Büchi Complementation

Yih-Kuen Tsay
(with help from Chi-Jian Luo)
Department of Information Management
National Taiwan University

FLOLAC 2009
Outline

- Introduction
- Why Is Büchi Complementation Hard?
 - Complementation via Determinization
 - Muller-Schupp Construction
 - Safra’s Construction
 - Safra-Piterman Construction
- Other Approaches
- Concluding Remarks
- References
Introduction

- Languages recognizable by (nondeterministic) Büchi automata are called ω-regular languages.
- The class of ω-regular languages is closed under intersection and complementation (and hence all boolean operations).
- Deterministic Büchi automata are strictly less expressive.
- The complement of a deterministic Büchi automaton may not be deterministic.
While intersection is rather straightforward, complementation is much harder and still a current research topic.

A complementation construction is also useful for checking **language containment** (and hence equivalence) between two automata:

$$L(A) \subseteq L(B) \equiv L(A) \cap L(B^c) = \phi.$$

The language containment test is essential in the **automata-theoretic approach** to model checking (more about this later ...).
Complementation of an NFA

- Translate the given nondeterministic finite automaton (NFA) N into an equivalent deterministic finite automaton (DFA) D via the subset construction.
- Take the dual of D to get a DFA D' for the complement language.
- This works because languages recognizable by DFA’s are closed under complementation.
Example of NFA Complementation

- \(L(N) = (a+b)^*aa^* \), which equals \((a+b)^*a\).

NFA \(N \)

- An equivalent DFA \(D \) by the subset construction.

DFA \(D \)

There are two unreachable states in \(D \).
Subset Construction for Finite Words

Formally, from NFA $N=(S_N, \Sigma, \delta_N, q_0, F_N)$, we construct an equivalent DFA $D=(S_D, \Sigma, \delta_D, \{q_0\}, F_D)$ as follows:

- $S_D = 2^{S_N}$
- $\delta_D(S, a) = \bigcup_{s \in S} \delta_N(s, a)$
- $F_D = \{ S \in S_D \mid S \cap F_N \neq \phi \}$
ω-Automata

- **ω-automata** are finite automata on infinite words.
- Büchi automata are one type of ω-automata.
- Formally, a (nondeterministic) ω-automaton B is represented as a five-tuple $B=(\Sigma, S, s_0, \delta, \text{Acc})$:
 - Σ: a finite alphabet (set of symbols)
 - S: a finite set of states (or locations)
 - $s_0 \in S$: the initial state
 - $\delta: S \times \Sigma \rightarrow 2^S$
 - Acc: the acceptance condition

When δ is actually a function from $S \times \Sigma$ to S, the automaton is said to be *deterministic*.
A run of an \(\omega \)-automaton \(B \) on a word \(w = w_1w_2 \ldots \) is an infinite sequence of states \(s_0s_1 \ldots \in S^\omega \) such that for all \(j \geq 0 \) we have \(s_{j+1} \in \delta(s_j, w_{j+1}) \).

For a run \(r \), let \(\text{Inf}(r) \) denote the set of states that occur infinitely many times in \(r \).

A word \(w \) is accepted by \(B \) if there exists an accepting run of \(B \) on \(w \) that satisfies the acceptance condition.

The language of \(B \), denoted \(L(B) \), is the set of all words accepted by \(B \).
Büchi and Other ω-Automata

- **Büchi automata:**

 $\text{Acc} = F \subseteq S$.

 A run r is accepting iff $\text{Inf}(r) \cap F \neq \emptyset$.

- **Parity automata:**

 $\text{Acc} = \{F_0, F_1, \ldots, F_k\}, F_i \subseteq S$.

 A run r is accepting iff the smallest i such that $\text{Inf}(r) \cap F_i \neq \emptyset$ is even.
Büchi and Other ω-Automata (cont.)

