (\neg x \land y \land x' \land \neg y')$ $\lor (\neg x \land y \land x' \land y') \lor (x \land \neg y \land \neg x' \land \neg y') \lor (x \land y \land \neg x' \land \neg y')$
- $R'(x,y,z,x',y',z') \equiv (\neg x \land \neg y \land \neg z \land \neg x' \land y')$ $\lor (\neg x \land y \land \neg z \land x' \land \neg y' \land \neg z') \lor (\neg x \land y \land z \land x' \land y' \land \neg z')$ $\lor (x \land \neg y \land \neg z \land \neg x' \land \neg y' \land \neg z') \lor (x \land y \land \neg z \land \neg x' \land \neg y' \land \neg z')$

20.

Symbolic simulation-checking - an example

```
\begin{split} B_0 &= s(x,y) \wedge s'(x,y,z) = \neg z \vee (\neg x \wedge y \wedge z) \\ B_1 &= (\neg z \vee (\neg x \wedge y \wedge z)) \wedge \neg \exists x' \exists y' \left( \\ & ((\neg x \wedge \neg y \wedge \neg x' \wedge y') \vee (\neg x \wedge y \wedge x' \wedge \neg y') \\ & \vee (\neg x \wedge y \wedge x' \wedge y') \vee (x \wedge \neg y \wedge \neg x' \wedge \neg y') \vee (x \wedge y \wedge \neg x' \wedge \neg y') \\ & ) \\ & \wedge \neg \exists x' \exists y' \exists z' \left( \\ & ((\neg x \wedge \neg y \wedge \neg z \wedge \neg x' \wedge y') \\ & \vee (\neg x \wedge y \wedge \neg z \wedge x' \wedge \neg y' \wedge \neg z') \vee (\neg x \wedge y \wedge z \wedge x' \wedge y' \wedge \neg z') \\ & \vee (x \wedge \neg y \wedge \neg z \wedge \neg x' \wedge \neg y' \wedge \neg z') \vee (x \wedge y \wedge \neg z \wedge \neg x' \wedge \neg y' \wedge \neg z') \\ & ) \wedge (\neg z' \vee (\neg x' \wedge y' \wedge z')) )) \\ &= (\neg z \vee (\neg x \wedge y \wedge z)) \wedge \neg \exists x' \exists y' \left( ((\neg x \wedge \neg y \wedge z \wedge \neg x' \wedge \neg y') \vee (\neg x \wedge y \wedge x' \wedge y') \vee (\neg x \wedge y \wedge x' \wedge \neg y') \vee (x \wedge y \wedge x' \wedge \neg y') \right) \\ & \vee (x \wedge \neg y \wedge z \wedge \neg x' \wedge \neg y') \vee (x \wedge y \wedge z \wedge \neg x' \wedge \neg y') )) \\ &= (\neg z \vee (\neg x \wedge y \wedge z)) \wedge \neg ((\neg x \wedge \neg y \wedge z) \vee (\neg x \wedge y) \vee (x \wedge \neg y \wedge z) \vee (x \wedge y \wedge z)) \\ & \rangle_{10} \end{split}
```

Symbolic simulation-checking - an example

```
\begin{split} B_1 &= (\neg z \lor (\neg x \land y \land z)) \land \neg ((\neg x \land \neg y \land z) \lor (\neg x \land y) \lor (x \land \neg y \land z) \lor (x \land y \land z)) \\ &= (\neg z \lor (\neg x \land y \land z)) \land \neg ((\neg x \land \neg y \land z) \lor (\neg x \land y) \lor (x \land \neg y \land z) \lor (x \land y \land z)) \\ &= (\neg z \lor (\neg x \land y \land z)) \land \neg (z \lor (\neg x \land y \land \neg z)) \\ &= (\neg z \lor (\neg x \land y \land z)) \land \neg (z) \land \neg (\neg x \land y \land \neg z) \\ &= (\neg z \lor (\neg x \land y \land z)) \land \neg (z) \land \neg (\neg x \land y \land \neg z) \\ &= (\neg x \land \neg y \land \neg z) \lor (x \land \neg y \land \neg z) \lor (x \land y \land \neg z) \end{split}
```

207

Symbolic simulation-checking - an example

```
\begin{split} B_2 &= ( \ (\neg x \land \neg y \land \neg z) \lor (x \land \neg y \land \neg z) \lor (x \land y \land \neg z) \ ) \land \neg \exists x \exists y' ( \\ & ((\neg x \land \neg y \land \neg x' \land y') \lor (\neg x \land y \land x' \land \neg y') \\ & \lor (\neg x \land y \land x' \land y') \lor (x \land \neg y \land \neg x' \land \neg y') \lor (x \land y \land \neg x' \land \neg y') \\ & ) \\ & \land \neg \exists x \exists y' \exists z' ( \\ & ( \ (\neg x \land \neg y \land \neg z \land x' \land y') \\ & \lor (\neg x \land y \land \neg z \land x' \land \neg y' \land \neg z') \lor (\neg x \land y \land z \land x' \land y' \land \neg z') \\ & \lor (x \land \neg y \land \neg z \land x' \land \neg y' \land \neg z') \lor (x \land y \land \neg z \land \neg x' \land \neg y' \land \neg z') \\ & \lor ((\neg x \land \neg y \land \neg z') \lor (x \land y \land \neg z') \lor (x \land y \land \neg z \land \neg x' \land \neg y')))) \\ &= ((\neg x \land \neg y \land \neg z) \lor (x \land \neg y \land \neg z) \lor (x \land y \land \neg z)) \land \neg ((\neg x \land \neg y) \lor (x \land y \land z \land \neg x' \land \neg y'))) \\ &= ((\neg x \land \neg y \land \neg z) \lor (x \land \neg y \land \neg z)) \land \neg ((\neg x \land \neg y) \lor (x \land \neg y \land z) \lor (x \land y \land z)))) \\ \end{split}
```

Symbolic simulation-checking - an example

 B_{2} = $((\neg x \land \neg y \land \neg z) \lor (x \land \neg y \land \neg z) \lor (x \land y \land \neg z)) \land \neg ((\neg x \land \neg y) \lor (x \land \neg y \land z) \lor (x \land y \land z)))$ = $(x \land \neg y \land \neg z) \lor (x \land y \land \neg z)$

Here, the initial statepair has been elimianted.