Temporal Logics
& Model Checking

Farn Wang
Dept. of Electrical Engineering
National Taiwan University

Specifications, descriptions,
& verification

specification:

o The user’s requirement

description (implementation):

a The user’s description of the systems

o No strict line between description and specification.
verification:

o Does the description satisfy the specification ?

Formal specification
& automated verification

formal specificaton:

o specification with rigorous mathematical notations
automated verification:

o verification with support from computer tools.

Why formal specifications ?

to make the engineers/users understand the
system to design through rigorous mathematical
notations.

to avoid ambiguity/confusion/misunderstanding
in communication/discussion/reading.
to specify the system precisely.

to generate mathematical models for automated
analysis.

But according to Goedel’s incompleteness theorem, it
IS impossible to come up with a complete
specification. ‘

‘Why automated verification ? | Specification & Verification ?

= to somehow be able to verify complexer & larger = Specification > Complete & sound.
systems = Verfication
= to liberate human from the labor-intensive > Reducing bugs in a system.

verification tasks
o to set free the creativity of human

= to avoid the huge cost of fixing early bugs in late

- Making sure there are very few bugs.

cycles. Very difficult!
= to compete with the core verification technology Competitiveness of high-tech industry!
of the future. A way to survive for the students!

A way to survive for Taiwan!

e

e e e e e e 400 horses
_ . S 100 microprocessors

$4 billion development effort
> B0% system integration & validation cost
2,500,000+1,500,000 lines of codes (most in Ada)

| Bugs in complex software

= They take effects only with special event
sequences.
o the number of event sequences is factorial and
super astronomical!
= It is impossible to check all traces with
test/simulation.

| Budget appropriation

Design &
Coding
10%-20%

Design & R

VERIFICATION oG 3000 ® wer in
0 englnc~ .

99% an ©7"" 1adia

o Testing (real wall for real cars)
= Expensive
= Low coverage
= Late in development cycles

Mulaﬁon(vir‘rual wall for virtual ca
= Economic

= Low coverage
= Don't know what you haven't seen.

» Formal Verification

(virtual car checked)
= Expensive
= Functional completeness
+ 100% coverage
= Automated!
+ With algorithms and proofs. 1

of the 3 angles = 180 ?

Q
N

» Testing (check all As you see)
= Expensive

= Low coverage

= Late in development cycles

o Simulation (check all As you draw)
= Economic
= Low coverage
= Don't know what you haven't seen.

o Formal Verification(we prove it.)
> = Expensive
= Functional completeness
+ 100% coverage
= Automated!
+ With algorithms and proofs.

<

Model-checking
- a general framework for verification
of sequential systems

Models & Specitications

- formalism

Whenever a baby cries, it is hungry.
Logics: CI(crying = hungry)

Answer
Yes if the model Graphs:
— — is equivalent to
mOd el ‘ the specification
t No if not.
specification
Models & Specifications Model-checking
- fairness assumptions - frameworks in our lecture
Some properties are almost impossible to verify T =
WIthOUt assumptions' traces Trees Linear Branching

Example: C(start > < finish)
To verify that a program halts, we assume
CPU does not burn out.

OS gives the program a fair share of CPU time.

All the drivers do not stuck.

F=0 Fz20 F=0 FzZ0 F=0 Fz&0 F=0 FzJ

traces F=g 4 v --
@ I

Trees F=& - v
~o I «
Linear F=& -
. F=&
Logics
Branc F=Q

BN
hing
~ I -

v': known; M: discussed in the lecture 1

History of Temporal Logic

Designed by philosophers to study the way that time
is used in natural language arguments

Reviewed by Prior [PR57, PR67]

Brought to Computer Science by Pnueli [PN77]

Has proved to be useful for specification of
concurrent systems

Framework

Temporal Logic is a class of Modal Logic

Allows qualitatively describing and reasoning about
changes of the truth values over time

Usually implicit time representation

Provides variety of temporal operators (sometimes,
always)

Different views of time (branching vs. linear, discrete
vs. continuous, past vs. future, etc.)

Outline

Linear

o LPTL (Linear time Propositional Temporal
Logics)

Branching

o CTL (Computation Tree Logics)

o CTL* (the full branching temporal logics)

Kripke structure

A=(S, Sy R, L)
S

o a set of all states of the system
SocS

o a set of initial states

R < SxS

o a transition relation between states
L:S+— 2P

o a function that associates each state with set of
propositions true in that state

20

Kripke Model

Set of states S
o {04,02,03}

Set of initial states S, q1
o {qq} 0
Set of atomic

propositions AP
o {a,b}
q

21

q3

Example of Kripke Structure

Suppose there is a program

initially x=1 and y=1;
while true do

X:=(x+y) mod 2;
endwhile

where x and y range over D={0,1}

22

Example of Kripke Structure
S=DxD
Sp={(1,1)}
R={((1,1),(0,1)),((0,1),(1,1)),((1,0),(1,0)),((0,0),(0,0))}
L((1,1))={x=1,y=1},L((0,1))={x=0,y=1},
L((1,0))={x=1,y=0},L.((0,0))={x=0,y=0}

23

BNF, syntax definitions

Note!

Be sure how to read BNF !
used for define syntax of context-free language
important for the definition of

o automata predicates and
o temporal logics

Used throughout the lectures!
In exam: violate the syntax rules =» no credit.

Az=c|x| (M) |A+A, | A-A,
M:= c|x]|(A)| M*M, | M,/M,
c is an integer
X is a variable name.

24

| BNF, syntax definitions

Az=cl x| (M)|A+A, | A-A,
M:= c|x]|(A)| M*M, | M,/M,
c is an integer

X is a variable name.

25

‘ BNF, syntax definitions

- derivation trees (from top down)
Az=c x| (M)|A+A, | A-A,

M:= c|x|(A)| M*M, | M,/M,

c is an integer

X is a variable name.

used in string
generation.

y

(3*x)+y-3

26

BNF, syntax definitions

- parsing trees (from bottom up)
Az=c| x| (M)]A+A, | A-A,

M:= c|x]|(A)| M*M, | M,/M,

c is an integer

X is a variable name.

used in compiler.

27

Temporal Logics : Catalog

propositional <> first-order
global < compositional
branching < linear-time
points <« intervals
discrete <« continuous
past & future

28

| Temporal Logics

= Linear
o LPTL (Linear time Propositional Temporal
Logics)
= LTL, PTL, PLTL
= Branching
o CTL (Computation Tree Logics)
o CTL* (the full branching temporal logics)

29

‘ Amir Pnueli
1941

= Professor, Weizmann
Institute

= Professor, NYU
= Turing Award, 1996

30

LPTL (PTL, LTL)

Linear-Time Propositional Temporal Logic

Conventional notation :

propositions : p, q, r, ...

sets:A,B,C,D, ...

states : s

state sequences : S

formulas : @,p

= Set of natural number : N={0, 1, 2, 3, ...}
= Set of real number : R

31

LPTL

Given P : a set of propositions,

a Linear-time structure : state sequence
S=5),5;5,5S35 . Sgurnnn

s, is a function of P where P {true,false}

ors, €2°P

example: P={a,b}

{aHa,bHaHaHb}...

32

Syntax definitions
Note!

Be sure how to read BNF !
used for define syntax of context-free language
important for the definition of

syntax definition
in BNF

LPTL

- syntax

/

g :=true|p |-y |ly,vy, | Oy g, Uy,

o automata predicates and abbreviation
o temporal logics false = — true
Used throughout the lectures!
In exam: violate the syntax rules = no credit. YA, = = ((Bwy)Vv (—wy))
A (V) | AT+ A2 | AT_A2 Pop, = ()Y,
M = (A) | M1 * M2 | M1/ M2 Oy = true Uy
|:|l|.l = —|<>—|l|J
LPTL LPTL
- syntax - syntax
Exam. Symbol Op Xp p is true on next state
in CMU
Op Xp p is true on next state
pUg pUg Fromnowon, pis always 0-0-0-0- 0
true until g is true
Op Fp From now on, there will be a

state where p is eventually
(sometimes) true

From now on, p is always true

35

? . don’t care

36

LPTL

- syntax

From now on, p is always
true until q is true

pUq puq

LPTL

- syntax

<op Fp From now on, there will be a
state where p is eventually

(sometimes) true

0 'Q 'a '0 Co _@_> ''''''''''

LIp Gp

0-0-0-0- 00—

38

From now on, p is always true

LPTL

- syntax

Two operator for Fairness
O*p = OOp ; p will happen infinitely
many times
infinitely often

O°p= <Op 5 p will be always true
after some time in the
future
almost everywhere

39

LPTL

- semantics

suffix path :
S=575159535,55 ..eennn

SO=15,5,5,555,S5 . ..u..