- **Rabin automata:**

 \[Acc = \{(E_1, F_1), (E_2, F_2), \ldots, (E_k, F_k)\}, \ E_i, F_i \subseteq S. \]

 A run r is accepting iff for some i, $\text{Inf}(r) \cap E_i = \emptyset$ and $\text{Inf}(r) \cap F_i \neq \emptyset$.

- **Streett automata:**

 \[Acc = \{(E_1, F_1), (E_2, F_2), \ldots, (E_k, F_k)\}, \ E_i, F_i \subseteq S. \]

 A run r is accepting iff for all i, $\text{Inf}(r) \cap E_i \neq \emptyset$ or $\text{Inf}(r) \cap F_i = \emptyset$.

- **Rabin automata and Streett automata** are the dual of each other.
Convenient Acronyms

- DBW (or DBA): deterministic Büchi automata
- NBW: nondeterministic Büchi automata
- DPW: deterministic parity automata
- DRW: deterministic Rabin automata
- DSW: deterministic Streett automata
- etc.

Note: replace W with T, for tree automata.
An Example of Büchi Automaton

- $B = (\{a, b\}, \{q_0, q_1\}, \{q_0\}, T, \{q_1\})$
 - $T(q_0,a) = \{q_0, q_1\}$
 - $T(q_0,b) = \{q_0\}$
 - $T(q_1,a) = \{q_1\}$
 - $T(q_1,b) = \{\}$

- Apparently, B is nondeterministic.

- $L(B) = (a+b)^*a^\omega$ (or “FG a” or “<>[a]”).
If we use the subset construction to construct a DBW D from an NBW N, the two automata may not be language equivalent.

By construction, the accepting states of the DBW D are those that contain an accepting state of the original NBW N.

D may accept some words that are rejected by N, as shown by the following example.

Thus, this method is not sound.
Naive Subset Construction

- NBW N defines the language: $(a+b)^*a^\omega$ ("eventually always a").

![Diagram of NBW N]

- N accepts words like $ababa^\omega$ and $bbba^\omega$.
- N rejects words like $(ab)^\omega$ and $bb(ba)^\omega$.

A DBW D by the naive subset construction.

![Diagram of DBW D]

(unreachable states removed)

- D accepts every word that is accepted by N.
- However, D also accepts some words that are rejected by N, e.g., $(ab)^\omega$.
Another Subset Construction

- This subset construction keeps more detailed information of accepting states visited in a run.
- A state of D is called a **breakpoint** if the state does not contain any unmark state of N.
- The construction will mark an accepting state of N and every state that has a marked predecessor.
- A word w is accepted if D identifies **infinitely many breakpoints** while reading w.
- This does not work, either; see the example next.
Another Subset Construction (cont.)

- This automaton accepts the input word a^ω.
- The constructed automaton also has a run on a^ω, which is accepting.
Another Subset Construction (cont.)

- This automaton also accepts the input word b^ω.

- However, the single run of the constructed automaton on b^ω is rejecting:

$$\begin{align*}
{s0} & \xrightarrow{b} \{s0, s2!\} & \xrightarrow{b} \{s0, s2!\} & \xrightarrow{b} \{s0, s2!\} & \xrightarrow{b} \ldots
\end{align*}$$

- Therefore, this construction is incomplete, missing words that should be accepted.
Duality Does Not Apply

If we take the dual of a given DBW D to get DBW D', then it is possible that $L(D) \cap L(D') \neq \emptyset$, e.g., $(ab)^\omega$.

Note: DBW is not closed under complementation, e.g., $((a+b)*a)^\omega$ (or GF a).
Muller-Schupp Construction

- We shall now study three constructions for Büchi complementation.

- Stages in Muller-Schupp construction:
 - NBW \rightarrow DRW \rightarrow (complete) DSW \rightarrow NBW
 - The DSW is the complement of the DRW, by taking the dual view.

- The determinization part uses Muller-Schupp trees to construct the DRW.

