
Büchi Automata and Model Checking

Yih-Kuen Tsay

Department of Information Management
National Taiwan University

FLOLAC 2009

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 1 / 24



Outline

Introduction

Büchi and Generalized Büchi Automata

Automata-Based Model Checking

Basic Algorithms: Intersection and Emptiness Test

Concluding Remarks

References

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 2 / 24



Introduction

The simplest computation model for finite behaviors is the
finite state automaton , which accepts finite words.

The simplest computation model for infinite behaviors is the
ω-automaton, which accepts infinite words.

Both have the same syntactic structure.

Model checking traditionally deals with non-terminating
systems.

Infinite words conveniently represent the infinite behaviors
exhibited by a non-terminating system.

Büchi automata are the simplest kind of ω-automata.

They were first proposed and studied by J.R. Büchi in the early
1960’s, to devise decision procedures for S1S.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 3 / 24



Büchi Automata

A Büchi automaton (BA) has the same structure as a finite
state automaton (FA) and is also given by a 5-tuple
(Σ,Q,∆, q0,F ):

1 Σ is a finite set of symbols (the alphabet),
2 Q is a finite set of states,
3 ∆ ⊆ Q × Σ× Q is the transition relation,
4 q0 ∈ Q is the start state (sometimes we allow multiple start states,

indicated by Q0 or Q0), and
5 F ⊆ Q is the set of accepting states.

Let B = (Σ,Q,∆, q0,F ) be a BA and
w = w1w2 . . .wiwi+1 . . . be an infinite string (or word) over Σ.

A run of B over w is a sequence of states
r0, r1,w2 . . . , ri ri+1 . . . such that

1 r0 = q0 and
2 (ri ,wi+1, ri+1) ∈ ∆ for i ≥ 0.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 4 / 24



Büchi Automata (cont.)

Let inf (ρ) denote the set of states occurring infinitely many
times in a run ρ.

An infinite word w ∈ Σω is accepted by a BA B if there exists
a run ρ of B over w satisfying the condition:

inf (ρ) ∩ F 6= ∅.

The language recognized by B (or the language of B), denoted
L(B), is the set of all words that are accepted by B .

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 5 / 24



An Example Büchi Automaton

a

b

b

a

q0 q1

This Büchi automaton accepts infinite words over {a, b} that
have infinitely many a’s.

Using an ω-regular expression, its language is expressed as
(b∗a)ω.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 6 / 24



Closure Properties

A class of languages is closed under intersection if the
intersection of any two languages in the class remains in the
class.

Analogously, for closure under complementation.

Theorem

The class of languages recognizable by Büchi automata is closed
under intersection and complementation (and hence all boolean
operations).

Proof.

Closure under intersection will be proven later by giving a procedure
for constructing a Büchi automaton that recognizes the intersection
of the languages of two given Büchi automata.
Closure under complementation will be proven in a separate
lecture.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 7 / 24



Generalized Büchi Automata

A generalized Büchi automaton (GBA) has an acceptance
component of the form F = {F1,F2, · · · ,Fn} ⊆ 2Q .

A run ρ of a GBA is accepting if for each Fi ∈ F ,
inf (ρ) ∩ Fi 6= ∅.
GBA’s naturally arise in the modeling of finite-state concurrent
systems with fairness constraints.

They are also a convenient intermediate representation in the
translation from a linear temporal formula to an equivalent BA.

There is a simple translation from a GBA to a Büchi
automaton, as shown next.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 8 / 24



GBA to BA

Let B = (Σ,Q,∆,Q0,F ), where F = {F1, · · · ,Fn}, be a
GBA.

Construct B ′ = (Σ,Q × {0, · · · , n},∆′,Q0 × {0},Q × {n}).

The transition relation ∆′ is constructed such that
(〈q, x〉, a, 〈q′, y〉) ∈ ∆′ when (q, a, q′) ∈ ∆ and x and y are
defined according to the following rules:

If q′ ∈ Fi and x = i − 1, then y = i .
If x = n, then y = 0.
Otherwise, y = x .