1)—
S=5,5,535455Sg «evvn.

40

LPTL

- semantics
Given a state sequence
S=5,5,5,5354.. Sgururnn
We define S Fy (S satisfies g) inductively as :
S E true
SEp < sy(p)=true, or equivalently p € s,
SE -y < Sk yisfalse
SEFy,vy, & SFEy,or SEuy,
SEQOy < Sy
S F y,Uy, < Fk>0(S® Fy, AVO<j<k(SW EFy,))

41

Branching Temporal Logics

Basic assumption of tree-like structure

*Every node is a function
of P—{true,false}

*Every state may have many
successors

43

Branching Temporal Logics

Basic assumption of tree-like structure

*Every path is isomorphic as N
«Correspond to a state sequence

44

Branching Temporal Logic

It can accommodate infinite and dense state
successors

In CTL and CTLY, it can’t tell
o Finite and infinite
Is there infinite transitions ?

o Dense and discrete
Is there countable (®) transitions ?

45

Branching Temporal Logic

Get by flattening a finite state machine

46

CTL(Computation Tree Logic)

Edmund M. Clarke
* Professor, CS & ECE
_ Carnegie Mellon University

E. Allen Emerson
Professor, CS
The University of Texas at Austin

Chin-Laung Lei
Professor, EE
"~ National Taiwan University

47

CTL(Computation Tree Logic)
- syntax

¢:=true |p| -0 | @;ve, | 30¢ | VOO
| 3@,Up, | Vo,Up,

abbreviation :
false = — true
IR = = ((=9q)v (—9y))
PP, = (2Q)VO,
EROL0) = dtrue U@
v = -3 =@
AJ0) = Virue U@

48

CTL

- semantics
example symbol

in CMU

10p EXp there exists a path where p is
true on next state

3 EU from now on, there is a
pUq pECq ath whwre IS alwlays
rue until q is true

vOp AXp for all path where p is true on
next state

vpl q pAUq from now on, for all path where
p is always true until q is true

49

CTL CTL

- semantics - semantics

30p EXp there exists a path where p St R i it it e
CTL CTL

- semantics - semantics
vOp AXp for all path where p is true on vpU q pAUq from now on, for all path

next state

52

where p is always true until g
is true

53

CTL

- semantic

Assume there are
a tree stucture M,
one state s in M, and

a CTL fomula ¢
M,sF¢@ means s in M satisfy ¢

CTL

- semantics

s-path : a pathin M
which stats from s

Sy -path:

s, -path:
s, -path: ﬂ
S,5-path:
CTL CTL
- semantics - examples (I)
M,s F true

M,sEp < pes

M,s E ¢ < itis false that M,s F ¢

M,s E v, & MssE @, or M;sF o,

M,s F 30¢p & I s-path=s; s, (M,s,F @)
M,s F VO < V s-path=5s; s/ (M,s,E o)

M,s F 3p,Up, < I s-path =s; s, , 3k=0
(M,sy F @, AVO<j<k(M,s; F @)
M,s E Vo,Up, < Vs-path =s;s, , 3k>0

(M,s F @, AVO<j<k(M,s; = @)

56

Po:(Po:=0 | Py := Py vV P1 V P3)

P1:(p1:=0 | py:=pg Vv Py)
P2:(p2:=0 | p,:=py v p,))

If P, is true, it is possible
that P, can be true
after the next two cycles.

VU (po — 30O 30 py)

57

CTL
- examples (I

1. If there are dark clouds, it will rain.
v[(dark-clouds— vV <rain)

2. if a buttefly flaps its wings, the New York stock could
plunder.

VvO(buttefly-flap-wings =-3<>NY-stock-plunder)
3. if win the lottery, | will be happy forever.
v L(win-lottery — V[happy)

4. In an execution state, if an interrupt occurs in the next
cycle, the interrupt handler will execute at the 2nd next
cycle.

v (exec—VO(intrpt—VvO(intrpt-handler)))

58

CTL
- examples (II)

In an execution state, if an interrupt occurs in the next
cycle, the interrupt handler will execute at the 2nd
next cycle.

VL(exec—VO(intrpt— VvV O(intrpt-handler)))

Some possible mistakes:
VL(exec—((VO intrpt)—>VOintrpt-handler))
V(exec — (VO intrpt) >V OV intrpt-handler))

59

CTL
- examples ([IIa)

Please draw a Kripke structure that tells
VO(intrpt— VO (intrpt-handler))
from
(VO intrpt)—>VOintrpt-handler
and
(VO intrpt) >VOVQ intrpt-handler

60

CTL

- important classes
V[: safety properties
o m is always true in all computations from now.
3<On: reachability properties

o n is eventually true in some computation from
now.

0 VOn = —-30-m

v <n: inevitabilities

o 7 is eventually true in all computations from now.
40

0 VO = —-d0-m

61

'CTL+
- syntax
»m CTL* fomula (state-fomula)

@:u=true | p | =@ | @ve, | W | VW
= path-fomula

W= [=W lwovw, | Owy | wUw,

CTL* is the set of all state-fomulas!

62

'CTL*
- examples (1/4)

In a fair concurrent environment, jobs will
eventually finish.

V(((O<execute,) (OO execute,)) — Ofinish)
or
V(((O~execute,) A(O*execute,)) — Ofinish)

63

CTL*
- examples (2/4)

No matter what, infinitely many comets will
hit earth.

vOO & comet-hit-earth
Why not CTL?

= YO YOV comet-hit-eart

= YOVO3O comet-hit-eart
Exercise, please construct a

from the firet

CTL*
- examples (2/4)

No matter what, infinitely many comets will
hit earth.

YO comet-hit-earth

Or

v O comet-hit-eart
Why not CTL?
» YOV ¢ comet-hit-earth

» YO 3 & comet-hit-earth

65

CTL*

The same

- WOI' kout according to

lemma

= (1) YOO comet-hit-earth
= (2) vO V & comet-hit-earth
= (3) vO 3 & comet-hit-earth
Please draw Kripke structures that tell
= (1) from (2) and (3)
= (2) from (1) and (3)
= (3) from (1) and (2)

66

'CTL*
- examples (3/4)

If you never have a lover, | will marry you.
V((Oyou-have-no-lover) - <&marry-you)

Why not CTL ?

= (VO you-have-no-lover) —» V < marry-you

= (VO you-have-no-lover) - 3 & marry-you

= (30 you-have-no-lover) - ¥V < marry-you

67

CTL*
- Workout

= (1)V((Oyou-have-no-lover) - < marry-you)

= (2) (vO you-have-no-lover) - V < marry-you
= (3) (vO you-have-no-lover) - 3 & marry-you
= (4) (30 you-have-no-lover) — V¥ < marry-you
Please draw trees that tell

= (1) from (2)

= (2) from (3)

= (3) from (4)

V- Frmnr 1)
| ‘4/ monr{i1)

68

'CTL*
- examples (4/4)

If | buy lottory tickets infinitely many times,
eventually | will win the lottery.