- A Muller-Schupp tree (MS tree) is a finite strictly binary tree, which has precisely two children for each node except the leave nodes.
Run Trees vs. Run DAG’s

In Figure (a) is an example run tree r_w and in (b) is the corresponding run DAG r_d.
MS Trees

- In a run tree r_w, we partition the children of a node v into two classes, the left child which carries an accepting state and the right one which carries a non-accepting state.
- Let us refer to the new tree as t_1.
- Claim: r_w has an accepting path iff t_1 has a path branching left infinitely often.
MS Trees (cont.)

- For every state \(s \) on each level in \(t_1 \), if we only keep the leftmost \(s \), we obtain another new tree \(t_2 \).
- Claim: \(t_1 \) has a path branching left infinitely often iff \(t_2 \) has a path branching left infinitely often.
MS Trees (cont.)

\[
\begin{align*}
&\text{w1} & & \{s0\} \\
&\text{w2} & & \{s0, s3\} \\
&\text{w3} & & \{s2\}
\end{align*}
\]

\[
\begin{align*}
&\text{w1} & & \{s1\} \\
&\text{w2} & & \{s4\} \\
&\text{w3} & & \{s5\}
\end{align*}
\]

\[
\begin{align*}
&\text{w1} & & \{s0\} \\
&\text{w2} & & \{s1, s3\} \\
&\text{w3} & & \{s2\}
\end{align*}
\]

\[
\begin{align*}
&\text{w1} & & \{s1, s2, s3\} \\
&\text{w2} & & \{s1, s4, s5\} \\
&\text{w3} & & \{s2\}
\end{align*}
\]

1\{s0\}r
2\{s1, s3\}g
3\{s2\}r
1\{s1, s4, s5\}r
2\{s4, s5\}y
5\{s4\}r
6\{s1\}g
1\{s1, s2, s5\}r
2\{s1, s2\}y
3\{s5\}g
4\{s1\}g
5\{s2\}r
6\{s5\}g

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation
Three Colors for the Nodes

Three colors are used to identify whether a node is accepting or not.

- A node is red if the run path that the node represents has no accepting state.
- A node is yellow if it has visited an accepting state before but it does not visit an accepting state in this step.
- A node is green if it visits an accepting state in this step or it merges a green or yellow son.
An Example of MS Construction

2009/7/9 Yih-Kuen Tsay

FOLAC 2009: Büchi Complementation
An Example of MS Construction (cont.)

compute successors

\[1\{q_0,q_3\} \text{r} \]

\[2\{y\} \quad 3\{q_0,q_3\} \text{r} \]

\[5\{q_3\} \text{y} \quad 6\{q_0\} \text{r} \]

create sons

\[1\{q_0,q_3\} \text{r} \]

\[2\{y\} \quad 3\{q_0,q_3\} \text{r} \]

\[5\{q_3\} \text{y} \quad 6\{q_0\} \text{r} \]

\[4\{q_3\} \text{g} \quad 7\{q_0\} \text{r} \]

remove empty

\[1\{q_0,q_3\} \text{r} \]

\[3\{q_0,q_3\} \text{r} \]

\[5\{q_3\} \text{y} \quad 6\{q_0\} \text{r} \]

\[4\{q_3\} \text{g} \quad 7\{q_0\} \text{r} \]

merge sons

\[1\{q_0,q_3\} \text{r} \]

\[5\{q_3\} \text{g} \quad 6\{q_0\} \text{r} \]

\[b \]

2009/7/9 Yih-Kuen Tsay

FLOLAC 2009: Büchi Complementation

27 / 53
An Example of Rejecting a Word

200/7/9 Yih-Kuen Tsay

FOLAC 2009: Büchi Complementation
The Detail of Determinization

Let $A = (\Sigma, S, s_0, \delta, F')$ be an NBW with n states.