Claim: L(B ′) = L(B).

Theorem

For every GBA B, there is an equivalent BA B ′ such that
L(B ′) = L(B).

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 9 / 24



Model Checking Using Automata

Kripke structures are the most commonly used model for
concurrent and reactive systems in model checking.

Let AP be a set of atomic propositions.
A Kripke structure M over AP is a four-tuple
M = (S ,R , S0, L):

1 S is a finite set of states.
2 R ⊆ S × S is a transition relation that must be total, that is, for

every state s ∈ S there is a state s ′ ∈ S such that R(s, s ′).
3 S0 ⊆ S is the set of initial states.
4 L : S → 2AP is a function that labels each state with the set of

atomic propositions true in that state.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 10 / 24



Model Checking Using Automata (cont.)

Finite automata can be used to model concurrent and reactive
systems as well.

One of the main advantages of using automata for model
checking is that both the modeled system and the specification
are represented in the same way.

A Kripke structure directly corresponds to a Büchi automaton,
where all the states are accepting.
A Kripke structure (S ,R , S0, L) can be transformed into an
automaton A = (Σ, S ∪ {ι},∆, {ι}, S ∪ {ι}) with Σ = 2AP

where
(s, α, s ′) ∈ ∆ for s, s ′ ∈ S iff (s, s ′) ∈ R and α = L(s ′) and
(ι, α, s) ∈ ∆ iff s ∈ S0 and α = L(s).

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 11 / 24



Model Checking Using Automata (cont.)

The given system is modeled as a Büchi automaton A.

Suppose the desired property is originally given by a linear
temporal formula f .

Let Bf (resp. B¬f ) denote a Büchi automaton equivalent to f
(resp. ¬f ); we will later study how a temporal formula can be
translated into an automaton.

The model checking problem A |= f is equivalent to asking
whether

L(A) ⊆ L(Bf ) or L(A) ∩ L(B¬f ) = ∅.
The well-used model checker SPIN, for example, adopts this
automata-theoretic approach.
So, we are left with two basic problems:

Compute the intersection of two Büchi automata.
Test the emptiness of the resulting automaton.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 12 / 24



Intersection of Büchi Automata

Let B1 = (Σ,Q1,∆1,Q
0
1 ,F1) and B2 = (Σ,Q2,∆2,Q

0
2 ,F2).

We can build an automaton for L(B1) ∩ L(B2) as follows.

B1 ∩ B2 =
(Σ,Q1 × Q2 × {0, 1, 2},∆,Q0

1 × Q0
2 × {0},Q1 × Q2 × {2}).

We have (〈r , q, x〉, a, 〈r ′, q′, y〉) ∈ ∆ iff the following
conditions hold:

(r , a, r ′) ∈ ∆1 and (q, a, q′) ∈ ∆2.
The third component is affected by the accepting conditions of B1

and B2.

If x = 0 and r ′ ∈ F1, then y = 1.
If x = 1 and q′ ∈ F2, then y = 2.
If x = 2, then y = 0.
Otherwise, y = x .

The third component is responsible for guaranteeing that
accepting states from both B1 and B2 appear infinitely often.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 13 / 24



Intersection of Büchi Automata (cont.)

A simpler intersection may be obtained when all of the states
of one of the automata are accepting.

Assuming all states of B1 are accepting and that the
acceptance set of B2 is F2, their intersection can be defined as
follows:

B1 ∩ B2 = (Σ,Q1 × Q2,∆
′,Q0

1 × Q0
2 ,Q1 × F2)

where (〈r , q〉, a, 〈r ′, q′〉) ∈ ∆′ iff (r , a, r ′) ∈ ∆1 and
(q, a, q′) ∈ ∆2.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 14 / 24



Checking Emptiness

Let ρ be an accepting run of a Büchi automaton
B = (Σ,Q,∆,Q0,F ).

Then, ρ contains infinitely many accepting states from F .

Since Q is finite, there is some suffix ρ′ of ρ such that every
state on it appears infinitely many times.