Vv ((O<$buy-lottery) — Owin-lottery)
or
V ((O= buy-lottery) - < win-lottery)

69

CTL* CTL*
- semantics - semantics
suffix path : state-fomula
S= pu=true | p | =@, | @vep, [Ty |V
S0)= M,s E true
ggf MssEp < pes
SB)= M,s E - < M,s E ¢ lfalse
SW= M,s F v, < M,;sk @, 0rM,s F @,
> s M,s 3y < 3 s-path =S (S v)
S—S - M,s E VW < V s-path = S (SFE w)
5@ =) ,
CTL* Expressiveness
- semantics
Given a language Z,
path-fomula what model sets L can express ?
= | =Wy Jwvw, | Ow | w,U what model sets L cannot ?
If S=8yS, 838 oS EQ S MSy @ model set: a set of behaviors

SE —w, < Sk uy, flfalse

SEw,vw, < SE W, or Sk

SEOuw & SE

S F y Uy, 3k=0 (SWE 1,AVO0<i<k(SVE w,))

72

A formula = a set of models (behaviors)

foranyg eZ, [¢] & {M|MFEg}
A language = a set of formulas.

Expressiveness: Given a model set F,
F is expressible in L iff 3@ /([Q]=F)

73

Expressiveness

Comparison in expressiveness:
Given two languages L, and L,
Definition: L, is more expressive than L, (L,<L,)

iff Ve, ([¢] is expressible in L,)

Definition: L, and L, are expressively equivalent
(Li=L,) iff (Ly<LyA(L4<Ly)

Definition: L, ~ L, are expressively incomparable iff
—((Lo<L4)V(L4<Ly))

74

Expressiveness
- branching-time logics

What to compare with ?
finite-state automata on infinite trees.

2nd-order logics with monadic prdicate and many
successors (SnS)

2nd-order logics with monadic and partial-order
Very little known at the moment,

the fine difference in semantics of branching-structures

75

Expressiveness
- CTL*, example (I)

A tree the distinguishes the following two
formulas.

V((Ceat) - Ofull)
o Negation: 3((Ceat) A O=full)
(VOeat) » (VOFull)

Expressiveness
- CTL*, example ()

A tree that distinguishes the following two
formulas.
V((Oeat) » < full)
vO (eat » VO full)
o Negation: 3O (eat AIO—full)

Expressiveness

- CTL*

With the abundant semantics in CTL*, we can
compare the subclasses of CTL*.

Expressiveness

- CTL*

CTL* subclass expressiveness heirarchy
CTL* > B(—,v,0,0,00%)

With restrictions on the modal operations after > B(O, O, [O%)
4, V, we have many CTL* subclasses. > B(—,v, 0,0,)
Example: = B(O,0,0)
B(—,v,O,U): only —,v,O,U after 3, v > B(—,v,0,0)
B(—,v,0,0%): only —,v,0, O after 3, v > B(O’ <’>) |
B(O,0): only O, after 3, v ’
() y S B(O)
Expressiveness Expressiveness
- CTL* - CTL*

Some theorems :
B(—,v,0,0,U) = B(O,0,U)

3O>p is inexpressible in B(O,0,U) .

80

Comparing PLTL with CTL*
assumption, all pePLTL are interpreted as Vo

Intuition: PLTL is used to specify all runs of a

system.
B(—,v,0,0,[0)

/ \PLTL(F)
\ /

PLTL

CTL*

81

‘ Verification model (system)

formula specification
formula
= LPTL, validity checking ¥ E ¢

o instead, check the satisfiability of { A —¢
o construct a tabelau for ¢ A —d
= model-checking M
o LPTL: M: a Blchi automata, ¢: an LPTL formula

o CTL: M: a finite-state automata, ¢: a CTL
formula

= simulation & bisimulation checking M E M’

82

| Satistiability-checking framework

Answer
Yes if the model
model in logics _,‘—» is equivalent to
0, = v,0,0U the specification
| No if not.

specification in logics
D, -, V,0,0,U

83

LPTL
- tableau for satisfiability checking

Tableau for ¢
» a finite Kripke structure that fully describes the
behaviors of ¢
« exponential number of states
» An algorithm can explore a fulfilling path in the
tableau to answer the satisfiability.
Bnondeterministic
mwithout construction of the tableau
BPSPACE.

84

1PTL

- tableau for satisfiability checking

Tableau construction

a preprocessing step: push all negations to the literals.
(ViAW) =(=w)v (= wy)

—(y1vy)=(=w)A (= wy)

—~OyYy=0-vy

oY=y

—(y1Uwyy) = (L= wo)v (= w)U (= WA (= v,)

- [Jy=0O-y

85

LPTL

- tableau for satisfiability checking

Tableau construction

CL(o) (closure) is the smallest set of formulas containing ¢
with the following consistency requirement.

= —p e CL(p)iff p eCL(0)

Ifwi vz vy Ay, €Cl(e), then vy, v, eCL(e)
If © v eCL(p), then v eCL(p)

If v Uy, eCL(9), then v, , v, , O (v Uy,) eCL(p)
If [v eCL(9p), then v, O | v eCL(0p)

86

LPTL
- tableau for satisfiability checking

Tableau (V, E), node consistency condition:

A tableau node v € V is a set v ¢ CL(f) such that
mpeviff—pgv

If v, v v, ev, then y,evory, ev

If v, Ay, ev, then y,evand vy, ev

if lyev,thenyevandO[[y ev

if Sy ev,thenyevorO O wyev

if v, Uy,ev, then y,e vor (y,evand O (y,Uy,)ev)

87

LPTL
- tableau for satisfiability checking

Tableau (V, E), arc consisitency condition:
Given an arc (v,v') €E, if Oy € v, then y e V'
= A node vin (V,E) is initial for ¢ if ¢ ev.

88

1PTL

- tableau for satisfiability checking

CL(pUq) = {pUq, OpUq, p, = p, 9, = q}

Example: (p U q)

tableau (V,E)

Vi {p,q, pUg, OpUag} {p,q, OpUa} {p,q}
{p, a0, pUq}
{p, —q, pUq, OpUq} {p, —q, OpUq} {p, —q}
{-p, 9, pUq, OpUq} {-p,q,pUq} {-p,q}
{=p, 9, OpUq}
{=p, =q, OpUq} {=p, =q}

E:? ®

- table g

Qiss

= th de for ¢
suc satisfied;

SCC)
that for all

e from an
Q’] Il formula U, in a node in the SCC, there is
also a node in the SCC containing v ; or

= there is a cycle reachable from an initial node for ¢
such that the for all until formulas Uy, in the first

ode for

cycle node, there is also a node in the cycle
. 90
containing i,

1PTL

- tableau for satistiability checking

Please use tableau method to show that
pUqg F []qis false.

1) Convert to negation: (pUq)A<>—q

2) CL((pUq)A<>—0q)
={(pUg)A<>—q, pUg, OpUaq, p, 9, O—q, OO—q }

LPTL

- tableau for satisfiability checking

Please use tableau method to show that
pUg E Oqis true.

1) Convert to negation: (pUQ)A_1—q
2) CL((pUa)AL_I—q)
={(pUa)AL_=a, pUq, OpUq, p, g, [_]=q, OL_-q }

Pf: In each path that is a model of (pUq)A[_]—q, q
must always be satisfied. Thus, pUq is never
fulfilled in the model.

QED

LPTL

- tableau for satisfiability checking
¢ is satisfiable iff in (V,E),

there exists ...

path+cycle< (|CL(o)|+2)|V|
|CL(o)| flags to
check the
until-formulas from
the first cycle node.
nondeterministic
PSPACE can solve it.
PSPACE-complete.

initial

93

CTL model-checking framework

model Answer
Yes if the model

_.‘—> is equivalent to
the specification
No if not.

specification in logics
EI,V, D, —, \/,0,0,U

94

CTL
- model-checking

Given a finite Kripke structure M and a CTL
formula ¢, is M a model of ¢ ?

usually, M is a finite-state automata.
PTIME algorithm.

When M is generated from a program with
variables, its size is easily exponential.