An equivalent DRW $D = (\Sigma, S', s_0', \delta', Acc)$:

- S': a set of MS trees,
- s_0': an initial MS tree with only one node numbered 1, which is labeled $\{s_0\}$ and colored red,
- δ': a transition function which, given an input $a \in \Sigma$, transforms an MS tree using the steps described next.
- $Acc = \{(E_1,F_1), (E_2,F_2), \ldots, (E_{4n},F_{4n})\}$:
 - E_i: the set of MS trees without node i.
 - F_i: the set of MS trees with green node i.
Steps to compute the next MS-tree state:

- Change color green to yellow for every tree node.
- Replace the label of every node with $\bigcup_{s \in L} \delta(s, a)$.
- Create a left child with label $L \cap F$ and a right child with label $L \setminus F$.
- Merge the same states into the leftmost one for each level in the tree.
- Remove every node with an empty label.
- Mark green every node that has only one child with color green or yellow.
Safra’s Construction

- Stages of the complementation:
 - NBW \rightarrow DRW \rightarrow (complement) DSW \rightarrow NBW
- Safra trees are used to construct the DRW.
- Safra trees are labeled ordered trees.
Safra Trees

FLOLAC 2009: Büchi Complementation
An Example of Construction

1\{q0\}

compute successors

1\{q0, q1\}

create sons

1\{q0, q1\}

2\{q1\}

compute successors

2\{q1\}

3\{q1\}

merge states

1\{q0, q1\}

4\{q1\}

remove empty

1\{q0, q1\}

2\{q1\}

merge sons

1\{q0, q1\}

2\{q1\}!!

a

a

2\{q1\}

3\{q1\}

4\{q1\}
An Example of Construction (cont.)

2007/7/9 Yih-Kuen Tsay

FOLAC 2009: Büchi Complementation
An Example of Rejecting a Word

2009/7/9 Yih-Kuen Tsay FLOLAC 2009: Büchi Complementation 35 / 53
An Example of Rejecting a Word

create sons

1\{q0, q1\}
2\{q1\}
3\{q1\}
4\{q1\}

compute successors

1\{q0, q1\}
2\{q1\}
3\{q1\}
4\{q1\}

2\{\}
4\{\}
1\{q0\}
3\{\}

remove empty

1\{q0\}

compute successors

1\{q0, q1\}
2\{q1\}

create sons

1\{q0, q1\}
2\{q1\}

merge states

1\{q0, q1\}
2\{q1\}
3\{\}
4\{q1\}

remove empty

1\{q0, q1\}
2\{q1\}

merge sons

1\{q0, q1\}
2\{q1\}!
Detail of the Determinization

Let $A = (\Sigma, S, s_0, \delta, F)$ be an NBW with n states.

An equivalent DRW $D = (\Sigma, S', s_0', \delta', \text{Acc}')$:

- S': a set of Safra trees,
- s_0': an initial Safra tree with only one node numbered 1 which is labeled $\{s_0\}$,
- δ': a transition function which, given an input $a \in \Sigma$, transforms a Safra tree using the steps described next,
- $\text{Acc}' = \{(E_1,F_1),(E_2,F_2), \ldots, (E_{2n},F_{2n})\}$:
 - E_i = the set of Safra trees without node i.
 - F_i = the set of Safra trees with marked node i.

37FLOLAC 2009: Büchi Complementation
Detail of the Determinization (cont.)

Steps to compute the next Safra-tree state:

- Remove the mark of every tree node.
- Create a new child with label $L \cap F$.
- Replace the label of every node with $\bigcup_{s \in L} \delta(s, a)$.
- Merge the same states into the leftmost one for each level in the tree.
- Remove every node with an empty label.
- Mark every node whose label equals the union of the labels of its children and remove its children.
Safra-Piterman Construction

- Stages of the complementation:
 - NBW \rightarrow DPW \rightarrow (complement) DPW \rightarrow NBW
- The determinization part uses compact Safra trees to construct the DPW.
- Compact Safra trees are Safra trees, but use two different kinds of techniques:
 - Dynamic names
 - Recording only the smallest marked name (called f) and removed name (called e)
Dynamic Names

- The construction renames the tree at the final step and get a new tree.
- But it does not change the marks of the smallest e and f.