Each state on ρ′ is reachable from any other state on ρ′.

Hence, the states in ρ′ are included in a strongly connected
component.

This component is reachable from an initial state and contains
an accepting state.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 15 / 24



Checking Emptiness (cont.)

Conversely, any strongly connected component that is
reachable from an initial state and contains an accepting state
generates an accepting run of the automaton.

Thus, checking nonemptiness of L(B) is equivalent to finding a
strongly connected component that is reachable from an initial
state and contains an accepting state.

That is, the language L(B) is nonempty iff there is a reachable
accepting state with a cycle back to itself.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 16 / 24



Double DFS Algorithm

procedure emptiness
for all q0 ∈ Q0 do

dfs1(q0);
terminate(True);

end procedure

procedure dfs1(q)
local q′;
hash(q);
for all successors q′ of q do

if q′ not in the hash table then dfs1(q′);
if accept(q) then dfs2(q);

end procedure

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 17 / 24



Double DFS Algorithm (cont.)

procedure dfs2(q)
local q′;
flag(q);
for all successors q′ of q do

if q′ on dfs1 stack then terminate(False);
else if q′ not flagged then dfs2(q′);
end if;

end procedure

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 18 / 24



Correctness

Lemma

Let q be a node that does not appear on any cycle. Then the DFS
algorithm will backtrack from q only after all the nodes that are
reachable from q have been explored and backtracked from.

Theorem

The double DFS algorithm returns a counterexample for the
emptiness of the checked automaton B exactly when the language
L(B) is not empty.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 19 / 24



Correctness (cont.)

Suppose a second DFS is started from a state q and there is a
path from q to some state p on the search stack of the first
DFS.

There are two cases:

There exists a path from q to a state on the search stack of the first
DFS that contains only unflagged nodes when the second DFS is
started from q.
On every path from q to a state on the search stack of the first DFS
there exists a state r that is already flagged.

The algorithm will find a cycle in the first case.

We show that the second case is impossible.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 20 / 24



Correctness (cont.)

Suppose the contrary: On every path from q to a state on the
search stack of the first DFS there exists a state r that is
already flagged.

Then there is an accepting state from which a second DFS
starts but fails to find a cycle even though one exists.

Let q be the first such state.
Let r be the first flagged state that is reached from q during the
second DFS and is on a cycle through q.
Let q′ be the accepting state that starts the second DFS in which r
was first encountered.

Thus, according to our assumptions, a second DFS was started
from q′ before a second DFS was started from q.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 21 / 24



Correctness (cont.)

Case 1: The state q′ is reachable from q.
There is a cycle q′ → · · · → r → · · · → q → · · · → q′.
This cycle could not have been found previously.
This contradicts our assumption that q is the first accepting state
from which the second DFS missed a cycle.

Case 2: The state q′ is not reachable from q.
q′ cannot appear on a cycle.
q is reachable from r and q′.
If q′ does not occur on a cycle, by Lemma 23 we must have
backtracked from q in the first DFS before from q′.
This contradicts our assumption about the order of doing the second
DFS.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 22 / 24



Concluding Remarks

Büchi automata occupy a very special position in logic and
automata theory.

They have found practical applications in linear temporal logic
model checking.

In another lecture, we will study how a linear temporal logic
formula can be translated into an equivalent Büchi automaton.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 23 / 24



References

J.R. Büchi. On a decision method in restricted second-order
arithmetic, in Proceedings of the 1960 International Congress
on Logic, Methodology and Philosophy of Science, Stanford
University Press, 1962.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking,
The MIT Press, 1999.

E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and
Infinite Games (LNCS 2500), Springer, 2002.

G.J. Holzmann. The SPIN Model Checker: Primer and
Reference Manual, Addison-Wesley, 2003.

W. Thomas. Automata on infinite objects, Handbook of
Theoretical Computer Science (Vol. B), 1990.

Yih-Kuen Tsay (SVVRL @ IM.NTU) Büchi Automata and Model Checking FLOLAC 2009 24 / 24


	Introduction