95

CTL
- model-checking algorithm

techniques

state-space exploration
o state-spaces represented as finite Kripke structure

directed graph

nodes: states or possible worlds
arcs: state transitions
Usually the state count is astronomical.

regular behaviors

96

Kripke structure
- Least fixpoint in modal logics

Dark-night murder, strategy I:
A suspect will be in the 2nd round iff
He/she lied to the police in the 1st round; or
He/she is loyal to someone in the 2nd round
What is the minimal solution to 2nd[] ?
2nd([i] = Liar[i]v Fj=(2nd[j] Loyal-to[i,j])

97

Kripke structure

- Least fixpoint in modal logics
In a dark night, there was a cruel murder.
n suspects, numbered 0 through n-1.

Liarfi] iff suspect i has lied to the police in the
1st round investigation.

Loyal-to[i,j] iff suspect i is loyal to suspect j in
the same criminal gang.

2nd[i] iff suspect i to be in 2nd round
investigation.

What is the minimal solution to 2nd[] ?

98

Kripke structure

- Greatest fixpoint in modal logics
In a dark night, there was a cruel murder.
n suspects, numbered 0 through n-1.

—Liar[i] iff the police cannot prove suspect i
has lied to the police in the 1st round
investigation.

Loyal-tofi,j] iff suspecti is loyal to j are in the
same criminal gang.

2nd[i] iff suspect i to be in 2nd round
investigation.

What is the maximal solution to — 2nd[] ? 99

Kripke structure
- Greatest fixpoint in modal logics

Dark-night murder, strategy |l
A suspect will not be in the 2nd round iff
We cannot prove he/she has lied to the police; and
He/she is loyal to someone not in the 2nd round.
What is the maximal solution to — 2nd[] ?
— 2nd[i] = —Liar[i]n F=i(—=2nd[j]» Loyal-to[i,j])
In comparison:
— 2nd[i] = —Liar[iln Vj=i(—-2nd[j]x Loyal-to[i,j])
— - 2ndfi] =—LiarfilrVj=(—2ndfj] > Loyal-tofij])
— 2nd[i] = —Liar[iln Vj=(Loyal-tofij]= —2nd[j]) 100

Safety analysis

Given M and p (safety predicate), do all states
reachable from initial states in M satisfy p ?

In model-checking:
Is M a model of VLIp ?

Or in risk analysis: Is there a state reachable from
initial states in M satisfy p ?

vp = -3O—p = —3true U—p

101

| Reachability analysis: 3$n

Is there a state s reachable from another state
s’?

= Encode risk analysis

= Encode the complement of safety analysis

= Most used in real applications

102

Kripke structure
- safety analysis

Reachability algorithm in graph theory

Given

= a Kripke structure A = (S, S;, R, L)

= a safety predicate n,

find a path from a state in S to a state in [-n].

Solutions in graph theory
= Shortest distance algorithms
= spanning tree algorithms

103

Kripke structure
- safety analysis

I* Given A = (S, Sy, R, L)*/
safety analysis(n) /* using least fixpoint algorithm */ {

for all s, if —neL(s), L(s)=L(s)o{ZO—nk

repeat{ A notation for the
foralls, if 3(s,8)(: - nel(s)), | possibility of 1
L(s)=L(s)AZC-n};

} until no more changes to L(s) for any s.
if there is an s,eS, with 1< nel(s,),
return ‘unsafe,
else return ‘safe.’

}

The procedure terminates since S is finite in the Kripke
structure.

| Kripke structure

- safety analysis
Least fixpoint in modal logics

Kripke structure
- liveness analysis : V< 1
Given
a Kripke structure A = (S, Sy, R, L)
a liveness predicate n,
can n be true eventually ?

Example:
Can the computer be started successfully ?
Will the alarm sound in case of fire ?

106

Kripke structure
- liveness analysis

Strongly connected component algorithm in graph theory
Given

a Kripke structure A = (S, S;, R, L)

a liveness predicate n,
find a cycle such that

all states in the cycle are —n

there is a —n path from a state in S, to the cycle.

Solutions in graph theory
strongly connected components (SCC)

107

Kripke structure
- liveness analysis

O (Turn=0 < Turn=1)

108

Kripke structure
- liveness analysis

liveness(n) /* using greatest fixpoint algorithm */ {
for all s, if =neL(s), L(s)=L(s)u{3L1-n};
repeat {
for all s, if 300—n eL(s) and V(s,s")(300=nN €L(s)),
L(s)=L(s) - {3LI-n};
} until no more changes to L(s) for any s.
if there is an syeS, with I[J-neL(sy),
return ‘liveness not true,’
else return ‘liveness true.’

}

The procedure terminates since S is finite in the Kripke
structure.

109

‘Kripke structure

- liveness analysis
Greatest fixpoint in modal logics
iterative elimis

CTL model-checking

The NORMAL form needed in CTL model-
checking:
1. only modal operators
309, 3y Uy,, 300
2. No modal operators
VO, ¥y Uy,, VO, vO@, IO¢
3. No double negation: — —¢@
4. No implication: y,=v,

111

CTL
- model-checking algorithm (1/6)

Given M and o,
1. Convert @ to NORMAL form.
2. list the elements in CI (@) according to their sizes

Qo P1Py... P,
for all 0<i<j <n - @; is not a subformula ofgo,(sg“
2. for i=0 to n, next
label (@,) — page!

3. for all initial states s, of M, if @ZL(s,), return "No!’
4. return "Yes!’

112

CTL
- model-checking algorithm (2/6)

label(o) {
case p, return;

case —@, for all s, if @& L(s), L(s) = L(s) U{—@}

case@vy, for all s, ifpel(s) orgel(s),
L(s)=L(s){ovy}

case 30, for all s, if 3(s,s’) with pelL(s’),
L(s)=L(s) {30}

case 3y Uy,, Ifp(yy, vy);

case 3L1o, gfp(o);

}

113

CTL | | CTL
- model-checking algorithm (3/6) - model-checking algorithm (4/6)

Ifp(w, , v,) /* least fixpoint algorithm */ { Least fixpoint in modal logics

for all s, if v, eL(s), L(s)=L(s)u{3v Uy, };
repeat {
for all s, if v,eL(s) and 3(s,s’)(3v Uy, €L(s’)),
L(s)=L(s){3y Uy, };
} until no more changes to L(s) for any s.

}

The procedure terminates since S is finite in the
Kripke structure.

114

CTL CTL

- model-checking algorithm (5/6) - model-checking algorithm (6/6)
afp(y) /* greatest fixpoint algorithm */ { :

for all s, if v eL(s), L(s)=L(s) {30y };
repeat {
for all s, if 3a0yel(s) and V(s,s')30y &L(s"),
L(s)=L(s) - 300w };
} until no more changes to L(s) for any s.

}

The procedure terminates since S is finite in the
Kripke structure.

116

| (303pUqg) A I0p
Labeling funciton:
label the subforu
state.

true in each

| (303plg) A~ 30p
Evaluating 7pUq using least fixpoint

lteration O

(FO3plg) A 3I0p

Evaluating 7pUq using least fixpoint

Ilteration 1

Iteration 1

)

(FO3plg) A 3Ip
Evaluating 7pUq using least fixpoint

Ilteration 2 lteration 2

:

| (303plig) A I0p
Evaluating 7O Uq

\

| (303plig) A I0p
Evaluating 7/ Jp using greatest fixpoint
Iteration O

(FO3plg) A 30p
Evaluating 7/ Jp using greatest fixpoint
Iteration 1

(FO3plg) A 3I0p
Evaluating 7/ Jp using greatest fixpoint

Result:

Finally, evaluating

p, IpUq
303pUq, 70p
303pUq)AT]p

126

Workout: labelling

P
& &\

CTL

- model-checking problem complexities

The PLTL model-checking problem is PSPACE-
complete.

o definition: Is there a run that satisfies the formula ?
The PLTL without O (modal operator “next”)
model-checking problem is NP-complete.

The model-checking problem of CTL is PTIME-
complete.

The model-checking problem of CTL* is PSPACE-
complete.