Diagram:

- Some step
 - e=2, f=3
 - $1\{L1\}$
 - $3\{L2\}!$
 - $4\{L3\}$
 - rename
 - $1\{L1\}$
 - $2\{L2\}!$
 - $3\{L3\}$
 - w_i
 - Some step
 - e=4, f=2
 - $1\{L1\}$
 - $2\{L2\}!$
 - $3\{L3\}$
An Example of Construction

compute successors

create sons

merge states

compute successors

create sons

merge sons

s0

s2

s3

\[
es = 2, f = 1
\]

\[
es = 3, f = 3
\]

\[
es = 4, f = 2
\]

\[
es = 3, f = 3
\]

\[
es = 3, f = 3
\]

\[
es = 4, f = 2
\]
An Example of Construction (cont.)

- **completing successors**
 - vertex v:
 - $e=4$, $f=2$
 - create sons
 - $1\{q0,q3\}$
 - $3\{q3\}$
 - $4\{q3\}$

- **merging sons**
 - $e=4$, $f=2$
 - remove empty
 - $1\{q0,q3\}$
 - $3\{q3\}!$

- **renaming**
 - $e=2$, $f=3$
 - $s4$
 - b

- **completing successors**
 - $e=2$, $f=3$
 - $2\{q3\}$

- **merging sons**
 - $e=2$, $f=3$
 - $1\{q0,q3\}$
 - $2\{q3\}$
 - $3\{q3\}$
The Determinization

- Let $A = (\Sigma, S, s_0, \delta, F)$ be an NBW with n states.
- An equivalent DPW $D = (\Sigma, S', s_0', \delta', Acc')$:
 - S': the set of compact Safra trees,
 - s_0': an initial compact Safra tree with only one node numbered 1, which is labeled $\{s_0\}$ and has $e=2$ and $f=1$,
 - δ': a transition function which, given an input $a \in \Sigma$, transforms a compact Safra tree as described next,
 - The acceptance condition $Acc' = \{F_0, F_1, ..., F_{4n}\}$:
 - $F_0 = \{s \in S' | f = 1\}$.
 - $F_{2i+1} = \{s \in S' | e = i+2$ and $f \geq e\}$.
 - $F_{2i+2} = \{s \in S' | f = i+2$ and $e > f\}$.
 - $i = \{0, 1, 2, ..., 2n-1\}$.
The Determinization (cont.)

Steps to compute the next compact Safra-tree state:

- Replace the label of every node with $\bigcup_{s \in L} \delta(s, a)$.
- Create a new child with label $L \cap F$.
- Merge the same states into the leftmost one for each level in the tree.
- For every node, whose label equals the union of the labels of its children, remove its children and assign the smallest number of these nodes to f.
- Remove every node with an empty label and set e to the smallest number of removed node.
Comparison

- We define a modified Safra’s construction, which is similar to the original one, except that we exchange the step of computing successors and the step of creating children.
- Let us compare these four algorithms: Safra, modified Safra, Safra-Piterman, Muller-Schupp.
Comparison (cont.)

input word: $aaa(b)^\omega$

Safra

\[
\begin{align*}
1\{q0\} & \xrightarrow{a} 1\{q0,q1,q2\} \\
& \xrightarrow{a} 1\{q0,q1,q2,q3\} \\
& \xrightarrow{a} 2\{q1\} \\
& \xrightarrow{a} 2\{q1\} \\
& \xrightarrow{a} 3\{q3\}
\end{align*}
\]