128

CTL

- symbolic model-checking with BDD

System states are described with binary
variables.

n binary variables - 2" states

we can use a BDD to describe legal states.
a Boolean function with n binary variables
state(x;,, x,, » X,)

CTL - symbolic model-checking

with Propositioal logics
Example:

Xy Xy X3

state(X,, Xy, Xg) =
%
Y

130

CTL - symbolic model-checking
with Propositioal logics

State transition relation as a logic funciton
with 2n parameters
transition(x4, Xy, s Xpy Vs Yoy wevee , Vi)

aTETS <>

131

CTL - symbolic model-checking
with Propositioal logics

X1 Xo X3 Y1 Yo V3

transition(Xy, X,, X3, Y1, Yo, Y3) =
(XlA—lszX3/\—ly1/_|y2/\y3)
Vo (A AXAXATY AV A T Ya)
VA A GA T KA A AY)

132

CTL - symbolic model-checking with
Propositioal logics

Path relation also as a logic funciton
with 2n parameters

reach(xy, Xy, s Xpy Vs Vo wevee. , ¥n)

133

CTL - symbolic model-checking with
Propositioal logics

X1 Xo X3 Y1 Yo V3

reach(Xy, X, X3, Y1, Yo, ¥3) =
(X Ao AK A=Y LAY 5 AY 5)

(X, Ao AX gAY LAY A 3)
(—|X1/\—|X2/\X3/_ly1/\y2/\ — y3)
(—|X1/\X2/\ =1 XgATY AT HAY)
(—|X1/\—|X2/\X3/_ly1/_‘y2/\y3)

V (_'Xl; N = KN =Y 1 WZN_'yB)

134

< << K<

Symbolic safety analysis

= [: initial condition with parameters

X, Xpy weeen , X,
= n : safe condition with parameters

VAT ZTIRTINE » ¥n
m If IA—nA reach(x,, x,, s Xpy Vs Yoy ceeen , Vi)

is not false,
o a risk state is reachable.
o the system is not safe.

135

| Symbolic safety analysis (backward)

Encode the states with variables x,,x,...,X,.
= the state set as a proposition formula: s(xy,X1,-..,X)
the risk state set as r (Xy,X4,...,X,)

change all

the initial state set as i(xg,X4,...,Xy) umprimed
variable in b, 4

the transition set as t(xy,Xq,...,X,,X 0, X 1,--,X'p)
by = r(Xg,Xqs--sXn) AS(XgsXqs---5Xp); K= 1;

repeat

by = by vIX pIX ... 3X (H(X0: X1, e Xy X 0 X 1, X A4 T));

“ - al a least fixpoint procedure
until b, = b, _4;

if (b, Ai(Xg,X4,-.-,X,)) = false, return ‘safe’; else return ‘risky’;

to primed.

136

| Kripke structure
- symbolic safety analysis

\

states: s(X,y,z) = (—XA=Y A=Z)V(—XA—Y AZ)V(=XAY A—Z)
V (4XAY AZ)V(XATY A=Z)V(XA—Y AZ)
= (—X)Vv (XA—Y)

initial state:i(x,y,z)==—x~r=y A=z
risk state: r(x,y,z)= xA—y A=z

137

| Kripke structure
- symbolic safety analysis

\

transitions: T(x,y,z,x,y’,z')=
(—XARYA=ZAX AY AZ IV (AXATYAZA—X A—Y ASZ)
V(= XA=YAZA=X AY A—Z W (—=XAYA=ZAX A=Y A—Z)

V(EXAYASZAX A=Y AZ W (SXAYAZAX A=Y A=Z)
138

| Symbolic safety analysis (backward)

by = r(X,y,2) = XA—y A—2Z
b, = by v IX'3Iy'3Z(t(X,y,2,X,Y,Z’) AbyT)
= (XA—Y A=2Z)v IX'AY'AZ(H(X,Y,2,X,Y,Z') A X' A=Y A—Z')
= (XA—Y A=Z)v XY AZ (((—XAYA=Z)V(=XAYAZ)IAX A—Y A—Z)
= (XA—Y A—Z)V(=XAYA=Z)V(—XAYAZ)
b, = b, v Ix'3y'3Z (t(X,y,2,X,y,Z’) A by T)
= (—XAYAZ)V(XAYA—Z)V(—XAYA-Z)V(=XAYAZ) fixpoint
b, = b, v IX'3Iy'3Z(t(x,y,2,X,Y’,Z) A b,T)
= (= XAYA—=Z)V (=XATYAZ)V(XA=YA—Z)V(—=XAYA—Z)V
b, = by v IX'Iy'IZ(t(X,y,2,X,Y’,Z) A bsT)
= (- XAYA=Z)V (mXATYAZ)V(XA=YA—Z)V(=XAYA=Z)V(=XAYAZ)

non-empty intersection
with the initial condition .

b4 i 7 Y - \1 - 1

= risk detected.

| Symbolic safety analysis (backward)

One assumption for the correctness!

= Two states cannot be with the same
proposition labeling.

= Otherwise, the collapsing of the states may

cause problem. may need a few propositions
for the names of the states.

140

| Symbolic safety analysis (forward)

Encode the states with variables x,Xy,...,X,.
= the state set as a proposition formula: s(xy,X4,-..,Xp)
= the risk state set as r (Xg,Xq,-.-,X,)

change all
= the initial state set as i(xy,Xy,-..,Xp) primed
" y o) variable to
- t.he transition set as t(Xg,X,- -, X, X 0:X 13-+ ,X) umprimed.
fo = 1(XgsXqs--,X,) AS(XgsX1,--,X,); K=1;
repeat
f = fi i V(3XoIXq. .. 3X (UK X1, oo X0o X 0 X 15 X AT)N
k=k+1;
until f, =f,_,;

if (f, Ar(Xg,X4,-..,X,)) = false, return ‘safe’; else return ‘risky’;

141

| Symbolic safety analysis (forward)

fo = i(X,y,2) = = XAy A—Z
f, = f, v (Ix3y3z(t(x,y,2,X,Y’,Z’) Af))¥

= (—XA=Y A=z)v (IxTyFZ(H(X,Y,2,X,Y,Z)) A —XA—yA—=Z)W

= (—XA—y A—Z)V(IXTYTZ(—X A=Y AZ' A —XA—YA—Z)) +

= (—XA—Y A—Z)WV(—X A=Y AZ W

= (—XAY A—Z)V(=XATYAZ) = —XA—Y
f, = f, v (@x3y3Iz(t(x,y,2,X,Y,Z) A) = (=xA=y)v(=xay
f, =1, v (@x3y3z(t(X,y,2,X,Y,Z2) A LN = (my)V(—xAyA—z
f, = f; v (@x3y3Iz(t(x,y,2,X,Y,Z) A N = (my)v(—xAya—z
f4 A 1(X,Y,2Z) = ((mY)V(=XAYA—=Z)) A(XA—YA—=Z) = (XA—YA—Z)

z)

The value

'Bounded model-checking

of x, at

. . state k.
Encode the states with variables X ,,X; ..., X, %

= the state set as a proposition formula: s(Xg x,X; x,---,Xp k)
= the risk state set as r(xg ,X .-, Xp k)

= the initial state set as i(Xg 3,X1 g,---,Xp0)

= the transition set as t(Xg x_1,Xq k15- X k-1:X0 kX1 ko - -1 Xn k)

fo = 1(X0,0:X1,01-+:Xn,0) AS(Xg,0:X1.,0:--+:Xn0)s K= 1;

repeat
fi = HXo k1, X1 ket - X1 X0 ko X1 o+ -+ X) AT 15
k =k +1;

When to stop ?

until fk/\r(xo,klx1,k’ : --’Xn,k) = false 1. diameter of the state graph

2. explosion up to tens of steps.

143

Bounded model-checking

fo = i(X,Y,2) = —XpA—Yo A—Zg
fy = t(X0,Y0,20:X1,Y1,2Z1) Afg = =XoA—YoA—ZoA—=X4 A=Y 1AZ,
fo = 1(X4,Y1,21.%2,Y2,25) A £
= —XoATYAZoATXIATYIAZIA((FXATYAZH)V (X AY 2A—Z))
fa = 1(X0,Y2.25,%3,Y3,23) A 5
= —XgA—YgAZoA—XYATY4AZ,
A (XAy ARZoA—XgATY3AZ3)
V(XY AZoA((XaA—Y3AZ3)V (XgA Y 38 Z35)))
)
= —XgA—YgAZoA—XATY4AZ,

A((FXGATYPATZHA—XGATYZAZ)V (XGAYAZoAX3AY3))

£ ya \ ya \
I3 AT X3,Y3,23) = (X3ATY3A—Z3)
144

Symbolic liveness analysis

Encode the states with variables x0,x1,...,xn.
= the state set as a proposition formula: s(xy,X4,-..,Xp)
= the non-liveness state set as b(xy,Xy,...,X,) change all
= the initial state set as i(Xg,X1,...,X,) umprimed
- ., , variable in by 4
= the transition set as t(Xg,Xq,. ., X, X 0:X 15+ s X) to primed.
by = B(Xg,X1,---,Xn) AS(XgsXqs--,Xp); K=1;
repeat
by = by 4 ATX GIX ... 3X [(H(XgsX e 01Xy, X 00X 1500 X)AL 4 T);
k=Kk+1;
until b, = b, _4;
if (b, Ai(Xg,X1,.-.,X,)) = false, return ‘live’; else return ‘not live’;

145

| Kripke structure
- symbolic liveness analysis

\

states: s(X,y,z) = (—XA=Y A=Z)V(=XA=Y AZ)V(—XAY A—Z)
V (4XAY AZ)V(XATY A=Z)V(XA—Y AZ)
= (—=X)V (XA—Y)

initial state:i(x,y,z)==xAr=y A=z
non-liveness state: b(x,y,z)= (—X)v(xA—y AZ)

146

| Kripke structure
- symbolic liveness analysis

\

transitions: T(x,y,z,x,y’,z')=
(XAYAZAX AY AZ IV (AXATYAZAX A—Y A—Z)
V(XAYAZA—X AY A—Z W (—XAYA-ZAX A—Y A—Z)

V(SXAYA=ZAX A=Y AZ)W (SXAYAZAX A=Y A=Z')

147

| Symbolic liveness analysis

b0 = b(x,y,z) = (—=X)v(XA—=Yy AZ)
b1 =Db0 A IX3IY'IZ(T(X,y,2,X,y’,Z2’) AbO’)

= ((=X)Vv(xr—y AZ))

A AXAY'IZ(T(X,Y,2,X,Y,Z) A (=X)V(X' A=Y’ AZ’)))
= ((=x)v(xA—y AZ))A
AXAY'IZ(((—XA—YA—Z)V(—XAYA—Z)V(—XA—YAZ))
A(=X)WV (X' A=Y’ AZ')))

= (—XAYAZ)V(—XAYA—Z)V(—XA—YAZ)

b2 = b1 A IX3IY'IZ(T(X,y,2,X,Y’,Z’) Ab1’)

fixpoint

= (—XAYA—Z)V(—XAYA—Z)
b3 = b2 A IX'IY'3Z(T(X,y,2,X,

detected.

non-empty
intersection with
the initial condition
- non-liveness

N

)

148

CTL
- symbolic model-checking algorithm
Assume program with rules ry, r,, ..., I,
label(o) {

case p, return p;

case —, return —label(p);

case @vy, return label(p) v label(y),

case 30q, return Vv,_, pred(r;, label(®));

case 3y, Uy,, return Ifp(l abel(y), label(y,));
case 3L1g, return gfp(label(®));

}

149

| Symbolic model-checking
- with real-world programs

Consider guarded commands with modes (GCM)
Guard - Actions

= Guard is a propositional formula of state variables.

= Actions is a command of the following syntax.

C:=ACT|{C}|CC|ifB)Celse C|while (B) C
ACT ::=;| gotoname; | x = E

150

' Guarded commands with modes (GCM)

guarded commands

T > (pc==1) > w = 0; pc=2;
___________ » (pc==2) 2 x = 0; pc=3;
>(pc==3) 2> y = z*z; pc=4;

_ _ - -7(pc==4&8&x>=y) > pc=8;
while (x <y) {==--- - >(pc==48&&x < y) > pc=5;
0 e o >(pc==5) > w=w+x*Zz; pc=6;
5 (pc==6) <> x=x+1; pc=4;

(pc==8) = if (w>z*z*z) w= z*z*z;
j 3
if (Ww>z*z*z) w = z*z*z;
program

N RONS
=
[
3
+
>
*
N

151

‘ A state-transition
- represented as a GCM

8 rules in total:
(a1) > w = 0; goto az;

(a2) - x = 0; goto a3;

(a3) > y = z*z; goto a4,
(a4&&x>=y) - goto a8;
(a4&&x < y) - goto ab;

(a5) > w=w+x*z; goto ab;
(ab) 2> x=x+1; goto a4;

(a8) = if (w>z*z*z) w= z*z*z; }

a
a
a

152

A state-transition
- represented as a GCM

(a3)>y =z*z;

(@b)>x= x+1; }
(a4rx<y)=>; a (@5)>w = w+x*z;

(a8)>if(w>z*z*z)w = Z*Z*Z%

(adrx>=y)>;

153

Transition relation

- from state-transition graphs
Given a setof rules ry, r, ..., 1, of the form

e (%) 2 Yeo=d0s Yk 17945 -3 Y=k

t(x X X 0:X 15+ :X 1)

0 X
V ke(1,m] \ A Yio==doAY 'k 1==diA. A Yy ==

A /\he[1,n] (Xh¢{yk,o’ Yicts -+ Yionkt=>X p== X’h)

)

154

Transition relation from GCM rules.

Given a set of rules for X={x,y,z}

ri: (X<y&& y>2) 2> y=x+y; x=3;

r: (z>=2) 2 y=x+1; z=0;

ry: (x<2) =2 x=0;

t(Xgs X151 XX 0 X 13-+ sX)

= (XY A Y>2 A Y'==X+y A X'==3 A Z’==2)
V(z>=2 A y'==x+1 A 2’==0 A X'==X)

V(X<2 A X'==0 A Yy'==y A Z'==Z)

155

Transition relation

- from state-transition graphs

In gneral, transition relation is expensive to
construct.

Can we do the following state-space
construction

X 3K 4. 3K (H K X g - 01Xy, X 0 X 1o X IA(D4T))
directly with the GCM rules ?

Yes, on-the-fly state space construction.

156

On-the-fly precondition calculation
with GCM rules.

Given a setof rules ry, ry, ..., 1, Of the form
e (t) 2 Yio=do; Yie1=d4s -5 Yienk=dnio

X (3X 1. 3K (H(X X g oo X, X 0 X 152X)A(DT))
= vke[1 m] \Tk

Y031+ --FYink (b A he[o,nk] Ykh™ dh)

However, GCM rules are more complex than that.

157

| On-the-fly precondition calculation

with GCM rules.

Given a set of rules for X={x,y,z}
ri: (X<y&& y>2) 2> y=z; x=3;
ry: (z>=2) 2 y=x+1; z=7,
ry: (x<2) - z=0;
X 3N ... 3X (UK X g - X X 00X 150w X IA(X<AAZ>5)T)
= (XY A y>2 A yIX(X<4AZ>5 A y==Z A X==3))
V(z>=2 A Fy3z(x<4Az>5 A y==x+1 A z==T7))
Vv(X<2 A Jz(x<4rz>5 A z==0))
(X<y A y>2 A 2>5) v(z>=2 A X<4)v(x<2 A Jz(false))
(X<y A y>2 A z>5) v(z>=2 A x<4)

158

| On-the-fly precondition calculation

with GCM rules.

Given a setof rules ry, r,, ..., r,, Of the form
e () 2 S

X (3K ... 3X (HXg X g e X X 0:X 1, X)A(DT))
= vke[1,m] (Tk A pre(sy,b))

precondition
procedure

What is pre(s,b

A GCM statement

A general propositional formula

159

On-the-fly precondition calculation
with GCM rules.