Modified Safra

\[
\begin{align*}
1\{q0\} & \xrightarrow{a} 1\{q0,q1,q2\} \\
& \xrightarrow{a} 2\{q1\} \\
& \xrightarrow{a} 1\{q0,q1,q2,q3\} \\
& \xrightarrow{a} 2\{q1\} \\
& \xrightarrow{a} 3\{q3\}
\end{align*}
\]

Piterman

\[
\begin{align*}
e=2, f=1 \\
1\{q0\} & \xrightarrow{a} 1\{q0,q1,q2\} \\
& \xrightarrow{a} 2\{q1\} \\
e=3, f=3 \\
1\{q0,q1,q2\} & \xrightarrow{a} 1\{q0,q1,q2,q3\} \\
& \xrightarrow{a} 2\{q1\} \\
& \xrightarrow{a} 3\{q3\}
\end{align*}
\]

Muller-Schupp

\[
\begin{align*}
e=2, f=2 \\
1\{q0\}r & \xrightarrow{a} 1\{q0,q1,q2\}r \\
& \xrightarrow{a} 2\{q1\}r \\
& \xrightarrow{a} 3\{q0,q2\}r \\
e=4, f=2 \\
1\{q0,q1,q2,q3\}r & \xrightarrow{a} 1\{q0,q1,q2,q3\}r \\
& \xrightarrow{a} 2\{q1\}r \\
& \xrightarrow{a} 3\{q0,q2,q3\}r \\
& \xrightarrow{a} 5\{q3\}r \\
& \xrightarrow{a} 6\{q0,q2\}r
\end{align*}
\]
Comparison (cont.)

input word: $aaa(b)^\omega$

\[
\begin{align*}
&\text{e}=4, \ e=2, \ f=3, \ f=2
\end{align*}
\]
Some Observations

- Modified Safra trees are slightly better than Safra trees, because a modified Safra tree is usually one step ahead of the corresponding Safra tree.
- Safra-Piterman trees are usually better than modified Safra trees, because a Safra-Piterman tree only cares about the smallest marked name in the tree.
- Modified Safra trees are sometimes better than Safra-Piterman trees, because the rename step spends some time and adds some states.
Some Observations (cont.)

- Muller-Schupp trees are the largest, because they contain more redundant data.
- Safra-Piterman construction performs better than others, because DPW can be translated into NBW more efficiently.
- Muller-Schupp construction helps to understand other algorithms.
Other Complementation Algorithms

- [Thomas]
 - NBW \rightarrow APW \rightarrow (complement) NBW
 - APW: alternating parity automaton

- [Kupferman and Vardi]
 - NBW \rightarrow (complement) UCBW \rightarrow VWAA \rightarrow NBW
 - UCBW: universal co-Büchi automaton
 - VWAA: very weak alternating automaton

There is also a construction (by Kurshan) for DBW complementation, which is quite efficient.
Concluding Remarks

- Büchi complementation is expensive.
- The automata-theoretic approach to model checking tries to avoid it:
 - The system is modeled as a Büchi automaton A.
 - A desired property is given by a PTL formula f.
 - Let B_f ($B_{\sim f}$) denote a Büchi automaton equivalent to f ($\sim f$).
 - The model checking problem translates into
 \[L(A) \subseteq L(B_f) \text{ or } L(A) \cap L(B_{\sim f}) = \emptyset \text{ or } L(A \times B_{\sim f}) = \emptyset. \]
 - So, with PTL to automata translation, the expensive complementation procedure is avoided.
- The well-used model checker SPIN, for example, adopts the automata-theoretic approach and asks the user to express properties in LTL.
Concluding Remarks (cont’d)

- When the B in $A \subseteq B$ is given by an arbitrary Büchi automaton, complementation cannot be avoided.
- However, complementation of B may be done “on demand”.
- When the containment does not hold, one might find a counterexample before going through the full procedure of complementation.
- There are algorithms for checking language containment based on this idea.
- This line of research is still ongoing.
References