Given a setof rules ry, r,, ..., 1, Of the form

e (t) 2 S
. new expression obtained from b by
= pre(x = E;, b)= b[X/E]

Ex 1. the precondition to x=x+z;
[X/x+Z] = x+z==y+2 A X+2<4,z>5

Ex 2. the precondition to x=5;
[X/x+z] = 5==y+2 A 5<4rz>5

Ex 3. the precondition to x=2*x+1;
[X/x+2z] = 2*x+1==y+2 A 2*x+1<4,2>5

160

On-the-fly precondition calculation
with GCM rules.

Given a setof rules ry, ry, ..., 1, Of the form
e (t) 2 S

new expression obtained from b by
replacing every occurrence of x with E.

Ex. the precondition to x=x+z;
[X/x+Z]
= pre(s,s,, b) = pre(s,, pre(s,, b)) arem s

What is pre(s,b) ?
= pre(x = E;, b) = b[X/E]

= pre(if (B) s else s,) = (BApre(ss, b))v(—Bapre(s,,b))
= pre(while (B) s, b) =

161

| On-the-fly precondition calculation
with GCM rules.

Given a setof rules ry, ry, ..., r, Of the form
ne () 2 S

What is pre(s,b) ?
pre(while (B) s, b) = formula L,vL, for
L,: those states that reach —BAb with finite steps of s

through states in B; and

L,: those states that never leave B with steps of s.

162

| On-the-fly precondition calculation
with GCM rules.

L,: those states that reach —BAb with finite steps of

s through states in B
Wy = —=BAb; k = 1;
w, = w,_(v(BAapre(s, w,_4));
k=k+1;
until w, = w,_;
return w;;

163

W, = —BAab; k = 1;

Precondition to b o<~
through while (B) s; | kil ®wree

until wy, = w,_;;

Example: b=x==2Ay== return w,;
while (X <y) x = x+1;

L1 computation.

Wy = X>=yAx==2Ay==3 = false ; k = 1,
W, = falsev(x<yapre(x=x+1, false));

= falsev(x<ynfalse);

= false;

164

On-the-fly precondition calculation
with GCM rules.

Given a setof rules ry, r,, ..., r,, of the form
pre(while (B) s, b)
L,: those states that never leave B with steps of s.
wy=B; k=1,
repeat
Wi = Wi APre(s, Wi q);
k=Kk+1;
until w, = w,_;
return w,;

165

Precondition to b Wo=Bik=1;

repeat
through while (B) s; = eia™ ™

Example: Sk

while (x<y && x>0) x = x+1;

L2 computation.

Wy = X<yax>0; k =1,

W, = X<yax>0 A pre(x=x+1, x<yax>0)

X<YAX>0 A X+1<yAx+1>0 = x>0 A x+1<y

W, = X+1<yAx>0 A pre(x=x+1, x+1<yax>0)
= X+1<yAXx>0 A X+2<yAx+1>0 = x>0 A x+2<y
non-terminating for algorithms and protocols!

166

Precondition to b voBike
through Whlle (B) S; ‘I’(an:k\'\iki!/\pre(s, Wio);
Example: oty

while (x>y && x>0) x = x+1;
L2 computation.
Wy = Xx>yax>0 ; k =1,
W, = x>yAx>0 A pre(x=x+1, x>yAx>0)
= X>YAX>0 A X+1>yAx+1>0 = x>y A x>0
terminating for algorithms and protocols!

167

Precondition to b o= Bk
thf Ough Whlle (B) S; \|2/k= =kvik1_1;v(B/\pre(s, We);
Example: b = x==2Ay== i = w

while (x>y && x>0) x = x+1;
L1 computation.
Wy = (X<ZYVX<=0)AX==2Ay==3 = X==2Ay==3;

W, = (X==2Ay==3)v(Xx>yAx>0Apre(x=x+1,x==2Ay==3));

)
= (Xx==2Ay==3)v(X>yAx>0Ax==1Ay==3);
= (x==2Ay==3) v false

= X==2Ay==3

168

Symbolic weakest precondition

Assume program with rules
X=3Ay=6 2 X:=2; z:=7,

@D — ==

X, Y, Z are discrete variables with range
declarations

What is the weakest precondition of n for those
states before the transitions ?

169

| Symbolic weakest precondition

Assume program with rules
m I X=3Ay=6 2 x:=2; z:=7;

@ ==

| Symbolic safety analysis

- with Kripke structures as programs

Assume program with rules ry, r,, ..., I,

What charcterizes all states that can reach —n?

Ifp (o, W) /* for IeUY™/ {
Z = false; Z:= y;

while (Z # Z’) {
7 =7 s
What is the weakest precondition of n for those Z = Z v (QAVippred(r, Z)); -
. i=n i ... predicate .
states before the transitions ?) .._;
e turn (2);
pre(r, n) e x= 3AY=6ATxFZ(X=2 A Z=7AN) . retun (2) i Initial
’ ...condition .
Symbolic liveness analysis Bisimulation Framework
- with Kripke structures as programs
Assume program with rules ry, r,, ..., I, model Answer

What is the charcterization of all states that may not

reach n?
Z' = false; Z:= @; - L
while (Z = Z') { Do
Z =7 Pt .
Z:=@ AV, pred(r, Z2); ¢ L qegatlve
) i 103 liveness |
1 return (2); Initial .p.)iedlca:te_ .

condition ..

Yes if the model
is equivalent to
the specification

No if not.

Mon specifigation

173

| Bisimulation-checking

= K=(S, S;, R, AP, L)
K'=(S, S,, R, AP, L")

= Note K and K’ use the same set of atomic
propositions AP.

= BeSxS'’is a bisimulation relation between K and
K’ iff for every B(s, s):
o L(s)=L(s’) (BSIM 1)
o If R(s, s4), then there exists s,” such that R'(s’, s,’) and
B(s4, s¢')- (BISIM 2)
o IfR(s’, s,'), then there exists s, such that R(s, s,) and
B(s,, S5'). (BISIM 3)

174

‘ Bisimulations

K K’

175

‘ Bisimulations

176

‘ Bisimulations

K K’

177

‘ Bisimulations

| Examples

.........

| Examples | Examples
B v i - 7 0
Unwinding preserves bisimulation Cg) @ (@ @

G—@)y G—@)y
@A@RM A@RM
GOy G0y

m ﬂ@[m m A?w
Gy

A@RM

Gy

| Examples

| Examples

7

@
C@)
(&

P

& &

186

| Examples

!

& &

187

‘ Bisimulations

= K=(S, Sy, R, AP, L)

= K'=(S’, Sy, R, AP, L’)

» Kand K’ are bisimilar (bisimulation equivalent) iff
there exists a bisimulation relation B S x S’
between K and K’ such that:

o Foreach sy in S, there exists sy’ in S, such that
B(so , S07)-

o Foreach sy’ in Sy’ there exists s, in S, such that
B(so , S07)-

188

'The Preservation Property.

= K=(S, Sy, R, AP, L)
K'=(S’, Sy, R’, AP, L)

= B c SxS’, a bisimulation.

Suppose B(s, s’).

FACT: For any CTL formula y (over AP),
K,sky iff K’,s’Fy.

If K is smaller than K this is worth something.

189

Simulation Framework

Answer
Yes if the model
_.‘—> satisfies the
specification
t No if not.

Mon speciffeation

190

Simulation-checking

K= (S, Sy R, AP, L)

K= (S, S,, R, AP, L)

Note K and K’ use the same set of atomic
propositions AP.

B € S x S’ is a simulation relation between

K and K’ iff for every B(s, s’):

a L(s)=L'(s") (BSIM 1)

o IfR(s, s4), then there exists s,’ such that R’(s’,
s,’) and B(s4, s;’). (BISIM 2)

191

Simulations

K=(S, Sy, R, AP, L)

K'=(S’, Sy, R, AP, L)

K is simulated by (implements or refines) K’ iff there
exists a simulation relation B ¢ SxS’ between K and

K’ such that for each s; in S, there exists s,” in S’
such that B(sg , sy’).

192

Bisimulation Quotients

K=(S, Sy R, AP, L)

There is a maximal simulation B S x S.
o Let R be this bisimulation.

o [s]={s" | sRs’}.

R can be computed “easily”.

K’ = K/ R is the bisimulation quotient of K.

193

‘Bisimulation Quotient

= K=(S, Sy, R, AP, L)
= [s]={s’ | sRs}.
= K=K/R=(S’, S, R, AP,L").
0SS ={s]|s2S}
0 S’ ={[so] | 502 Sp}
a R*={(s], [s’]) | R(sy, s¢°) , s4€ls], s, €[s]}
o L'([s]) = L(s).

194

| Examples

7@

@
C@)
(&

195

| Examples

196

| Examples

Ve
by

197

Facts About a (Bi)Simulation

The empty set is always a (bi)simulation
If R, R’ are (bi)simulations, sois RUR’

Hence, there always exists a maximal (bi)simulation:

o Checking if DB,=DB,: compute the maximal bisimulation R,
then test (root(DB,),root(DB,)) in R

Kripke structure
- simulation-checking

[* Given model A = (S, Sy, R, L), spec. A’=(S’, S’;, R’, L) */
Simulation-checking() /* using greatest fixpoint algorithm */ {
Let B={(s,s’) | s€S, s’eS’, L(s)=L'(s’)} ;
repeat {
B=B-{(s,s)] (s,s")eB, 3(s,t)eRV(s’,t')eR((t,t')¢B)};
} until no more changes to B.
if there is an s,eS, with Vs',eS’((sy,S'y)¢ B),
return ‘no simulation,’
else return ‘simulation exists.’

}
The procedure terminates since B is finite in the Kripke
structure.
Kripke structure (Bi)Simulation
- bisimulation-checking - complexities

[* Given model A = (S, Sy, R, L), spec. A’=(S’, S’,, R’, L) */
Bisimulation-checking() /* using greatest fixpoint algorithm */ {
Let B={(s,s’) | s€S, s’eS’, L(s)=L'(s")};
repeat {
B=B-{(s,s)](s,s)eB, 3(s,t)eRV(s’,t')eR’((t,t')¢B)};
B=B-{(s,s)](s,s)eB, 3(s’,t')eR’V(s,t)eR((t,t')¢B)};
} until no more changes to B.
if there is an s eS, with Vs',eS’((sy,Sy)¢ B),
return ‘no simulation,’
if there is an s’,eS’ with VsyeSy((sy,8'y)¢ B),
return ‘no simulation,’
else return ‘simutation exists:’

} 200

Bisimulation: O((m+n)log(m+n))
Simulation: O(m n)

In contrast, finding a graph homeomorphism
is NP-complete.

201

| Symbolic simulation-checking

= Encode the states with variables

O XgXq,...,X, (for the model) and

o YoY1s - Y (for the spec.)

Usually there are shared variables

between {xy,X4,....X, } and {yo.Y1, -+ Ym}-

L(s)=L’(s’) means that the shared variables are of the same values.
= the state sets as proposition formulas:

o S(XgXqy--Xn) & S(YoiY1s---:Ym)
= the initial state set as

O i(XgeXqy--Xn) & 1'(YosY1se -+ Ym)
= the transition set as

0 R(XgXqye e XnsX 0:X 13- 5Xn) & R (Y0sY1se- s Y Y 0¥ 15+ Y ')

202

| Symbolic simulation-checking

By = /\L(xo,x1 %) =L(y0y1,....ym) S(X:X15+- %) AS(Y0sY1s-+5Ym);
for (k = 1, B,= false; B, # B, ;; k=k+1)
By = By A 23X p3X ... 3X, (
R(XgsX1s- s Xpy XX 15+, X)
A=Y oYy TV (
R (Yo Y1 Ym Yo 1Y m) A By T)
))
if (I(XgsX1,-- X0)Z3Y03Y1---3Ym (By)),
return ‘no simulation’;
else return ‘a simulation exists’;

change all
umprimed
variable in B,_,

to primed.

203

Symbolic simulation-checking
- an example

spec
{x.y,z}

model
{x.y}

= s(X,y)=true, s’(X,Y,z) = —zv(—XAYAZ)
m i(X,y) = =xA—y, i1(X,Y,2) = = XA—YA—=Z
= R(x,y,xX,y)=...... , R(x,y,z,x,y,zZ)=......

204

Symbolic simulation-checking
- an example

spec
{x.y,z}

5 R(XY,X,Y) = (—XAYA=X AY') V(=XAYAX AY’)
V (= XAYAX'AY) V(XA=YA—X ATY) V(XAYA—=X A=Y’)
= R(x)y,z,X,y,Z’) = (—-XA=YA—=ZA=X' AY)
V (—XAY A—ZAX A—Y A—Z') V(SXAYAZAX AY' A—Z)

V(XA=YA—Z A—X' AY A=Z') VIXAY A—ZA—X Ay A—Z)

205

| Symbolic simulation-checking
- an example

By = s(X,Y)AS'(X,Y,2) = =ZV(—XAYAZ)
B1 = (—zv(—XAyAZ)) A = 3IXTY’(
((—XA=YA=XAY) V(=XAYAX' A—Y)
V (—XAYAX' AY’) V(XA—YA—X ALY VIXAYA—X A—Y)
)
A= AXAY'3Z (
((—XARYA—ZA=XAY')
V (—XAY A—ZAX A=Y A—Z) V(=XAYAZAX AY' A—Z')
V (XAYA—Z A—X ADY A—Z') V(XAY A—ZA—X A—Y A—Z)
) A (SZV(=XAY'AZY)))
= (—zv(—XAYAZ)) A = XY (((—XA=Y AZ AXAY) V (—XAYAXAY')

V(XA=Y AZ A=X A=Y) V(XAY AZ A=XA=Y)))

= (m2v(—=XAYAZ)) A =((=XAY AZIV(=XAYIV(XASY AZ) V(XAY AZ))

206

| Symbolic simulation-checking
- an example

B4 = (mzv(—XAYAZ)) A ((—XA=Y AZ)V(=XAYIV(XA—Y AZ) V(XAY AZ))

—ZV(—XAYAZ)) A ((—XATY AZ)V(=XAYIV(XAY AZ) V(XAY AZ))

Zv(—XAYAZ)) A =(2V(=XAY A=Z))

A —(Z) A =(—XAY A—=2Z)
—(

ZV(—XAYAZ)) A —(Z) A =(—XAY A—Z)

(

(=
(—=zv(—XxAyAZ)
(=

(

— =~ ~—~ ~—

—XASYA—ZIV (XA— YAZIV(XAY A —Z)

207

| Symbolic simulation-checking
- an example

B, = ((- XA=YA—Z)V (XA— YA-Z)V(XAY A —Z)) A — IXTY (
((=XA=YA=X'AY’) V(—=XAYAX A—Y’)
V (—XAYAX'AY) VIXA=YA=X ATY) VIXAYA=X A—Y)
)
A= IAX3Y’3Z(
((—XA=YA—ZA—X'AY)
V (—XAY A—ZAX AY A—Z') V(=XAYAZAX AY' A—Z)
V (XA—YA—Z A=X AY A—Z') V(XAY A—ZA—X A—Y A—Z)
) A (X A=Y’ A=Z)V (XA Y A=ZIWV(XAY A —=Z)))
= ((=XA=YA—=Z)V (XA— YASZ)IV(XAY A —Z)) A — XY’ (

(—XA=YAXAY) VIXARYAZA—X AY) VIXAYAZA—X AY')))

= ((—XAYA=Z)V(XA— YASZIV(XAY A=Z))A—((—XA=Y WV (XA=YAZ)V(XAYAZ)))

208

| Symbolic simulation-checking
- an example

B,
= ((—XAYA=Z)V(XA— YASZIV(XAY A—Z))A=((—XA=Y IV (XA=YAZ)V(XAYAZ)))
= (XA YA=Z)V(XAY A—Z)

Here, the initial
statepair has been
elimianted.

209

